
CFEngine Nova Technical Supplement
CFEngine Enterprise Documentation

for version 2.0

CFEngine

Copyright c© 2010 CFEngine AS. The features described herein are in provided for user convenience

and imply no warranty whatsoever to the extent of applicable law.

i

Table of Contents

1 Introduction to CFEngine Nova . 1

1.1 What are enterprise versions of CFEngine? . 1

1.2 What’s new in Nova 2.0? . 1

1.3 About the CFEngine architecture . 2

1.3.1 CFEngine is agent based software . 2

1.3.2 Single point of coordination . 2

1.3.3 Requirements and scalability of CFEngine Nova 4

1.3.4 Phases of the server life-cycle . 4

1.4 Nova Commercial Enhancements . 5

1.4.1 Productivity enhancements . 5

1.4.2 Functional enhancements . 6

1.4.3 Reporting enhancements . 6

1.4.4 Documentation enhancements . 7

1.4.5 Knowledge Management in Nova . 7

2 Installing CFEngine Nova . 9

2.1 Operating system support . 9

2.2 Installing the software on a new host . 9

2.3 Upgrading Nova . 11

2.3.1 Troubleshooting upgrade . 11

2.4 What is the default configuration? . 11

3 Mission Portal . 13

3.1 Mission Portal Views . 13

3.1.1 Mission status . 14

3.1.2 Host view . 15

3.1.3 Status level meters . 15

3.1.4 Top 50 weakest hosts . 16

3.1.5 Pulse and vital signs . 16

3.1.6 Detail views . 17

3.1.7 The policy editor . 18

3.1.8 Integration with subversion . 19

3.2 Reports in the Mission Portal . 21

3.3 Should monitoring and configuration be separate? . 21

3.4 What is a CMDB? . 21

3.5 CMDB and CFEngine . 22

3.6 Decentralized data collection in CFEngine . 22

3.7 Reporting in CFEngine . 22

3.8 Standard reports in CFEngine Nova . 23

3.8.1 Performance logs . 24

3.8.2 Installed software packages . 24

3.8.3 A promise compliance report . 25

ii CFEngine Nova Technical Supplement

3.8.4 A file content change report . 26

3.8.5 Installed setuid program report . 26

3.9 Knowledge Map . 27

3.9.1 The knowledge map pages . 28

3.9.2 The knowledge base maps . 28

3.9.3 Results for this topic . 28

3.9.4 Topics that have Category::Topic as a subject-header 29

3.9.5 Other topics found under Category . 29

3.10 Using the knowledge map . 29

3.10.1 Policy analysis . 29

3.10.2 Understanding dependencies . 32

3.10.3 A quick tour of the knowledge console . 33

3.10.4 Why knowledge management? . 33

3.11 cf-hub and data collection . 34

3.11.1 CMDB or SKMS . 34

3.11.2 The reporting agent . 34

4 Business Integration . 35

4.1 Business goals and the Service Catalogue . 35

4.2 Business value reports . 36

4.3 Simple insight into IT compliance . 37

5 Monitoring extensions . 39

5.1 Integration of monitoring with knowledge base . 39

5.2 Long term trends . 40

5.3 Custom promises to measure . 40

5.3.1 Extraction strings and logging . 41

5.3.2 Extracting one-off numerical data . 42

5.3.3 Extraction to list variable . 42

5.4 Uses for custom monitoring . 43

6 Database Promises . 45

6.1 How to manage databases . 45

6.2 Database access rights . 45

6.3 Creating a point of contact on a server . 45

6.4 Creating SQL databases . 46

6.4.1 Creating a database manually . 46

6.4.2 Creating a database directly . 47

6.5 Database table promises . 48

6.6 MS Registry functions . 49

6.6.1 Creating a registry key . 49

6.6.2 Creating a value-data pair . 50

6.6.3 Deleting registry keys . 51

6.6.4 Deleting registry values . 51

6.6.5 Scanning and restoring the registry . 51

6.7 LDAP integration . 52

6.7.1 Function ldapvalue . 53

iii

6.7.2 Function ldaplist . 53

6.7.3 Function ldaparray . 54

6.7.4 Function regldap . 54

6.7.5 LDAP function examples . 55

6.7.6 Best practice for LDAP integration . 56

7 File Access Control Lists . 59

7.1 Introduction . 59

7.2 File ACL example . 59

7.2.1 Concepts . 60

7.2.2 Entity types . 61

7.2.3 Owners . 61

7.2.4 Changing owner . 61

7.2.5 Permissions . 61

7.2.6 Deny permissions . 61

7.2.7 Changing permissions . 62

7.2.8 Effective permissions . 62

7.2.9 Inheritance . 62

7.3 CFEngine 3 Generic ACL Syntax . 62

7.3.1 Generic syntax examples . 64

7.4 POSIX ACL type . 65

7.4.1 POSIX-specific ACL syntax . 65

7.4.2 Generic syntax mapping . 65

7.4.3 POSIX ACL examples . 66

7.5 NT ACL type . 66

7.5.1 NT-specific ACL syntax . 67

7.5.2 Generic syntax mapping . 68

7.5.3 NT ACL examples . 69

8 Server extensions . 71

8.1 Server access resource type . 71

8.2 Function remotescalar . 71

8.3 Example remote scalar lookup . 72

9 Environments and workflows . 75

9.1 Environments in Nova . 75

9.2 Implementing workflows in Nova . 75

10 Virtualization . 77

10.1 What are virtualization and cloud computing? . 77

10.2 Why build virtualization support into CFEngine? . 77

10.3 What can CFEngine do with virtual machines? . 77

10.4 Guest environments promises . 78

10.5 Virtualization types supported . 81

10.6 Distinct states . 81

10.7 Example deployment . 81

iv CFEngine Nova Technical Supplement

11 Content-Driven Policies . 83

11.1 Benefits of Content-Driven Policies . 83

11.2 Getting started . 84

12 Windows-specific features in Nova . 87

12.1 Windows service management . 87

12.2 Windows event logging . 88

12.3 Windows special variables . 89

12.4 Windows hard classes . 89

12.5 Notes on windows policies . 90

Chapter 1: Introduction to CFEngine Nova 1

1 Introduction to CFEngine Nova

CFEngine Nova is a commercially licensed version of the core CFEngine software1 with enterprise library

extensions. All of the documentation for CFEngine 3 applies to CFEngine Nova. This document is a

supplement describing features particular to CFEngine Nova.

The aim of CFEngine Nova is to offer a knowledge-enhanced framework for configuration man-

agement that goes beyond mere technical configuration to support the needs of businesses. Features

include compliance management, reporting and business integration, and tools for handling necessary

complexity. CFEngine Nova has features to support Cloud Computing for public and private clouds, as

well as greater integration facilities with database resources.

You should use this brief guide to CFEngine Nova’s features in concert with the CFEngine Concept

Guide and CFEngine Reference Manual, available from the CFEngine website, or in the ‘docs’ directory

of your Nova hub installation.

1.1 What are enterprise versions of CFEngine?

CFEngine Enterprise versions contain features designed to both extend and simplify the use of CFEngine

in enterprise scenarios. This includes quick setup, business alignment features and improved self-

documentation, ultimately providing a single framework for self-healing, hands-free automation with

integrated knowledge management. Each extended feature has been carefully designed to meet a

specific need in the server life-cycle, replacing cumbersome or insecure technologies currently available

in datacentre products. CFEngine Nova adds the following capabilities:

• Simple bootstrap and installation.

• Scalable management of complex, federated environments.

• Lightweight reporting engine.

• Distributed orchestration of tasks.

• Virtualization control (using libvirt).

• Simplified policy writing with Content-Driven Policies.

• Integrated Knowledge Management.

• Bundle managed services.

• Provides a simple window onto IT Operations for Business.

Of course, as a Nova user, you have access to all of the features of the CFEngine Community

Edition, and access to its on-line and community resources.

1.2 What’s new in Nova 2.0?

CFEngine Nova 2.0 is a major upgrade of CFEngine’s commercial software, including the latest com-

munity core and many improvements to the language interface. In addition, some of the major features

in Nova 2.0 include:

• Fast, lightweight report collection to a hub.

• A browsable Web interface allows you to see policy and state side by side.

1 Major version 3

2 CFEngine Nova Technical Supplement

• CMDB/SKMS capabilities in the Web interface.

• Embedded compliance reporting engine.

• Searchable reporting and analytics.

• A local customizable version of the Copernicus Knowledge Map is now fully integrated providing

searchable on-line documentation, integrated with the policy browser.

• Virtualization (Libvirt model) support.

• Simplified management through Content-Driven Policies.

• Unique-ID support for mobile and dynamic IP support.

• FIPS validated encryption mode.

In addition to these features, Nova 2.0 is built around our extensive bug-reporting and self-diagnostic

test suite that has allowed us to improve the reliability and functionality of the software for the most

demanding environments.

1.3 About the CFEngine architecture

1.3.1 CFEngine is agent based software

CFEngine is agent based software. It resides on and runs processes on each individual computer under

its management. That means you do not need to grant any security credentials for login to CFEngine.

Instead, for normal operation, CFEngine runs in privileged ‘root’ or ‘Administrator’ mode to get access

to system resources and makes these available safely to authorized inquiries.

A CFEngine installation is thus required on every machine you want to manage: client and server,

desktop or blade. Typically, you will single out one machine to be a policy server or hub. In very large

networks of many thousands of machines, you might need several policy servers, i.e. several hubs.

1.3.2 Single point of coordination

The default CFEngine Nova architecture uses a single hub or policy server to publish changes of policy

and to aggregate knowledge about the environment, but you can set up as many as you like to manage

different parts of your organization independently. The CFEngine technology is not centralized by

nature. Most users choose to centralize updating of policy and report aggregation for convenience

however.

Chapter 1: Introduction to CFEngine Nova 3

Figure: A policy server or ‘hub’ is implemented in CFEngine Nova

as a simple solution that will scale for most sites ‘out of the box’.

If you operate CFEngine Nova in its default mode, the hub acts as a server from which every other

client machine can access policy updates. It also acts as a collector, aggregating summary information

from each machine and weaving it into a knowledge map about the datacentre.

For a single hub configuration, the figure below shows a normal process approach to managing policy.

Policy is edited and developed at a Policy Definition Point, outside of normal production environment.

This can be done using the specialized editor embedded in CFEngine Nova, or it can be done using any

text editor of your choice.

Edits are made in conjunction with a version control repository2, which should be used to document

the reasons for changes to policy3. When a change has been tested and approved, it will be copied

manually to the policy dispatch point on one or more distribution servers. All other machines will then

download policy updates from that single location according to their own schedule.

2 CFEngine supports integration with Subversion through its Mission Portal, but any versioning system can of
course be used.

3 CFEngine and version control will document what the changes are, but what is usually missing from user
documentation is an explanation of the reasoning behind the change. This is most valuable when trying to
diagnose and debug changes later.

4 CFEngine Nova Technical Supplement

Figure: Policy coordinated from a central root location

is implemented in a distributed manner at every leaf node.

1.3.3 Requirements and scalability of CFEngine Nova

The default architecture and configuration skeleton is expected to scale to a few thousand hosts with a

dedicated policy hub. Your hub machine should have at least 2 GB of memory and a modern processor.

You will need about 2 MB of disk storage for every machine under CFEngine’s management.

CFEngine will scale to very large systems, with tens of thousands of machines. This is only possible

because of its decentralized agent-based operation. CFEngine encourages the federation of policy in

complex environments, so that local domain experts manage what they know and baseline policies can

be handled generally for all. We also encourage a practice of small adjustments, as opposed to large

risky redesigns of operational policy.

� �
CFEngine’s recommended practice is to encourage small incremental changes to policy, not to

save up changes into ‘big project roll-outs’. This strategy lowers the risk of error and offers improved

scalability.
 	
CFEngine will operate autonomously (hands-free) in a network, under your guidance. If your site is

large (thousands of servers) you should spend some time discussing with CFEngine experts how to tune

this description to your environment as scale requires you to have more infrastructure, and a potentially

more complicated configuration. The essence of any CFEngine deployment is the same.

1.3.4 Phases of the server life-cycle

The four phases in managing systems, summarized in the Build, Deploy, Manage, Audit (BDMA)

framework originated with a model of system management based on transactional changes (‘roll-out’).

CFEngine’s conception of management is some different, as transaction processing is not a good model

for highly distributed systems, but we can use this template to see how CFEngine works differently.

Build CFEngine is often used together with other tools to build new machines, whether virtual or

real. You integrate it into the ‘kickstart’ or ‘jumpstart’ process, using PXE network boot-

ing, etc, by including the CFEngine software in the initial build and executing CFEngine

once at the end of the installation.

Chapter 1: Introduction to CFEngine Nova 5

To complete the installation of your system, you create a set of promises about the system

state, or policy-template of proposed promises. When systems keep these promises, they

will function seamlessly as planned.

Deploy Deploying software or changes really means implementing the policy that has been de-

cided. In CFEngine you simply publish your proposed policy and the machines can adjust

accordingly. Each installed agent is capable of implementing policies and maintaining

them over time without further assistance.

Manage Once a decision is made, unplanned events will occur. Such incidents usually set off

alarms and humans rush to make new transactions to repair them. In CFEngine, the

autonomous agent manages the system, and you only have to deal with rare events that

cannot be dealt with automatically.

Audit

Promises are assured by design in CFEngine and maintained automatically, so the main

worry when using CFEngine is whether or not you have coded conflicting intentions. The

compliance of machines with the policy template is easily measured by CFEngine, using

its model-oriented approach. This can be viewed from the web-browsable interface.

1.4 Nova Commercial Enhancements

The enhancement provide by CFEngine Nova fall into a number categories:

• Business transparency and reporting enhancements, providing insight into IT operations for both

Business and IT. CFEngine Nova connects the dots between high level business goals and low

level configuration, supporting Knowledge Management for ITIL processes.

• Productivity enhancements – easier getting started and making changes.

• Continuity and repair related enhancements.

• Full integrated Knowledge Management.

• Special support for operating system features and virtualization, such as Solaris zones and the

libvirt interface.

• Native support for the Windows platform, with access to the configuration of the Windows registry,

processes and file access control lists.

1.4.1 Productivity enhancements

Features that are designed to make it easier to work with CFEngine on a day to day basis.

• Simple automatic installation (one command per system)

• A template library of managed services for common platforms.

• Auto-analyzing system knowledge console

• Policy mining and semantic knowledge representation

• Auto-classification of systems

• Performance and Service Level reports

• On- and off-line syntax look-up.

• Integration with LDAP directory services.

6 CFEngine Nova Technical Supplement

The most important productivity tool is the CFEngine Mission Portal, which contains an interface

for browsing and editing policy, and understanding it in the context of reports and a Knowledge Map

of the system.

A library of managed services for common Linux operating systems is provided as part of the

knowledge base. This makes setting up specialized service nodes a simple process of matching hosts

to services from a required list.

The ability to look up syntax on the fly, from the web or the command line, can be save experi-

enced users considerable time. Using the tools for database interaction, the process of setting up a

CFEngine knowledge base at your organization is fully automated and you only have to think about

local customizations you want to make.

LDAP query functions have been added for integration with LDAP services or Active Directory

information, allowing a single point of definition for system lists and identity management.

1.4.2 Functional enhancements

• Database verification and editing including SQL (Mysql,Postgres)

• MS Registry management and repair

• File-system ACL security management (Linux, Windows, Solaris)

• Extended monitoring probes and system classification capabilities.

These include the ability to interact with and repair popular SQL databases (currently MySQL and

PostgreSQL), as well as embedded system databases such as the Microsoft System Registry, defining,

validating, scanning or repairing their tabular structure and the data within them.

• Access remote CFEngine variables (like a simple directory service)

• LDAP directory service integration

• Role based access control on policy execution by class.

Access Control List (ACL) support for Linux is now added for pinpoint accuracy in file permission

security. CFEngine Nova’s ACL support includes a completely new generic CFEngine model for ACLs

that will translate across multiple platforms so that users can as closely as possible translate identical

requirements across multiple platforms with different implementations. Native ACLs are also supported.

Fault tolerant features have been added in Nova to functions for retrieval of data from network

connections. It is risky to rely of data from a network when configuring hosts. If the network connection

could fail, erroneous data might be written to a local configuration. Nova adds local caching to network

results and works opportunistically to provide the latest known values; however, look-up functions, such

as LDAP retrieval of remotescalar data will not fail.

1.4.3 Reporting enhancements

Nova can provide a wider range of system reports about information collected by CFEngine on perfor-

mance, security and state. This includes the ability to perform custom system discovery, and log the

data into a variety of special reports.

� �
Discovery and measurement promises are made through CFEngine’s lightweight custom monitoring

capabilities.
 	
• HTML, XML, CSV report generation

Chapter 1: Introduction to CFEngine Nova 7

• Service and performance level reports

• Reliability reports

• Deep history analysis and visualization, through knowledge base.

• Policy dependency and impact analysis reporting

Information can be extracted in HTML, XML and text formats (e.g. CSV) for easy integration with

other presentation tools, or for direct viewing through the knowledge console.

As part of policy-writing, CFEngine Nova allows you to track dependencies on policy items. The

knowledge agent can take this information, analyze it and present it as part of an overview of the

system (see the chapter on Knowledge Management for more information). This enables virtual impact

analysees to be inspected.

1.4.4 Documentation enhancements

Additional documentation is provided for Nova users through program built-in help, additional manuals

and integration of syntax information into the CFEngine Knowledge Console.

An annoying aspect of any software is the need to browse through a manual to find quick answers

to questions. Ideally one would only look at manuals during a learning phase; thereafter we want to

see examples and summaries of what we basically already know but cannot keep in our heads.

System administrators often prefer to work in the command line and find the need to go to a manual

a distraction. Indeed, if the network is non-functional or we are working off-line, instant command line

help is a great bonus. Other users prefer the point and click of a familiar web interface. CFEngine

Nova provides both these options to users to provide quick answers.

Of the two, a web interface is clearly the most flexible. Far more information can be browsed on

the web than is practical with a simple text interface. However, of the two, the command line interface

is by far the fastest way to get answers to simple questions of syntax. CFEngine’s knowledge agent

knows CFEngine’s syntax tree and can summarize it at the keyword level.

� �
atlas$./cf-know --syntax link˙from

Constraint link˙from (of promise type files) has possible values:

link˙from ˜ defined in a separate body, with elements

source ˜ ()

link˙type ˜ (symlink,hardlink,relative,absolute,none)

copy˙patterns ˜ ()

when˙no˙source ˜ (force,delete,nop)

link˙children ˜ (true,false,yes,no,on,off)

when˙linking˙children ˜ (override˙file,if˙no˙such˙file)

Description: A set of patterns that should be copied and synchronized instead of linked
 	
1.4.5 Knowledge Management in Nova

The future of datacentre management lies in a more complete model of knowledge and transparency

for processes and resources. CFEngine Nova provides a platform for this through:

• Auto-generated central knowledge console.

• Access to CFEngine’s company support knowledge base.

8 CFEngine Nova Technical Supplement

• Tie-in knowledge base with local documentation.

• Dependency mapping between promises in CFEngine, with integration into the semantic

• Trace high level policies to low level policies

Chapter 2: Installing CFEngine Nova 9

2 Installing CFEngine Nova

CFEngine Nova is designed to be simple to install in its default configuration. The installation process

has three phases:

• Unpacking the software.

• Obtaining a license.

• Adapting policy.

2.1 Operating system support

CFEngine can be made to run on most operating systems. For efficiency CFEngine only supports a

number of recent popular operating systems, which should be up to date with patches. If we don’t have

packages for your particular operating systems we can usually make packages by special arrangement.

The hub (or policy server) is only available for derivatives of the top GNU/Linux distributions

(Debian, Red Hat, SuSE), as these make available software that the hub relies on for data storage and

processing. Operating system choices for the hub are:

Debian 5,6

Ubuntu 8,9,10

RedHat 4,5

SuSE 11

No special software is required on other machines in your network. CFEngine bundles all dependen-

cies in the Nova package.

Nova provides a version of CFEngine running natively on Windows, with support for registry man-

agement, Windows services and file security, See Chapter 12 [Windows-specific features in Nova],

page 87. Support for Solaris zones has been added through automated zone detection and process

model adaptation.

2.2 Installing the software on a new host

Nova is provided in two packages. The main software package (for each operating system) must be

installed on every host. The second package is only installed on the hub or policy server. You should

install the hub first.

On a new host, installation follows the following procedure. References to package managers assume

that additional packages might need to be installed of the policy server, e.g. the Apache Web Server.

1. Verify that the machine’s network connection is working and that it can resolve names. On the

hub verify that package managers yum, zypper or apt-get are working.

2. Copy the Nova packages to the system. On the hub or policy server:

CFEngine-nova-2.xxx.[rpm—deb]

CFEngine-nova-expansion-2.xxx.[rpm—deb]

On all other machines

CFEngine-nova-2.xxx.[rpm—deb]

3. Unpack the software:

Red Hat family

host# rpm -ihv packages

10 CFEngine Nova Technical Supplement

Debian family

host# dpkg --install packages

4. A public key has now been created in ‘/var/cfengine/ppkeys/localhost.pub’ on the policy

hub as part of the package installation. You should email this public key to CFEngine Sup-

port, as an attachment, to obtain a license file ‘license.dat’. Save the returned license file to

‘/var/cfengine/masterfiles/license.dat’ on the hub before continuing.

5. The remaining steps apply to all hosts, but you should install the hub or policy server first. Find

the name or IP address of the hub (policy server), here we assume ‘123.456.789.123’ is the

address.

/var/cfengine/bin/cf-agent --bootstrap --policy-server 123.456.789.123

Use the same command on all hosts, i.e. do not bootstrap the policy server with a localhost

address.

6. The software should now be running.

7. To complete to licensing, you should make a promise to accept the license terms by editing

the ‘/var/cfengine/masterfiles/promises.cf’ on the policy server, and editing the

‘host˙licenses˙paid =¿ ”100”;’ line in ‘body common control’ to reflect the correct number

of licenses that you have subscribed to.

How to assess success in this procedure:

1. Look at the process list on the systems ‘ps waux — grep cf’or ‘ps -ef — grep cf’. You should

be able to see cf-execd running, and eventually other processes from the CFEngine suite like

cf-monitord cf-serverd.

2. Look for files in ‘/var/cfengine/inputs’ (Unix) or ‘X:“Program Files“CFEngine“inputs’

(Windows). The license file will be copied out from the policy server to the clients as part of

the normal distribution of policy. Each Unix machine should get a copy of the ‘license.dat’ file

in ‘/var/cfengine/inputs’ (Unix) or ‘X:“Program Files“CFEngine“inputs’ (Windows).

3. The file ‘/var/cfengine/promise˙knowledge.cf’ should have been created, and should contain

data.

4. Finally try connecting to the web server at port 80 on the hub / policy host. You should see a

summary page like the one shown in the figure below.

The opening page of the CFEngine Nova Mission Portal.

Chapter 2: Installing CFEngine Nova 11

2.3 Upgrading Nova

When upgrading the software from an earlier version, you should upgrade the policy server (hub) machine

first. Any other hosts in your network that act as servers for encrypted copy operations would preferably

be upgraded first. This is because a stronger form of encryption-hash is used in newer versions, which

the older servers cannot understand.

CFEngine packages its software in operating system compatible package formats (RPM, PKG,

MSI, etc). New packages are made available on the software.CFEngine.com website; these can be

downloaded and installed in the standard way.

1. Go to the software.CFEngine.com website

2. Select the version of the software you require

3. Download the particular package for your operating systems to a correspondingly named sub-

directory on your policy server under ‘/var/cfengine/master˙software˙updates’, or simply

mirror the entire file tree on your policy server under

‘/var/cfengine/master˙software˙updates’.

• You do not need to delete the contents of the work directory, e.g. ‘/var/cfengine’ to upgrade.

An upgrade only involves changing the binary code base.

• Users are encouraged to take advantage of changes to the Nova base policy, e.g. the ‘update.cf’

policy. We have reduced the number of files distributed and managed by CFEngine in 2.0.0. To

gain the full benefits of the software, you should use the latest versions of these files:

cdp˙inputs/ CFEngine.cf failsafe.cf knowledge.cf promises.cf update.cf

cdp˙lib/ CFEngine˙stdlib.cf file˙change.cf OrionCloud/

Note that some log files have new names, and that the audit database is no longer used by

default. If you do not upgrade the files above, make sure you rotate the log files and perform

garbage collection as detailed in these files.

• You can upgrade systems manually by copying the relevant package to the local host and running

the appropriate package update command (see summary below).

• To upgrade all of your systems automatically, you only need to copy a new package release to a

specially designated location on your policy server, and CFEngine will do the rest. Each CFEngine

client will detect the presence of the update, download it, install and restart CFEngine services

locally. Thus you can deploy software using a single point of management.

2.3.1 Troubleshooting upgrade

You might experience some authentication errors during secure copy operations during upgrade from

older versions of Nova. These will self-repair once the servers have been upgraded.

To avoid these altogether, you can temporarily disable copy verification, i.e. set

verify =¿ ”false”;

in your copy˙from bodies, should you wish. For standard installations, this setting is typically part

of the definition of ‘secure˙cp’ defined in the ‘CFEngine˙stdlib.cf’ file.

2.4 What is the default configuration?

Following the above procedure, you should have a fully functional CFEngine on all clients. However,

in the default configuration, CFEngine does nothing other look after itself, and look for possible policy

updates from the master file policy distribution point on the policy server. The policy server is configured

12 CFEngine Nova Technical Supplement

to collect data from non-policy server machines and generate reports that are integrated into the

knowledge base.

To alter policies, you need to change the files on the policy hub, in the directory

‘/var/cfengine/masterfiles’. To begin with most of the policy examples are commented out in

these files:

� �
active˙directory.cf failsafe.cf spp.cf spp˙registry.cf

win˙emergency.cf app˙baseline.cf file˙change.cf scheduling.cf

spp˙commands.cf spp˙services.cf win˙registry.cf CFEngine.cf

file˙security.cf OrionCloud software˙local.cf spp˙file˙changes.cf

system.cf win˙services.cf garbage˙collection.cf process˙matching.cf

spp˙file˙diffs.cf update.cf CFEngine˙stdlib.cf knowledge.cf

promises.cf spp˙acls.cf spp˙inputs
 	
To change this, you can go to the main file ‘promises.cf’, and include additional pre-made bundles

of promises. You should always verify the contents of the bundles you include before activating and

deploying to new machines.� �
bundle agent main

–

methods:

any::

”general” usebundle =¿ def;

”jobs” usebundle =¿ system˙scheduling;

”security” usebundle =¿ change˙management;

”security” usebundle =¿ security˙files;

”windows boxes” usebundle =¿ active˙directory;

windows::

”windows boxes” usebundle =¿ software˙local;

”windows boxes” usebundle =¿ app˙baseline;

”windows boxes” usebundle =¿ win˙services;

”windows boxes” usebundle =¿ win˙registry;

”windows boxes” usebundle =¿ win˙emergency;

!windows::

”security” usebundle =¿ system˙xinetd;

”maintenance” usebundle =¿ garbage˙collection;

˝
 	

Chapter 3: Mission Portal 13

3 Mission Portal

Knowledge management has become a new focus in IT management, and it is a core focus at CFEngine.

Comprehending the growing complexity of IT operations is one of the main challenges in IT today.

CFEngine Nova has a number of key features for knowledge management, including automated docu-

mentation, report generation and associative inference. The CFEngine Mission Portal is the centerpiece

of user interaction with CFEngine Nova.

The structure of the Mission Portal interface follows the concept of a Topic Map. A Topic Map

is an ISO standard for indexing electronic information as a semantic web. In a semantic web, you are

presented with links to documents about your chosen topic, as usual; in addition you are offered leads

and possible pathways to topics that are known to be related. These leads don’t just point you to more

documents, but explain how neighboring issues are related. The aim is to help the user learn from the

experience of browsing, by conveying the meaning of the current topic in relation to other issues in the

system. This is how knowledge transfer occurs.

Figure: The mission portal

There are four main categories in the mission portal:

• Mission Summary - a top level overview of compliance status

• Mission Planning - a place to plan and make policy changes

• Mission Status - a place to see the current state of system repair

• Mission Library - a knowledge bank that connects information together

Each of these categories is a beginning from which you can refine your overview and search through

information.

3.1 Mission Portal Views

The Mission Portal offers insight into three main areas:

• Operations and performance.

• Business and compliance.

• Organizational knowledge and library.

14 CFEngine Nova Technical Supplement

Figure: Topic Maps provide a variety of viewpoints on the information

Mission portal views link together a number of relevant resources for common system roles, like

operator, security officer or system architect. This is an example of how the mission portal offers

relationships that transcend simple categories. The same information can appear in many different

contexts.

3.1.1 Mission status

Figure: The status of IT operations.

Mission status is a high level summary of how well the entire system is behaving. From this page

you can dive down into details about managed hosts, by machine or by information type.

Chapter 3: Mission Portal 15

The row of bar meters shows the compliance of all registered hosts over the past week, the past

day and the past hour. It also summarizes performance and anomalous behavior in a simple red, yellow

green scale.

The hosts themselves are classified into red, yellow and green using a combination of these consid-

erations. Clicking on the colored links produces a list of the hosts in that category.

3.1.2 Host view

Clicking on a host name or address leads to a specialized host page, which has the following broad

characteristics:

• Operating system and host type.

• Host name, address and unique identity.

• A summary meter for compliance, performance, etc.

• Detailed reports.

Figure: A page specific for each host.

3.1.3 Status level meters

IT operations are referred to as the mission in the knowledge base. The mission depends on key

resources and can be viewed from a number of perspectives, shown on the opening page.

The bar meter shows the site-summary status of a number of key performance indicators. This is

the highest level summary of mission status.

1. Week: The average level of promise-compliance over the whole past week.

2. Day: The average level of promise-compliance over the past day.

3. Hour: The average level of promise-compliance over the past hour.

4. Perf: The average performance status of the system, compared to the learned norm.

5. Soft: Software update status of the system.

16 CFEngine Nova Technical Supplement

6. Lics: Summary of licenses, i.e. number of active clients versus number of paid licenses promised.

7. Anom: Level of anomalous site-wide activity on the system.

3.1.4 Top 50 weakest hosts

One the status page, there is a link to the top 50 worst machines. Clicking on the bar meter graph

takes you to the host directory, where a similar graph displays the status of the list of managed hosts.

Figure: The Top 50 weakest hosts list.

Clicking further on each host takes you do detailed performance data as measured by CFEngine’s

monitoring daemon.

We call this view pseudo-real time monitoring data, because there is always some delay between

when data were measured and when they become available for you to view. Most tools simply hide

this delay, but CFEngine tells you precisely when data were last updated, providing crucial information

about system latencies.

3.1.5 Pulse and vital signs

For each host there is a ‘pulse and vital signs’ link. This shows an overview of monitoring data from

each host and its current performance statistics. In order to see data in these graphs, each host in

the CFEngine managed network must be running cf-monitord and cf-serverd. This is the default

behavior for a Nova installation.

The main page of the pulse and vital signs shows up to 100 different measured values, for which

some activity has been seen1.

The graphs are arranged into three columns, representing three different time-scales. From the left:

1 There is a known issue with the algorithm for determining whether or not there are actual data to be shown
for a given metric. Noise and sporadic port connections might result in the Mission Portal showing strange
looking graphs with blanks and holes. Alternative approaches to auto-detecting data are being investigated for
future releases.

Chapter 3: Mission Portal 17

• Past four hours.

• Past weeks.

• Statistical complete history.

The past four hours graph is updated regularly and shows the current levels in 5 minute resolution.

The weekly view shows data collected over many weeks, overlaid onto a ‘periodogram’, i.e. multiple

weeks averaged over a single week view. This reveals the strongest trends of usage on the system.

The statistical history shows a spectral histogram, indicating the distribution of all measured values

about the mean. This shows how much entropy or variation there is in the performance characteristic.

Figure: Overview of performance characteristics

3.1.6 Detail views

Clicking on the individual graphs in the vital signs provides a deeper analysis of each graph, with some

basic statistics. These statistics are updated at different rates, depending on the time scales. ‘Past

four hour’ graphs are updated every 5-10 minutes, while the others are updated every 6 hours. The

numerical values are reanalyzed on a corresponding interval.

18 CFEngine Nova Technical Supplement

Figure: Details of the graph.

3.1.7 The policy editor

The CFEngine Nova Mission Portal provides an editor for working on CFEngine language. It does not

support user management itself2, however there is a tie-in for Subversion version control repositories.

Because there is no user management, each web-browser session will get its own working environ-

ment. Thus, there will be limited persistence, so remember to commit your changes often, especially

before closing the browser.

For security reasons, there is no automatic link between the policy editor and the company policy

in masterfiles. Subversion can be used to handle access control, and a manual review and copy step

is required to deploy policy written in the editor.

The editor provides syntax high-lighting and look-up to make working with CFEngine’s extensive

language easier.

The main key commands in the editor Window are:

Autocompletion: Ctrl+Space

Shows a pop-up menu of possible items. This is context sensitive, e.g. it also works inside

lists (e.g. bsdflags) to provide possible values.

Undo: Ctrl+Z

In Safari, Ctrl-backspace may be used.

Redo: Ctrl+Y

Undo an undo operation, i.e. reverse the direction of transaction roll.

Indent: TAB

Format a file to a standard indentation.

Multiple documents appear as tabs along the top of the screen.

2 A full multi-user version will be part of CFEngine Constellation

Chapter 3: Mission Portal 19

Figure: The Policy Editor

The CFEngine Nova policy editor detects syntax errors and highlights these in red to avoid mistakes

when editing. In addition, by using the Check syntax button, it is possible to pre-test the policy before

committing changes to a repository. This will run promises.cf through the cf-promises parser.

The main menu on the left hand panel shows the main workflow items for policy editing. Clicking

the arrow in the panel divider collapses the menu and gives full-screen editing.

Figure: The policy editor main menu

3.1.8 Integration with subversion

The default architecture (page) proposes to work in close dialogue with a version repository. CFEngine

recommends the use of such a repository and currently supports subversion.

20 CFEngine Nova Technical Supplement

Since the CFEngine Nova policy editor is a single user console, authentication is required for each

interaction with the repository. Access control and authorization for policy are handled by subversion’s

authentication system so that edits made in the Mission Portal can be interleaved with edits from other

sources. The subversion repository thus becomes the centerpiece of the distributed coordination, as is

the intended function of version control systems.

When working with a subversion repository, you first do a “checkout”. This allows you to select the

repository you want to download and creates a working environment based on it. Note that the editor

currently only views files in the checked out repository, so if you have a directory hierarchy, you need

to check out multiple times. After doing a checkout, you can view the path to the current repository

by clicking the link at the top.

Figure: Path to the current repository.

The “update” command downloads the newest files from the already checked out subversion repos-

itory, while “commit” updates the repository with your working copy. You also have the ability to see

the repository log of the 20 last changes. This includes changed files, users and log messages. For

more detailed information on working with subversion, see http://svnbook.red-bean.com.

After editing you may or may not commit changes. When closing an edited file, you are also given

the option to commit at once.

Figure: Save file with repository commit

The menu choice to commit a current version commits all files in the configuration repository. Commits

require a mandatory comment. CFEngine recommends you use this to explain why a change was made,

or relate it to an incident number, etc. The details of what was changed are already documented by

the version control logs.

Figure: Commit dialogue

http://svnbook.red-bean.com

Chapter 3: Mission Portal 21

Figure: Updating the repository contents.

3.2 Reports in the Mission Portal

A significant capability of CFEngine Nova over previous versions of CFEngine is the existence of auto-

mated system reporting. CFEngine collects history, state and change data about computers and ties

them together. The CFEngine strategy is to replace conventional CMDBs with a more scalable and

flexible approach to information mining over the coming years. Commercial versions of CFEngine are

designed to bring state of the art methods to the problem of information management for IT operations.

A report is a tabular summary of CFEngine’s internal information, tailored to a particular purpose.

Reports in CFEngine Nova are searchable, and describe attributes and qualities of managed hosts.

In CFEngine Nova 2 reports are summarized and collected automatically by the cf-hub program.

This is a daemon which runs only on the system hub or policy server. Its sole function is to connect to

all registered systems and build a searchable summary of its running state, in as efficient a manner as

possible.

In addition to the automated hub, reports may be generated on each individual host using the cf-

report program. This generates reports in a variety of formats, either for direct viewing (in HTML)

or for import/export to other software systems, using XML or CSV output formats.

3.3 Should monitoring and configuration be separate?

The traditional view of IT operations is that configuration, monitoring and reporting a three different

things that should not be joined. Traditionally, all three have been independent centralized processes.

This view has emerged historically, but it has a major problem.

Monitoring as an independent activity is inherently non-scalable. When numbers of hosts grow

beyond a few thousands, centralized monitoring schemes fail to manage the information. Tying config-

uration (and therefore repair) to monitoring at the host level is essential for the effective management of

large and distributed data facilities. CFEngine foresaw this need in 1998, with its Computer Immunology

initiative, and continues to develop this strategy.

CFEngine’s approach is to focus on scalability. The commercial editions of CFEngine provide what

meaningful information they can in a manner that can be scaled to tens of thousands of machines.

3.4 What is a CMDB?

A Configuration Management Database (CMDB), sometimes called a Change and Configuration Man-

agement Database (CCMDB), is a repository of information about hardware and its expected state.

CMDBs are basically an outgrowth of inventory databases. They were embraced by many IT companies

as a plausible solution to configuration management, in the absence of an alternative.

A CMDB records so-called configuration items (CI), which record technical, ownership and proposed

state data. A CMDB does not generally record actual state – this is left for monitoring software.

22 CFEngine Nova Technical Supplement

The term CMDB originates from the IT Infrastructure Library (ITIL) framework, where it is given a

prominent role in system planning and verification. The CMDB is by definition a centralized repository.

3.5 CMDB and CFEngine

CFEngine deviates from the classical view of a CMDB to modernize the concept for modern scaling

requirements. Configuration management requires something more sophisticated than a database to

describe system patterns. The CMDB applies a brute force approach to collection and searching of

system data that does not scale well, and requires large and expensive resources to manage.

CFEngine works with a highly compressed description of system properties that is based on cate-

gory classification rather than an exhaustive inventory of computers. Being distributed in operation,

CFEngine can also enforce policy on state, without brute force imaging.

3.6 Decentralized data collection in CFEngine

CFEngine is designed to scale to vast numbers of machines. It does so because it is fundamentally

decentralized. Data about system state are recorded in situ and are not transmitted over the network

directly. CFEngine summarizes and compresses system information before making it available for cen-

tral aggregation and analysis. This means that high resolution data are available where they count,

processing is decentralized, and inexpensive summaries may be compared and mined for correlations.

CFEngine’s distributed architecture means that no data are lost if the network fails temporarily.

CFEngine uses the network opportunistically, but it is not reliant on it for real-time operations.

3.7 Reporting in CFEngine

� �
If you have regular reporting needs, we recommend using our commercially supported version of

CFEngine (CFEngine Nova or above), as you will save considerable time and resources in programming,

and you will have access to the latest developments through the software subscription.
 	
No promises made in CFEngine imply automatic aggregation of data to a central location. In

commercial CFEngine versions, e.g. CFEngine Nova, an optimized aggregation of standardized reports

is provided, but the ultimate decision to aggregate must be yours.

Monitoring and reporting capabilities in CFEngine depend on the software version include:

• Community Edition: Basic output to file or logs may be customized on a per-promise basis. Users

can design their own log and report formats, but data processing and extraction from CFEngine’s

embedded databases must be scripted by the user.

• Nova: In addition to community features, Nova provides automated extraction of data from

CFEngine’s self-learning agents, and the generation of a standard set of reports in text, HTML or

XML formats. Nova summarizes distributed data and provides simple compression and aggregation

of these summaries. Finally summaries are tied into a knowledge map or semantic index for

browsing by IT operations. At this level CFEngine exceeds other industry CMDB solutions for

configuration.

• Constellation: In addition to Nova features, Constellation performs additional data extraction

from the collected reports. It analyses correlations and provides reverse look up of system attributes

Chapter 3: Mission Portal 23

based on searchable expressions. At this level, CFEngine exceeds other industry CMDB solutions

in both reporting and configuration.

3.8 Standard reports in CFEngine Nova

Available patches report

Patches already installed on system if available.

Classes report

User defined classes observed on the system – inventory data.

Compliance report

Total summary of host compliance, all promises aggregated over time.

File changes report

Latest observed changes to system files with time discovered.

File diffs report

Latest observed differences to system files, in a simple diff format.

Hashes report

File hash values measured (change detection).

Installed patches report

Patches not yet installed, but published by vendor if available.

Installed software report

Software already installed on system if available.

Last-seen report

Time and frequency of communications with peers, host reliability.

Micro-audit report

Generated by CFEngine self-auditing. This report is not aggregated.

Monitor summary report

Pseudo-real-time measurement of time series data.

Performance report

Time cost of verifying system promises.

Promise report

Per-promise average compliance report over time.

Promises not kept report

Promises that were recently un-kept.

Promises repaired report

Promises that were recently kept by repairing system state.

Setuid report

Known setuid programs found on system.

Variables report

Current variable values expanded on different hosts.

24 CFEngine Nova Technical Supplement

3.8.1 Performance logs

Performance logs show the last measured and average times taken to complete a particular promise

from start to finish. The standard deviation of the time is quoted to show the major variations.

• Promises that have anomalous performance, especially long jobs might be worthy of attention if

they do not have a predictable execution time.

• The frequency of long jobs can be restricted

• Jobs that are especially long can be backgrounded for improved throughput.

3.8.2 Installed software packages

An overview of installed software as viewed through the eyes of the locally installed package manager.

These data are collected as a byproduct of the packages promises. You must check for the existence of

Chapter 3: Mission Portal 25

at least one package to generate this report. Moreover, the report can only be generated by sufficiently

smart package managers or by custom scripts (see the ‘packages’ promise in the reference manual).

3.8.3 A promise compliance report

Each time cf-agent completes a scan of whether local promises are kept it computes a simple high

level summary of the state of the system in terms of whether promises were kept before and after

execution.

The agent distinguished three categories

Promise kept

The promise was already kept, and no action was required on the system.

Promise repaired

The promise was not properly kept but maintenance was performed and the problem was

healed. The system is now in compliance.

Promise not kept

The promise was not kept, and no remedial action was taken to correct it. (This is usually

a result of an explicit policy decision to not repair a problem, e.g. selecting action ‘warn’

instead of ‘fix’.)

26 CFEngine Nova Technical Supplement

3.8.4 A file content change report

Hash scans of files are a common way of detecting any small changes in file integrity. This log shows the

specific times that change events were detected. The resolution of this log depends on the frequency

of scanning, which is the purview of a files promise.

If you enable the report˙diffs feature in Nova, on individually named files, a second ‘change

tracking’ report will be aggregated, summarizing the major changes. On text-only files this reports

major changed in the spirit of the Unix diff command, though comparatively simplified for a readability.

Users can then use other more specialized difference tools for alternative view for forensic detail on the

host concerned.

3.8.5 Installed setuid program report

Setuid root programs (Unix systems) are programs given special privileges to carry out actions normally

restricted to Administrative or root users. Attention to programs with setuid permissions is a matter of

security, and thus CFEngine watches out for changes in the known list of these programs as a matter

of course. This report summarizes the known programs.

Chapter 3: Mission Portal 27

3.9 Knowledge Map

The Knowledge Map is a tool that may be used as:

• An index of the information in the Knowledge Map

• A tool for brainstorming

• A tool for self-learning

It is designed to show relationships between subjects of importance. The relationships are shown

graphically and in text format.

The text relationships on the right hand side of the screen show direct relationships between the

current subject and neighboring subjects, but with semantic explanations. The graphical renditions

attempt to show greater depth if possible. Due to the limited size of the screen, and limitations of

human cognition, only about twenty of the closest relationships are depicted to create a sense of ‘where

we are’ in the landscape of knowledge. The actual map might contain many thousands of entries.

There are up to two graphical representations on each page. The Copernicus view is a depiction

of the current topic in relation to its most important neighbors. The nodes in the graph are shown

as ‘planetary balls’. The highest ranking (most connected) topic is shown in yellow, and each node is

sized according to its rank. The current topic has a black label, whereas all others have a white label.

28 CFEngine Nova Technical Supplement

Figure: Copernicus view of the Knowledge Map.

On selected promise pages, two images will appear. The lower image called ‘influence channel’,

shows a causation or dependency graph between promises. This graph offers a simple form of impact

analysis. The links between subjects show only dependency relationships.

� �
“What am I looking for in a knowledge base?”

There are many reasons to browse knowledge. You browse an encyclopedia because you are curious.

You look up in a dictionary because you want an answer. You look at wind-dials and thermometers

to gauge the environment. You look at dependencies and diagnostics to answer: what is the cause of

some effect?
 	
The helm screen is divided into several parts. On the right hand side there are two images on each

page.

3.9.1 The knowledge map pages

Each page of the console represents a single topic in the documentation. The topic name is described

in the title of the page. Topics fall into categories, and these are reflected in the name

Category::Topic

Categories are also topics that can be looked up. Clicking on one of the links centers your page view

on that particular topic.

3.9.2 The knowledge base maps

On each page you will find one or two graphics that illustrate the current topic and its relationship

to neighboring leads and perspectives. This neighborhood shows you up to 30 of the closest related

topics, but it does not show you how they are related. This picture is useful for seeing the ‘bigger

picture’, but for a more detailed understanding you should look at the Insight, leads and Perspectives

panel. That panel tells you the exact nature of the relationship to the closest topics in the map: in

other words, what should you expect to learn by following that link?

The graphical representation of the knowledge map shows the local neighborhood you are currently

exploring. Clicking on a panel to the right will enlarge it. The current topic will be shown in yellow

(with red text). You will only see a maximum of thirty topics at any one time.

The relative importance of the topics is shown by their size, and size is determined by how many

references a topic has to nearby topics. The most important topic is placed as the star at the center

of this ‘solar system’ view. Other nodes are colors pink, brown, grey depending on their distance from

it.

The current topic might not be the most important in the neighborhood you are exploring. The

graphs are designed to guide you towards what is important in your system and its work-flows.

3.9.3 Results for this topic

This panel shows document references and information pertaining directly to the current topic (if any).

The red links point to URL documents. The text to the left explains what kind of information you

should expect to find about the current topic.

Chapter 3: Mission Portal 29

3.9.4 Topics that have Category::Topic as a subject-header

If the current topic is a category with several sub-themes, this panel contains a list of possible sub-topics

that lie under this category. In other words, the list shown here is a depth search in the knowledge

base.

3.9.5 Other topics found under Category

This panel shows any other topics in the same category as the current topic. In other words, the list

shown here is a breadth search of the knowledge base.

3.10 Using the knowledge map

Go to the URL set up for the policy server, using a web browser of your choice.

http://policy˙server.example.com

When you look at the knowledge base for the first time, you can either explore using the links, or

type in a search word into the top field to jump to the closest matching topic.

No matter where you begin your search, you will end up on a page which has the same basic

structure (described above).

The front page of the knowledge map is shown in the figure below. This has a number of links and

a number of graphic images which are also links.

3.10.1 Policy analysis

CFEngine helps you to make sense of the knowledge implicit in your current CFEngine policy, by turning

it into an annotated map. You can extend the automatically generated map with your own comments,

topics and documents, in order to tie in with your own enterprise information. The knowledge map will

normally run on a single machine, such as the CFEngine policy server, but this is not a requirement.

The example figure below shows typical page generated by the knowledge agent. It describes a

CFEngine promise from the policy files. One such page is generated for each policy promise, and

pages may be generated for reports from different computers. You can also create ‘topic pages’ for

any local (enterprise) information that you have. In this case the promise has been given the promise-

handle update˙policy, and the associations and the lower graph shows how this promise relates to

other promises through its documented dependencies (these are documented from the promisees and

depends˙on attributes of other promises.).

The example page shows two figures, one above the other. The upper figure shows the thirty nearest

topics (of any kind) that are related to this one. Here the relationships are unspecific. This diagram

30 CFEngine Nova Technical Supplement

can reveal pathways to related information that are often unexpected, and illustrates relationships that

broaden one’s understanding of the place the current promise occupies within the whole.

The second figure shows a blow up of the dependency map illustration. It is a subset of the larger

picture, choosing only those topics that are linked by impact-related associations.

Although these illustrations are just renderings of the ‘leads and perspectives’ associations shown in

text, they are useful for visualizing several levels of depth in the associative network. In particular, one

can see the other promises that could be affected if we were to make a change to the current promise.

Such impact analyses can be crucial to planning change and release management of policy. ITIL best

Chapter 3: Mission Portal 31

practices recommend thorough pre-analyses of release changes. CFEngine Nova combined with good

practice of documentation makes this straightforward.

Another example topic page.

� �
A CFEngine knowledge base is not a new document format, it is an overlay map that joins ideas

and resources together, and displays relationships.
 	

32 CFEngine Nova Technical Supplement

3.10.2 Understanding dependencies

Nova adds automatically instrumentation to the policy compilation that allows you to trace dependen-

cies, provided you follow the best-practice when constructing your promise rules.

When writing promises, get into the habit of giving every promise a comment that explains its

intention.

Also, give related promises handles, or labels that can be used to refer to them by.

files:

”/var/cfengine/inputs”

handle =¿ ”update˙policy”,

perms =¿ system(”600”),

copy˙from =¿ mycopy(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

If a promise affects another promise in some way, you can make the affected promise one of the

promisees, like this:

access:

”/master/CFEngine/inputs” -¿ – ”update˙policy”, ”other˙promisee” ˝,

handle =¿ ”serve˙updates”,

admit =¿ – ”217.77.34.*” ˝;

Conversely, if a promise might depend on another in some (even indirect) way, document this too.

files:

”/var/cfengine/inputs”

handle =¿ ”update˙policy”,

depends˙on =¿ –”serve˙updates”˝,

perms =¿ system(”600”),

copy˙from =¿ my-copy(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

Chapter 3: Mission Portal 33

The lower of the two diagrams on the knowledge page (called the influence channel) shows graph-

ically how dependency trails flow. The text links show the specific of each relationship.

• When a bundle is passed a parameter by another

• In method calls, a passed variable value is considered a causal influence.

• When a variable is used in a shell command

• When a variable is set by a function call that retrieves from a database/file

3.10.3 A quick tour of the knowledge console

� �
1. Click on the top bar to go back to the start page. This takes you to the mission status summary.

2. Look at the different panels

• References to this topic - showing immediate results and documents

• Topic (current focus) includes - showing sub categories of this major heading

• Insight, Leads and perspectives - show intelligent hints and tips

• Other topics found under (major heading) - similar topics to the current

3. Click on ‘Manager view’, and look at the new panels. Explore at will.

4. Click on the upper network image to the right, showing topics that are closely related through

‘leads and perspectives’. Click back to the mission status page.

5. Click on the bar-meter ‘site summary’. This takes you to the monitoring portal for individual

machines. Here you see all managed hosts.

6. Click on a new bar meter to drill down into performance statistics, and keep clicking until you can

go no further to see detail.

7. Go back to main page and find the search field at the top right. Enter ‘BDMA’ to search for this

topic.
 	
3.10.4 Why knowledge management?

At CFEngine, we believe that Knowledge Management is the challenge of our times. As futurist Alvin

Toffler wrote in his seminal 1970 study Future Shock about the rapidity of industrial changes of the

’60s:

”Rising novelty renders irrelevant the traditional goals of our chief institu-

tions...Acceleration produces a faster turnover of goals. Diversity or fragmentation leads

to a relentless multiplication... Caught in this churning, goal-cluttered environment,

we stagger...from crisis to crisis, pursuing a welter of conflicting and self-cancelling

purposes.”

We see it as a key strategy to provide simple tools that explain intentions and meaning amongst the

welter of system documentation and information.

34 CFEngine Nova Technical Supplement

3.11 cf-hub and data collection

The ‘hub’ is both a machine and a process in a default centralized reporting architecture. For most

purposes, CFEngine avoids centralization of effort in order to scale efficiently. For reporting, however,

one needs a common location and standard of data collection to provide accurate information, so we

make an exception. To make hub aggregation scale efficiently, Nova 2 uses an extremely lightweight

data encoding that is several hundred times faster than the approach used in Nova 1. Using a hub, the

process can be parallelized and kept up to date more often than before.

host# /var/cfengine/bin/cf-hub

The CFEngine hub runs in the background and connects to all known registered hosts and builds

a summary model of their state in a database. This database is searchable and may be browsed using

the Mission Portal. Updates may be collected manually also:

host# cf-runagent -H hostname -q delta

host# cf-runagent -H hostname -q full

3.11.1 CMDB or SKMS

Last generation systems have used the concept of the Configuration Management Database (CMDB)

as a central repository of information. The CMDB concept was primitive and data-intensive; it had

no concept of intended versus un-intended state. Today the term SKMS or Service Knowledge Man-

agement System is coming into use, based in ITIL version 3. The idea here is to go beyond mere

data-mining to a knowledge oriented system.

CFEngine Nova provides a ‘next generation’ knowledge-oriented overview of IT operations in its

Mission Portal. It combines intended state maintained through policy, with actual state measured by

observation, and relates these for the user in a semantic web. This enables users to relate measured

data to actual strategic goals, and ‘connect the dots between Business and IT’.

3.11.2 The reporting agent

A control body for the reporter looks like this:

body reporter control

–

reports =¿ – ”performance”, ”last˙seen”, ”monitor˙history” ˝;

build˙directory =¿ ”/var/cfengine/reports”;

report˙output =¿ ”html”;

˝

• Knowledge management leads to better IT decisions

• Advance from knowledge hunter-gathers to a knowledge-sharing society

• Knowledge yields improved response to business needs

• Sharing the lessons learned results in best practices across the organization.

• Knowledge gives the accuracy and precision to succeed

Chapter 4: Business Integration 35

4 Business Integration

4.1 Business goals and the Service Catalogue

Trust and confidence form just one of the pillars of business; agility and creativity make up the others.

CFEngine Nova brings features that make it possible to connect the dots meaningfully between high

level business goals and low level configuration implementation. This enables different layers of an

organization to gain insight into how the system is being managed, in relation to the strategic goals.

• CFEngine Nova’s rich repertoire of configuration capabilities allows model-based integration of

systems, attending to the unique requirements of each business service. Off-the-shelf does not

have to mean bland and generic. Customization is CFEngine’s forte. It is the glue holding

applications together.

• Nova’s speed and use of patterns allows many small changes to be made very quickly.

Nova provides appropriate insight into IT operations through explanation, reporting and visualization

of policy, allowing business and IT to gather around information of mutual interest. Of course, CFEngine

is not going to make IT experts of business staff, or vice versa. However, business and IT work best

together when then can communicate effectively. Our aim with Nova is to give business heads just the

right level of insight into technical IT operations to be assured that their needs are being met1. Similarly,

Nova makes business goals available to IT staff so that they can feel connected and responsible for the

strategic goals of the organization.

A human-readable Service Catalogue generated from technical specifications

shows what goals are being attended to automatically

The Service Catalogue is a concept that has been promoted as part of the IT Infrastructure Library

(ITIL). Nova generates a service catalogue directly from a model of the knowledge about policy.

1 Often it is enough to be able to ask a relevant question and feel that one has a voice, while experts are taking
care of the details.

36 CFEngine Nova Technical Supplement

bundle agent service˙catalogue

–

methods:

”everyone” usebundle =¿ time˙management,

comment =¿ ”Ensure clocks are synchronized”;

”everyone” usebundle =¿ garbage˙collection,

comment =¿ ”Keep disks free of junk and rotate logs”;

”everyone” -¿ goal˙3,

usebundle =¿ change˙management,

comment=¿ ”Monitor change”;

”managed hosts” -¿ goal˙1,

usebundle =¿ CFEngine˙management,

comment =¿ ”Management of CFEngine internals”;

”mail server” -¿ – ”goal˙3”, ”goal˙1”, ”goal˙2” ˝

usebundle =¿ app˙mail˙postfix,

comment =¿ ”The mail delivery agent”;

˝

Technical IT administrators can document which promises or bundles of promises are directed

towards specific goals by adding a simple reference The Nova Knowledge Map will then build a narrative

around these references and tie the goals to the services in the catalogue (See the Planning tab).

4.2 Business value reports

One of the capabilities of CFEngine is to add business or organizational value to the configuration

model. The notion of business value is not a clear concept, but a very simple approach to measuring

value is to attach a monetary value to the outcome of promises.

The value˙kept (default value 1), value˙repaired (default value 0.5), value˙notkept (default

value -1) settings fall under CFEngine transaction logging and allow administrators to attach actual

monetary (or other) values to promises kept, or issues repaired, or conversely measure the loss of

non-compliance in dollar terms (choose your currency). This value is summed and recorded for each

execution of CFEngine, and can be turned into graphs for your management reports.

An example of this report is shown below. The results are summed for each day and presented in

column form.

Chapter 4: Business Integration 37

Business value accounting can be entered into the model.

4.3 Simple insight into IT compliance

While business and IT can come together to decide what promises IT services should keep, a simple

confirmation of that compliance helps business units to be assured

An overview of compliance

Increasing and graded levels of detail can be obtained to match the level of expertise of the viewer.

Bar meters can represent more specific details.

38 CFEngine Nova Technical Supplement

Weakest hosts broken down by compliance, performance and change.

For system analysts, Nova can recognize and highlight trends and patterns of behavior that inform

further strategic decision making.

Analysis of system performance over multiple time-scales

can aid with resource deployment and future planning.

Chapter 5: Monitoring extensions 39

5 Monitoring extensions

CFEngine Nova incorporates a lightweight monitoring agent, whose aim is to provide meaningful per-

formance data about systems, in a scalable fashion. CFEngine Nova does not aim to replace specialized

rapid-update monitoring and alarm systems; it provides a context-aware summary of current state that

is always displayed in relation to previous system behavior, for comparison. The aim is to offer useful

analytics rather than jump-to alarms.

CFEngine’s monitoring component cf-monitord records a number of performance data about the

system by default. These include process counts, service traffic, load average and CPU utilization and

temperature when available. In the Community Edition, data are only collected and stored for personal

use, but users have to work to see results. CFEngine Nova improves on this in three ways.

• Data collected from the monitoring system are integrated into the aggregate knowledge console.

• It adds a three year life-cycle trend summary, based any ‘shift’-averages.

• It add customizable promises to monitor or log specific highly specific user data through the generic

promise interface.

The end result is to display time series traces of system performance, like the above mentioned

values, and customized logs feeding custom-defined reports.

5.1 Integration of monitoring with knowledge base

CFEngine Nova integrates monitoring reports with the automated base knowledge to provided self-

analysis and simple summary reporting. A ‘graphic equalizer’ view shows important status summaries,

and the semantic links allow users to drill down to specific reporting data.

Detailed time-series views can be collected and collated, providing honest and accurate data that

allow you to gauge your own confidence level in system performance. Unlike most monitoring solutions,

CFEngine shows you its own confidence in the measurements taken. It takes a finite amount of

time to measure and transport data from systems to the knowledge console. That time also provides

40 CFEngine Nova Technical Supplement

information about system performance. CFEngine always promises to tell you how old data are and

how confident it is in the values.

5.2 Long term trends

CFEngine normally operates with time-series data represented in two forms:

• A weekly average, plotted on a periodogram, showing performance now in relation to the same

time of week in previous weeks. After about a month data are forgotten to ensure a sufficient

rate of adaptation to new patterns.

• The past four hours in high resolution.

CFEngine Nova adds quarter day averages of recorded time-series which go back three years in time.

Three years is considered to be the lifetime of a computer. Summaries of the detailed performance are

summarized by flat averages for a four-shift day:

• Night shift: from midnight 00:00 to 06:00

• Morning shift: from 06:00 to 12:00

• Afternoon shift: from 12:00 to 18:00

• Evening shift: from 18:00 to 00:00

5.3 Custom promises to measure

CFEngine Nova adds a new promise type in bundles for the monitoring agent. These are written just

like all other promises within a bundle destined for the agent concerned. In this case:

bundle monitor watch

–

measurements:

Chapter 5: Monitoring extensions 41

promises ...

˝

5.3.1 Extraction strings and logging

Let’s take a generic example. Suppose we have a file of nonsense ‘/tmp/testmeasure’ and we want

to extract some information that we call a ‘blonk’ from the file. A blonk is always on the second line

of this file following a prefix ‘Blonk blonk ’. We would get the value like this:

”/tmp/testmeasure”

handle =¿ ”blonk˙watch”,

stream˙type =¿ ”file”,

data˙type =¿ ”string”,

history˙type =¿ ”log”,

units =¿ ”blonks”,

match˙value =¿ find˙blonks,

action =¿ sample˙min(”10”);

This promise body has several attributes.

handle It is essential to give measurement promises handles, as these are used to label the log

files that will store the values.

stream˙type

Tells us that we are reading from what the system considered to be a regular file on the

file-system.

data˙type This says that data are to be treated as text with no other meaning.

history˙type

This tells us that we want to log the values with a time stamp.

units This string is used in documentation to explain the measurement units of this result.

match˙value

This is a body reference that represents the algorithm by which we extract data from the

file.

action This is the generic action parameter that may be added to all promises. We use it here

to limit the sample rate of this promise; cf-monitord samples by default at a rate of

once per 2.5 minutes.

The matching body uses a method for selecting the correct line, and a way for extracting a pattern

from the line. In every case the value extracted is described by using a regular expression back-reference,

i.e. a parenthesized expression within a regular expression. The expression should match the entire line

and should contain exactly one parenthesis.

body match˙value find˙blonks

–

select˙line˙number =¿ ”2”;

42 CFEngine Nova Technical Supplement

extraction˙regex =¿ ”Blonk blonk ([blonk]+).*”;

˝

The sampling rate is controlled by using the generic action constraint.

body action sample˙min(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”$(x)”;

˝

5.3.2 Extracting one-off numerical data

In this example we extract an integer value from an existing file. Notice that CFEngine samples the

process table during processes promises so you might be able to save a new execution of a shell

command and use the cached data, depending on your need for immediacy. It is always good practice

to limit the system load incurred by monitoring.

Test 2 - follow a special process over time

using CFEngine’s process cache to avoid resampling

”/var/cfengine/state/cf˙rootprocs”

handle =¿ ”monitor˙self˙watch”,

stream˙type =¿ ”file”,

data˙type =¿ ”int”,

history˙type =¿ ”static”,

units =¿ ”kB”,

match˙value =¿ proc˙value(”.*cf-monitord.*”,

”root“s+[0-9.]+“s+[0-9.]+“s+[0-9.]+“s+[0-9.]+“s+([0-9]+).*”);

This match body selects a line matching a particular regular expression and extracts the 6th column

of the process table. The regular expression skips first the root string and then five numerical values.

The value is extracted into a one-off value

body match˙value proc˙value(x,y)

–

select˙line˙matching =¿ ”$(x)”;

extraction˙regex =¿ ”$(y)”;

˝

5.3.3 Extraction to list variable

In this example we discover a list of disks attached to the system.

Test 3, discover disk device information

”/bin/df”

stream˙type =¿ ”pipe”,

data˙type =¿ ”slist”,

history˙type =¿ ”static”,

Chapter 5: Monitoring extensions 43

units =¿ ”device”,

match˙value =¿ file˙system,

action =¿ sample˙min(”480”); # this is not changing much!

body match˙value file˙system

–

select˙line˙matching =¿ ”/.*”;

extraction˙regex =¿ ”(.*)”;

˝

5.4 Uses for custom monitoring

Unlike most other monitoring tools that use heavy-weight scripting languages to exact data, often

running many processes for each measurement, CFEngine is a lightweight probe, using file interfaces

and regular expressions to extract data. Thus its impact on the system is minimal. The possibilities

for using this are therefore extremely broad:

• Extracting accounting data from systems for charge-back. This could be useful in cloud scenarios.

• Discovering memory leaks.

• Looking for zombie processes relating to specific software.

• Logging up-time.

• System class-dependent discovery and extraction of any kind of text for insertion into a CMDB.

Chapter 6: Database Promises 45

6 Database Promises

CFEngine Nova can interact with commonly used database servers to keep promises about the structure

and content of data within them.

CFEngine is, of course, not the tool of choice for performing complex database transactions, but

it is an appropriate choice of tool for managing policy about the existence and structure of databases

and correcting discrepancies.

6.1 How to manage databases

There are two main cases of database management to address: small embedded databases and large

centralized databases.

CFEngine is a tool whose strength lies distributed management of computers. Databases are often

centralized entities that have single point of management, so a large monolithic database is more easily

managed with other tools. However, CFEngine can still monitor changes and discrepancies, and it can

manage smaller embedded databases that are distributed in nature, whether they are SQL, registry or

future types.

So creating 100 new databases for test purposes is a task for CFEngine, but adding a new item to

an important production database is not a task that we recommend using CFEngine for.

There are three kinds of database supported by Nova:

LDAP - The Lightweight Directory Access Protocol

A hierarchical network database primarily for reading simple schema.

SQL - Structured Query Language

A number of relational databases (currently supported: MySQL, Postgres) for reading

and writing complex data.

Registry - Microsoft Registry

An embedded database for interfacing with system values in Microsoft Windows.

In addition, CFEngine uses a variety of embedded databases for its own internals.

6.2 Database access rights

CFEngine’s ability to make promises about databases depends on the good grace of the database server.

Embedded databases are directly part of the system and promises can be made directly. However, data-

bases running through a server process (either on the same host or on a different host) are independent

agents and CFEngine cannot make promises on their behalf, unless they promise (grant) permission for

CFEngine to make the changes. Thus the pre-requisite for making SQL database promises is to grant

a point of access on the server.

6.3 Creating a point of contact on a server

The default behavior is for databases to deny connection access to external parties. However, it is

possible to create a connection database that can be used as an anchor point. Once CFEngine is

connected to any database, it can create new ones.

46 CFEngine Nova Technical Supplement

6.4 Creating SQL databases

Although the Structured Query Language (SQL) is a standard, database servers diverge wildly in their

approaches to interaction. CFEngine currently supports two open source database implementations:

MySQL and PostgreSQL and these two could not be more different.

Although it would be desirable to perform operations like create and destroy databases from within

CFEngine, these operations can be difficult to set up due to security design of the database servers.

This is where CFEngine’s idea of voluntary cooperation helps us to understand why. The database

service (even running on localhost) is an independent entity that we must interact with through its

service portal. It promises nothing a priori, so we must arrange for the necessary promises to be kept so

that the database will respond to CFEngine’s manipulations. In other words, we have to grant access.

6.4.1 Creating a database manually

body common control

–

bundlesequence =¿ – ”databases” ˝;

˝

bundle agent databases

–

Create database first - for postgres we could use a command

commands:

”/usr/bin/createdb cf˙topic˙maps”,

contain =¿ as˙user(”postgres”);

Create a table in the new database

databases:

”cf˙topic˙maps/topics”

database˙operation =¿ ”create”,

database˙type =¿ ”sql”,

database˙columns =¿ –

”topic˙name,varchar,256”,

”topic˙comment,varchar,1024”,

”topic˙id,varchar,256”,

”topic˙type,varchar,256”,

”topic˙extra,varchar,26”

˝,

database˙server =¿ myserver;

Chapter 6: Database Promises 47

˝

##

body database˙server myserver

–

db˙server˙owner =¿ ”postgres”;

db˙server˙password =¿ ””;

db˙server˙host =¿ ”localhost”;

db˙server˙type =¿ ”postgres”;

˝

#

body contain as˙user(x)

–

exec˙owner =¿ ”$(x)”;

˝

6.4.2 Creating a database directly

Both MySQL and PostgreSQL provide default databases of the same name to connect to as an anchor

point, allowing further databases to be created thereafter. In fact any database will do, you must just

make sure that CFEngine has access rights to connect to the database.

body common control

–

bundlesequence =¿ – ”databases” ˝;

˝

bundle agent databases

–

databases:

Create table topics in database cf˙topic˙maps

”cf˙topic˙maps”

database˙operation =¿ ”create”,

database˙type =¿ ”sql”,

database˙server =¿ myserver(”mysql”);

˝

48 CFEngine Nova Technical Supplement

##

body database˙server myserver(x)

–

db˙server˙owner =¿ ”$(x)”;

db˙server˙password =¿ ””;

db˙server˙host =¿ ”localhost”;

db˙server˙type =¿ ”$(mysql)”;

db˙server˙connection˙db =¿ ”$(x)”;

˝

body contain as˙user(x)

–

exec˙owner =¿ ”$(x)”;

˝

6.5 Database table promises

To refer to tables in an SQL database, you treat the tables as if they were sub-directories of the

database. In this example, we create one of the topic map tables for the knowledge base.

Table existence is determined by the database˙operation attribute. We specify columns in a table

as doublets or triplets with SQL type-names. In this example CFEngine will assume the promise below

to be a complete specification of the table. Thus

• It will create non-existing columns (in no guaranteed order).

• It will report about columns that exist but are not promised, i.e. indicating that the table has been

edited inappropriately.

• It will verify that the existing column names match their specification.

bundle agent databases

–

databases:

”cf˙topic˙maps/topics”

database˙operation =¿ ”create”,

database˙type =¿ ”sql”,

database˙columns =¿ –

”topic˙name,varchar,256”,

”topic˙comment,varchar,1024”,

”topic˙id,varchar,256”,

”topic˙type,varchar,256”,

”topic˙extra,varchar,26”

˝,

database˙server =¿ myserver;

Chapter 6: Database Promises 49

˝

##

body database˙server myserver

–

any::

db˙server˙owner =¿ ”postgres”;

db˙server˙password =¿ ””;

db˙server˙host =¿ ”localhost”;

db˙server˙type =¿ ”postgres”;

db˙server˙connection˙db =¿ ”postgres”;

none::

db˙server˙owner =¿ ”root”;

db˙server˙password =¿ ””;

db˙server˙host =¿ ”localhost”;

db˙server˙type =¿ ”mysql”;

db˙server˙connection˙db =¿ ”mysql”;

˝

body contain as˙user(x)

–

exec˙owner =¿ ”$(x)”;

˝

6.6 MS Registry functions

Another important database for Windows systems is the MS registry. The registry looks like a file-

system, with files inside directories. in MS nomenclature, the registry consists of (value,data) pairs

inside ”keys” which are like directories. Keys may contain sub-keys in a hierarchical manner.

Managing data in the registry is a key part of Windows administration.

• Important system settings are located in and hence controlled by the registry.

• Security and compliance guidelines often specify values for the registry.

• If registry data become corrupted, software can cease to function. Compliance with government

standards such as the U.S. FDCC regulations involves registry compliance checking.

• Automated repair (self-healing) of Windows machines can involve registry repair.

CFEngine Nova has functions for

• Creating and deleting keys, and (value,data) pairs.

• Scanning values and performing change detection.

• Restore or repair damaged registry data its cache in real-time.

6.6.1 Creating a registry key

body common control

50 CFEngine Nova Technical Supplement

–

bundlesequence =¿ – ”registry” ˝;

˝

bundle agent registry

–

databases:

windows::

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS”

database˙operation =¿ ”create”,

database˙type =¿ ”ms˙registry”;

˝

In this example we create a sub-key called ‘CFEngine AS’ inside the software key. Directory-like notation

is used, as in the Windows registry editor. To create a sub-key of this new key, we simply add another

link:

bundle agent registry

–

databases:

windows::

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS“CFEngine”

database˙operation =¿ ”create”,

database˙type =¿ ”ms˙registry”;

˝

6.6.2 Creating a value-data pair

body common control

–

bundlesequence =¿ – ”registry” ˝;

˝

bundle agent registry

–

databases:

Chapter 6: Database Promises 51

windows::

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS“CFEngine”

database˙operation =¿ ”create”,

database˙rows =¿ – ”value1,REG˙SZ,new value 1”, ”value2,REG˙SZ,new val 2”˝ ,

database˙type =¿ ”ms˙registry”;

˝

Value-data pairs are in-fact value-type-data triplets, though the most common registry type is REG SZ.

Users are referred to the Microsoft Developer Network documentation on the registry for details (search

for ‘msdn registry’).

6.6.3 Deleting registry keys

The drop or delete option is used to delete keys from a database. CFEngine does not (presently)

perform recursive deletions of keys. It is debatable whether this feature would be potentially too

destructive an operation to make simple.

In order to be allowed to delete a key or database, you must define a comment. This acts as a

confirmation of intent to avoid accidents.

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS“CFEngine”

database˙operation =¿ ”delete”,

database˙type =¿ ”ms˙registry”;

6.6.4 Deleting registry values

If a registry deletion contains columns, these can be selected for deletion. It is not possible to delete

rows in the registry (which corresponds to the just the data in a value-data pair.

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS“CFEngine”

database˙operation =¿ ”delete”,

database˙columns =¿ – ”value1”, ”value2” ˝ ,

database˙type =¿ ”ms˙registry”;

Note that, unlike the case of adding values, there should be no comma separated doublets in this

list of values, as one cannot delete by data, only by value.

6.6.5 Scanning and restoring the registry

CFEngine has the ability to scan a portion of the registry and cache its values for change detection and

even later restoration. Since this is a resource consuming operation it should be performed only rarely,

i.e. one should limit the policy to scan to special occasions.

52 CFEngine Nova Technical Supplement

The key question to ask is: when do I expect the current state of the registry to be a proper and

true reflection of the ‘correct state’ of the system. This is not a trivial question to answer and it should

be given careful thought before any talk of restoring the state of the registry based on such a scan.

Some values in the registry change often and one would like to ignore them entirely. The registry˙

exclude list allows you to make a list of regular expressions to match keys and value-names which are

neither scanned nor restored.

bundle agent registry

–

databases:

windows:: # add a time qualifier to this class

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS“CFEngine”

database˙operation =¿ ”cache”, # cache,restore

registry˙exclude =¿ –

”.*Windows.*CurrentVersion.*”,

”.*Touchpad.*”,

”.*Capabilities.FileAssociations.*”,

”.*Rfc1766.*” ,

”.*Synaptics.SynTP.*”,

”.*SupportedDevices.*8086”,

”.*Microsoft.*ErrorThresholds”

˝,

database˙type =¿ ”ms˙registry”;

Once one believes and trusts in a scan of the registry as a matter of policy, the values can be

compared to this golden standard and restored if in error with the following kind of promise:

”HKEY˙LOCAL˙MACHINE“SOFTWARE“CFEngine AS”

database˙operation =¿ ”restore”,

database˙type =¿ ”ms˙registry”;

Deletion or alteration of a key or value will now be swiftly repaired without the need to reboot the

system.

6.7 LDAP integration

The Lightweight Directory Access Protocol (LDAP) is the basis of enterprise data centralization in many

organizations using a variety of products from multiple vendors, including the MS Active Directory.

CFEngine Nova supports special inbuilt functions for extracting data from LDAP repositories. The

functions follow the general pattern of Open LDAP search functions.

Chapter 6: Database Promises 53

6.7.1 Function ldapvalue� �
(string) ldapvalue(uri,dn,filter,name,scope,security)

 	
This function retrieves a single field from a single LDAP record identified by the search parameters.

The first matching value it taken.

ARGUMENTS:

‘uri’ String value of the ldap server. e.g. ”ldap://ldap.CFEngine.com.no”

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.

”dc=CFEngine,dc=com”.

‘filter’ String filter criterion, in ldap search, e.g. ”(sn=User)”.

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:

subtree

onelevel

base

‘security’ Menu option indicating the encryption and authentication settings for communication with

the LDAP server. These features might be subject to machine and server capabilities.

none

ssl

sasl

6.7.2 Function ldaplist� �
(slist) ldaplist(uri,dn,filter,name,scope,security)

 	
This function retrieves a single field from all matching LDAP records identified by the search pa-

rameters.

ARGUMENTS:

‘uri’ String value of the ldap server. e.g. ”ldap://ldap.CFEngine.com.no”

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.

”dc=CFEngine,dc=com”.

‘filter’ String filter criterion, in ldap search, e.g. ”(sn=User)”.

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:

subtree

onelevel

base

‘security’ Menu option indicating the encryption and authentication settings for communication with

the LDAP server. These features might be subject to machine and server capabilities.

54 CFEngine Nova Technical Supplement

none

ssl

sasl

6.7.3 Function ldaparray� �
(class) ldaparray (array,uri,dn,filter,scope,security)

 	
This function retrieves an entire record with all elements and populates an associative array with

the entries. It returns a class which is true if there was a match for the search and false if nothing was

retrieved.

ARGUMENTS:

‘array’ String name of the array to populate with the result of the search

‘uri’ String value of the ldap server. e.g. ”ldap://ldap.CFEngine.com.no”

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.

”dc=CFEngine,dc=com”.

‘filter’ String filter criterion, in ldap search, e.g. ”(sn=User)”.

‘scope’ Menu option, the type of ldap search, from

subtree

onelevel

base

‘security’ Menu option indicating the encryption and authentication settings for communication with

the LDAP server. These features might be subject to machine and server capabilites.

none

ssl

sasl

6.7.4 Function regldap� �
(class) regldap(uri,dn,filter,name,scope,regex,security)

 	
This function retrieves a single field from all matching LDAP records identified by the search pa-

rameters and compares it to a regular expression. If there is a match, true is returned else false.

ARGUMENTS:

‘uri’ String value of the ldap server. e.g. ”ldap://ldap.CFEngine.com.no”

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.

”dc=CFEngine,dc=com”.

‘filter’ String filter criterion, in ldap search, e.g. ”(sn=User)”.

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:

Chapter 6: Database Promises 55

subtree

onelevel

base

‘regex’ A regular expression string to match to the results of an LDAP search. If any item

matches, the result will be true.

‘security’ Menu option indicating the encryption and authentication settings for communication with

the LDAP server. These features might be subject to machine and server capabilities.

none

ssl

sasl

6.7.5 LDAP function examples

LDAP example function usage

body common control

–

bundlesequence =¿ – ”ldap” ˝;

˝

bundle agent ldapbundle

–

vars:

Get the first matching value for ”uid”

”value” string =¿ ldapvalue(

”ldap://ldap.CFEngine.com.no”,

”dc=CFEngine,dc=com”,

”(sn=User)”,

”uid”,

”subtree”,

”none”

);

Get a all matching values for ”uid”

”list” slist =¿ ldaplist(

”ldap://ldap.CFEngine.com.no”,

”dc=CFEngine,dc=com”,

”(sn=User)”,

”uid”,

”subtree”,

”none”

);

classes:

56 CFEngine Nova Technical Supplement

Get first matching value with all fields

”gotdata” expression =¿ ldaparray(

”myarray”,

”ldap://ldap.CFEngine.com.no”,

”dc=CFEngine,dc=com”,

”(sn=User)”,

”subtree”,

”none”

);

Look for a regex match within the ldap match

”found” expression =¿ regldap(

”ldap://ldap.CFEngine.com.no”,

”dc=CFEngine,dc=com”,

”(sn=User)”,

”uid”,

”subtree”,

”jon.*”,

”none”);

reports:

linux::

”LDAP VALUE $(value) found”;

”LDAP LIST VALUE $(list)”;

gotdata::

”found data $(ldapbundle.myarray[uid])”;

found::

”Matched regex”;

˝

6.7.6 Best practice for LDAP integration

Relying on LDAP or other network data without validation is a potentially dangerous policy. One could

destroy a system by assuming that the service will respond with a sensible result. CFEngine does not

recommend reliance on any network services in a configuration policy.

Chapter 6: Database Promises 57

The failure to find an item in LDAP does not imply its non-existence. Policies should work oppor-

tunistically. If something is found, it may be used. If something is not found, it is difficult to conclude

the reason for this.

If users are removed from a system, a best practice would be to add their names to a list of users

who should not exist, rather than assuming that the failure of a search for the user implies his/her

absence from the system.

Chapter 7: File Access Control Lists 59

7 File Access Control Lists

7.1 Introduction

Access Control Lists (ACL) allow for a more fine-grained access control on file system objects than

standard Unix permissions. In spite of the success of the POSIX model’s simplicity the functionality is

limited.

File permission security is a subtle topic. Users should take care when experimenting with ACLs as

the results can often be counter-intuitive. In some cases the functioning of a system can be compromised

by changes of access rights.

Not all file systems support ACLs. In Unix systems there is a plethora of different file system types,

which have different models of ACLs. Be aware that the mount-options for a file-system may affect

the ACL semantics.� �
Note that when adding a user to a group, this will not have any effect until the next time the user

logs in on many operating systems.
 	
As CFEngine works across multiple platforms and needs to support ACLs with different APIs, a

common ACL syntax has been abstracted to add a layer of portability. This is a specific feature of

CFEngine, not of the host systems. A generic syntax ensures that the ACLs that are commonly needed

can be coded in a portable fashion. CFEngine Nova’s ACL model is translated into native permissions

for implementation; CFEngine does not interfere with native access mechanisms in any way. The

CFEngine ACL syntax is similar to the POSIX ACL syntax, which is supported by BSD, Linux, HP-UX

and Solaris.

CFEngine also allows you to specify platform-dependent ACLs. Of course, these ACLs will only

work on the given platform, and must therefore be shielded with classes that select the appropriate

model within the promise body.

Currently, CFEngine Nova supports the following ACL APIs and operating systems.

ACL type Operating system

NTFS Windows Server 2003, 2008

POSIX Linux

7.2 File ACL example

The form of a CFEngine files promise that uses ACLs is as follows:

#

test˙acl.cf

#

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

60 CFEngine Nova Technical Supplement

###

bundle agent acls

–

files:

”/office/shared”

acl =¿ template;

˝

###

body acl template

–

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”parent”;

linux—solaris::

acl˙type =¿ ”posix”;

aces =¿ –

”user:*:rw”,

”user:root:rw”,

”group:*:r”,

”mask:rwx”,

”all:r”

˝;

windows::

acl˙type =¿ ”ntfs”;

aces =¿ –

”user:Administrator:rw(po)”,

”all:r”

˝;

˝

7.2.1 Concepts

As mentioned, there are many different ACL APIs. For example, the POSIX draft standard, NTFS and

NFSv4 have different and incompatible ACL APIs. As CFEngine is cross-platform, these differences

Chapter 7: File Access Control Lists 61

should, for the most usual cases, be transparent to the user. However, some distinctions are impossible

to make transparent, and thus the user needs to know about them.

We will explore the different concepts of ACL implementations that are critical to understanding

how permissions are defined and enforced in the different file systems. As a running example, we will

consider NTFS ACLs and POSIX ACLs, because the distinction between these ACL APIs is strong.

7.2.2 Entity types

All ACL APIs support three basic entity types: user, group and all. User and group are simply users

and groups of the system, where a group may contain multiple users. all is all users of the system, this

type is called ”other” in POSIX and ”Everyone” in NTFS.

7.2.3 Owners

All file system objects have an owner, which by default is the entity that created the object. The

owner can always be a user. However, in some file systems, groups can also be owners (e.g. the

”Administrators” group in NTFS). In some ACL APIs (e.g POSIX), permissions can be set explicitly

for the owner, i.e. the owner has an independent ACL entry.

7.2.4 Changing owner

It is generally not possible for user A to set user B as the owner of a file system object, even if A owns

the object. The superuser (”root” in POSIX, ”Administrator” in NTFS) can however always set itself

as the owner of an object. In POSIX, the superuser may in fact set any user as the owner, but it NTFS

it can only take ownership.

7.2.5 Permissions

An entity can be given a set of permissions on a file system object (e.g. read and write). The data

structure holding the permissions for one entity is called an ”Access Control Entry” (ACE). As many

users and groups may have sets of permissions on a given object, multiple Access Control Entries are

combined to an Access Control List, which is associated with the object.

The set of available permissions differ with ACL APIs. For example, the ”Take Ownership” per-

mission in NTFS has no equivalent in POSIX. However, for the most common situations, it is possible

to get equivalent security properties by mapping a set of permissions in one API to another set in a

second API.

There are however different rules for the access to the contents of a directory with no access. In

POSIX, no sub-objects of a directory with no access can be accessed. However, in NTFS, sub-objects

that the entity has access rights to can be accessed, regardless of whether the entity has access rights

to the containing directory.

7.2.6 Deny permissions

If no permissions are given to a particular entity, the entity will be denied any access to the object. But

in some file systems, like NTFS, it is also possible to explicitly deny specific permissions to entities.

Thus, two types of permissions exist in these systems: allow and deny.

It is generally good practice to design the ACLs to specify who is allowed to do some operations, in

contrary to who is not allowed to do some operations, if possible. The reason for this is that describing

who is not allowed to do things tend to lead to more complex rules and could therefore more easily

lead to mis-configurations and security holes. A good rule is to only define that users should not be

able to access a resource in the following two scenarios:

62 CFEngine Nova Technical Supplement

• Denying access to a subset of a group which is allowed access

• Denying a specific permission when a user or a group has full access

If you think about it, this is the same principle that applies to firewall configuration: it is easier to

white-list, specify who should have access, than to blacklist, specify who should not have access. In

addition, since CFEngine is designed to be cross-platform and some ACL permissions are not available

on all platforms, we should strive to keep the ACLs as simple as possible. This helps us avoid surprises

when the ACLs are enforced by different platforms.

7.2.7 Changing permissions

Generally, only the owner may change permissions on a file system object. However, superusers can also

indirectly change permissions by taking ownership first. In POSIX, superusers can change permissions

without taking ownership. In NTFS, either ownership or a special permission (”Change Permissions”)

is needed to alter permissions.

7.2.8 Effective permissions

Unfortunately, even though two ACL APIs support all the permissions listed in an ACL, the ACL may

be interpreted differently. For a given entity and object with ACL, there are two conceptually different

ways to interpret which permissions the entity obtains: ACE precedence and cumulative ACL.

For example, let ‘alice’ be a user of the group ‘staff’. There is an ACL on the file ‘schedule’,

giving ‘alice’ write permission, and the group ‘staff’ read permission. We will consider two ways to

determine the effective permissions of ‘alice’ to ‘schedule’.

Firstly, by taking the most precise match in the ACL, ‘alice’ will be granted write permission only.

This is because an ACE describing ‘alice’ is more precise than an ACE describing a group ‘alice’ is

member of. However, note that some ACEs may have the same precedence, like two ACEs describing

permissions for groups ‘alice’ is member of. Then, cumulative matching will be done on these ACEs

(explained next). This is how POSIX does it.

Secondly, we can take the cumulative permissions, which yields a user permissions from all the ACE

entries with his user name, groups he is member of or the ACE entry specifying all users. In this case,

‘alice’ would get read and write on ‘schedule’. NTFS computes the effective permissions in this way.

7.2.9 Inheritance

Directories have ACLs associated with them, but they also have the ability to inherit an ACL to sub-

objects created within them. POSIX calls the former ACL type ”access ACL” and the latter ”default

ACL”, and we will use the same terminology.

7.3 CFEngine 3 Generic ACL Syntax

The CFEngine 3 ACL syntax is divided into two main parts, a generic and an API specific (native).

The generic syntax can be used on any file system for which CFEngine supports ACLs, while the native

syntax gives access to all the permissions available under a particular ACL API.

An ACL can contain both generic and native syntax. However, if it contains native syntax, it can

only be enforced on systems supporting the given ACL API. Thus, only the generic syntax is portable.

Note that even though the same generic ACL is set on two systems with different ACL APIs, it may

be enforced differently because the ACE matching algorithms differ. For instance, as discussed earlier,

NTFS uses cumulative matching, while POSIX uses precedence matching. CFEngine cannot alter the

matching algorithms, and simulating one or the other by changing ACL definitions is not possible in

Chapter 7: File Access Control Lists 63

all cases, and would probably lead to confusion. Thus, if an ACL is to be used on two systems with

different ACL APIs, the user is encouraged to check that any differences in matching algorithms do

not lead to mis-configurations.

The CFEngine generic ACL syntax explained next, and native syntax is described in following sec-

tions.� �
body acl acl˙alias:

–

acl˙type =¿ ”generic”/”ntfs”/”posix”;

acl˙method =¿ ”append”/”overwrite”;

acl˙directory˙inherit =¿ ”nochange”/”clear”/”parent”/”specify”;

aces =¿ –

”user:uid:mode[:perm˙type]”, ...,

”group:gid:mode[:perm˙type]”, ...,

”all:mode[:perm˙type]”

˝;

specify˙inherit˙aces =¿ –

”user:uid:mode[:perm˙type]”, ...,

”group:gid:mode[:perm˙type]”, ...,

”all:mode[:perm˙type]”

˝;

˝
 	
• acl˙alias is the name of the specified ACL. It can be any identifier containing alphanumeric

characters and underscores. We will use this name when referring to the ACL.

• acl˙type (optional) specifies the ACL API used to describe the ACL. It defaults to generic,

which allows only CFEngine generic ACL syntax, but is valid on all supported systems. acl˙type

only needs to be specified if native permissions are being used in the ACL (see nperms below). If

acl˙type is set to anything other than generic, the system on which it is enforced must support

this ACL API.

• acl˙method (optional) can be set to either append or overwrite, and defaults to append. Setting

it to append only adds or modifies the ACEs that are specified in aces (and specify˙inherit˙

aces, see below). If set to overwrite, the specified ACL will completely replace the currently

set ACL. All required fields must then be set in the specified ACL (e.g. all in POSIX), see the

following sections describing the supported native APIs.

• acl˙directory˙inherit (optional) specifies the ACL of newly created sub-objects. Only valid

if the ACL is set on a directory. On directories, nochange is the default and indicates that the

ACL that is currently given to newly created child objects is left unchanged. If set to clear, no

ACL will be inherited, but the file system specifies a default ACL, which varies with the file system

(see the following sections on the supported ACL APIs). parent indicates that the ACL set in

aces (see below) should be inherited to sub-objects. If set to specify, specify˙inherit˙aces

specifies the inherited ACL, and acl˙method applies for specify˙inherit˙aces too.

• aces is a list of access control entries. It is parsed from left to right, and multiple entries with

the same entity-type and id is allowed. This is necessary to specify permissions with different

perm˙type for the same entity (e.g. to allow read permission but explicitly deny write).

• specify˙inherit˙aces (optional) is a list of access control entries that are set on child objects.

It is also parsed from left to right and allows multiple entries with same entity-type and id. Only

valid if acl˙directory˙inherit is set to specify.

64 CFEngine Nova Technical Supplement

• user indicates that the line applies to a user specified by the user identifier uid. mode is the

permission mode string.

• group indicates that the line applies to a group specified by the group identifier gid. mode is the

permission mode string.

• all indicates that the line applies to every user. mode is the permission mode string.

• uid is a valid user name for the system and cannot be empty. However, if acl˙type is posix,

uid can be set to * to indicate the user that owns the file system object.

• gid is a valid group name for the system and cannot be empty. However, if acl˙type is posix,

gid can be set to * to indicate the file group.

• mode is one or more strings op—gperms—(nperms); a concatenation of op, gperms and optionally

(nperms), see below, separated with commas (e.g. +rx,-w(s)). mode is parsed from left to right.

• op specifies the operation on any existing permissions, if the specified ACE already exists. op can

be =, empty, + or -. = or empty sets the permissions to the ACE as stated, + adds and - removes

the permissions from any existing ACE.

• nperms (optional) specifies ACL API specific (native) permissions. Only valid if acl˙type is not

generic. Valid values for nperms varies with different ACL types, and are specified in subsequent

sections.

• perm˙type (optional) can be set to either allow or deny, and defaults to allow. deny is only

valid if acl˙type is set to an ACL type that support deny permissions.

• gperms (generic permissions) is a concatenation of zero or more of the characters shown in the

table below. If left empty, none of the permissions are set.

Flag Description Semantics on file Semantics on directory

r Read Read data, permissions,

attributes

Read directory contents, permissions,

attributes

w Write Write data Create, delete, rename sub-objects

x Execute Execute file Access sub-objects

Note that the r permission is not necessary to read an object’s permissions and attributes in all file

systems (e.g. in POSIX, having x on its containing directory is sufficient).

7.3.1 Generic syntax examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”/office/schedule”

acl =¿ small;

”/office/audit˙dir”

Chapter 7: File Access Control Lists 65

acl =¿ dirinherit;

˝

body acl small

–

aces =¿ –”user:alice:w”, ”group:staff:r”, ”all:”˝;

˝

body acl dirinherit

–

acl˙directory˙inherit =¿ ”parent”;

aces =¿ –”user:alice:+w,-x”, ”user:bob:+r,-w”, ”group:staff:=rx”, ”all:-w”˝;

˝

See the following sections on native ACL types for more examples.

7.4 POSIX ACL type

7.4.1 POSIX-specific ACL syntax

Native permissions The valid values for nperms in POSIX are r,w, and x. These are in fact the same

as the generic permissions, so specifying them as generic or native gives the same effect.

File owner and group A user-ACE with uid set to * indicates file object owner. A group-ACE with

gid set to * indicates file group.

mask mask can be specified as a normal ACE, as mask:mode. mask specifies the maximum per-

missions that are granted to named users (not owning user), file group and named groups. mask is

optional, if it is left unspecified it will will be computed as the union of the permissions granted to

named users, file group and named groups (see acl calc mask(3)).

Required ACEs POSIX requires existence of an ACE for the file owner, (user:*:mode), the file

group (group:*:mode), other (all:mode) and mask (mask:mode). As mentioned, CFEngine automat-

ically creates a mask-ACE, if missing. However, if method is set to overwrite, the user must ensure

that the rest of the required entries are specified.

7.4.2 Generic syntax mapping

Entity types All entity types in the generic syntax are mapped to the corresponding entity types with

the same name in POSIX, except all which corresponds to other in POSIX.

Generic permissions

As shown in the table below, gperms is mapped straightforward from generic to POSIX permission

flags.

Generic flag POSIX flag

r r

w w

x x

Inheritance POSIX supports acl˙directory˙inherit set to specify. The specify˙inherit˙

aces list is then set as the default ACL in POSIX (see acl(5)).

66 CFEngine Nova Technical Supplement

If acl˙directory˙inherit is set to parent, CFEngine copies the access ACL to the default ACL.

Thus, newly created objects get the same access ACL as the containing directory.

acl˙directory˙inherit set to clear corresponds to no POSIX default ACL. This results in that

newly created objects get ACEs for owning user, group and other. The permissions are set in accordance

with the mode parameter to the creating function and the umask (usually results in 644 for files and

755 for directories).

Further reading The manual page acl(5) contains much information on POSIX ACLs, including

the access check algorithm. In particular, this shows that POSIX uses ACE precedence matching, and

exactly how it is done. Operating systems usually bundle tools for manipulating ACLs, for example

getfacl(1) and setfacl(1).

7.4.3 POSIX ACL examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”/office/timetable”

acl =¿ nativeperms;

”/office/user˙dir”

acl =¿ specifyinherit;

˝

body acl nativeperms

–

acl˙type =¿ ”posix”;

aces =¿ –”user:alice:r(w)”, ”user:root:=(rwx)”,

”group:staff:-r(x)”, ”all:-(w)”, ”mask:(rx)”˝;

˝

body acl specifyinherit

–

acl˙type =¿ ”posix”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”specify”;

aces =¿ –”user:*:rwx”, ”group:*:rx”, ”user:alice:rwx”,

”user:root:rx”, ”group:staff:r”, ”all:rx”˝;

specify˙inherit˙aces =¿ –”user:*:”, ”group:*:”, ”all:”˝;

˝

7.5 NT ACL type

Chapter 7: File Access Control Lists 67

7.5.1 NT-specific ACL syntax

Native permissions NTFS supports fourteen so-called special file permissions. However, we do not

consider the Synchronize permission because it is used for a different purpose than the other permis-

sions. In order to give access to the thirteen relevant permissions, CFEngine defines a native permission

flag for each of them. This one-to-one mapping is as follows.

NTFS Special Permission CFEngine

nperm

Execute File / Traverse Folder x

Read Data / List Folder r

Read Attributes t

Read Extended Attributes T

Write Data / Create Files w

Append Data / Create Folders a

Write Attributes b

Write Extended Attributes B

Delete Sub-folders and Files D

Delete d

Read Permissions p

Change Permissions c

Take Ownership o

The semantics of these special permissions can be found in the references for further reading below.

Denying permissions NTFS supports setting perm˙type to deny in addition to allow, which is

the default. This can for instance be used to denying a user a particular permission that a group

membership grants him. It is important to note that the precedence of allow and deny permissions is

as follows:

1. Explicit Deny

2. Explicit Allow

3. Inherited Deny from parent

4. Inherited Allow from parent

5. Inherited Deny from grandparent

6. Inherited Allow from grandparent

7. ...

Thus, the closer the permission is to the object in the directory path, the greater precedence it is

given.

An important point here is that even though a user is denied access in a parent directory and this

permission is inherited, but one of the groups he is member of is explicitly allowed access to a file in

that directory, he is actually allowed to access the file.

Ownership In NTFS, the default owner is the user who is currently logged on. The only exceptions

occur when the user is a member of either the ‘Administrators’ group or the ‘Domain Admins’ group.

Owners of NTFS objects can allow another user to take ownership by giving that user Take Owner-

ship permission. Owners can also give other users the Change Permissions flag. In addition, members

of the ‘Administrator’ group can always take ownership. It is never possible to give ownership of an

object to a user, but members of the ‘Administrator’ group can give ownership to that group.

68 CFEngine Nova Technical Supplement

7.5.2 Generic syntax mapping

Entity types The three entity types of NTFS are called user, group and Everyone. The user and group

entity types in NTFS are mapped to the user and group entity types in CFEngine. Everyone is mapped

to all in CFEngine.

Generic permissions For NTFS, CFEngine maps the gperms to nperms as follows.

Generic flag Native flags

r rtTp

w wabB

x x

The rationale for this mapping is discussed next.

NTFS groups the thirteen special permissions to create five sets of permissions:

• Read

• Read & Execute

• Write

• Modify

• Full Control

In addition, we have the List Folder Contents set, which is equivalent to the Read & Execute set but

is only available to- and inherited by directories. The Full Control set is unsurprisingly all the thirteen

special permissions. An overview of the NTFS mapping of special permissions to sets is given in the

references stated as further reading below. The NTFS permission sets can be expressed in CFEngine

syntax as follows.

NTFS sets CFEngine gperms—(nperms)

Read r

Write w

Read & Execute rx

Modify rwx(d)

Full Control rwx(dDco)

Inheritance acl˙directory˙inherit set to clear disables inheritance, such that child objects

get a default ACL specified by the operating system, namely Full control for the file object creator and

SYSTEM accounts.

POSIX compatibility Be aware that setting gperms to ‘rwx’ on directories is more restrictive

in NTFS than in POSIX ACLs. This is because NTFS does not allow deletion of objects within a

directory without a Delete Sub-folders and Files permission on the directory (or a Delete permission on

the object itself), while in POSIX, ‘rwx’ on the directory is sufficient to delete any file or directory within

it (except when the sticky-flag is set on the directory). Thus, on directories, the NTFS-equivalent to

POSIX gperms set to ‘rwx’ is ‘rwx(D)’. However, for files, ‘rwx’ is equivalent in POSIX and NTFS

semantics.

In POSIX ACLs, there is no explicit delete permission, but the execute, write and sticky permissions

on the containing directory determines if a user has privileges to delete. In POSIX, the owner and root

can change permissions, while usually only the root may change the ownership, so there is no direct

equivalent to the Change Permission and Take Ownership in POSIX.

Chapter 7: File Access Control Lists 69

Further reading A description of the fourteen NTFS permission and the mapping of these into sets

is given at http://support.microsoft.com/kb/308419.

7.5.3 NT ACL examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”C:“Program Files“Secret Program”

acl =¿ restrictive;

”D:“Shared”

acl =¿ sharespace;

˝

body acl restrictive

–

acl˙type =¿ ”ntfs”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”parent”;

aces =¿ –”user:Administrator:r”˝;

˝

body acl sharespace

–

acl˙type =¿ ”ntfs”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”specify”;

aces =¿ – ”user:Administrator:rwx(dDco)”,

”group:Hackers:rwx(dDco):deny”,

”all:rw” ˝;

specify˙inherit˙aces =¿ –”user:Administrator:r”˝;

˝

http://support.microsoft.com/kb/308419

Chapter 8: Server extensions 71

8 Server extensions

CFEngine Nova adds a simple server extension to the Community Edition server, namely the ability to

encode data directly in policy. This feature is useful for distributing password hashes to systems.

8.1 Server access resource type

By default, access to resources granted by the server are files. However, sometimes it is useful to cache

literal strings, hints and data in the server, e.g. the contents of variables, hashed passwords etc for

easy access. In the case of literal data, the promise handle serves as the reference identifier for queries.

Queries are instigated by function calls by any agent.

access:

”This is a string with a $(localvar) for remote collection”

handle =¿ ”test˙scalar”,

resource˙type =¿ ”literal”,

admit =¿ – ”127.0.0.1” ˝;

The promise looks exactly like a promise for a file object, but the data are literal and entered into

the policy. This is a useful approach for distributing password hashes on a need-to-know basis from a

central location. The server configuration file need not be distributed to any client, thus only authorized

systems will have access to the hashes.

8.2 Function remotescalar

The client side of the literal look up function is:� �
(string) remotescalar(resource handle,host/IP address,encrypt);

 	
This function downloads a string from a remote server, using the promise handle as a variable

identifier.

ARGUMENTS:

‘resource handle’

The name of the promise on the server side

‘host or IP address’

The location of the server on which the resource resides.

‘encrypt’ Whether to encrypt the connection to the server.

true

yes

false

no

72 CFEngine Nova Technical Supplement

8.3 Example remote scalar lookup

##

#

Remote value from server connection to cf-serverd

#

##

body common control

–

bundlesequence =¿ – ”testbundle” ˝;

version =¿ ”1.2.3”;

˝

##

bundle agent testbundle

–

vars:

”remote” string =¿ remotescalar(”test˙scalar”,”127.0.0.1”,”yes”);

reports:

linux::

”Receive value $(remote)”;

˝

###

Server config

###

body server control

–

allowconnects =¿ – ”127.0.0.1” , ”::1” ˝;

allowallconnects =¿ – ”127.0.0.1” , ”::1” ˝;

trustkeysfrom =¿ – ”127.0.0.1” , ”::1” ˝;

allowusers =¿ – ”mark” ˝;

˝

###

Chapter 8: Server extensions 73

bundle server access˙rules()

–

vars:

”localvar” string =¿ ”literal string”;

access:

”This is a $(localvar) for remote access”

handle =¿ ”test˙scalar”,

resource˙type =¿ ”literal”,

admit =¿ – ”127.0.0.1” ˝;

˝

Chapter 9: Environments and workflows 75

9 Environments and workflows

9.1 Environments in Nova

Nova supports notion of ‘environments’ – named groups of hosts, like ‘development’, ’QA’ and ’pro-

duction’ hosts.

Each environment gets

• Separate subdirectory ‘environment ¡NAME¿’ for storing promises

• Separate subdirectory ‘environment ¡NAME¿/cdp inputs’ for content-based policies

• grouping of hosts belonging to environment in GUI

Default Nova policies group hosts into environments in bundle ‘common environments’. This bundle

defines

• ‘environments.active’ variable. This variable holds the name of environment for current host, and

is used by other promises in Nova templates. This variable does not affect grouping in GUI.

• global ‘environment ¡NAME¿’ class. This class should be defined if given host belongs to the

‘¡NAME¿’ environment. GUI groups hosts using this class.

Administrator may customize this bundle as needed, adding or removing environments defined (Nova

does not have any built-in environment names), changing rules for hosts selection and making any

other modifications, the only requirement for environments feature to work is keeping aforementioned

variables and classes defined. Note that the environment name ’any’ is reserved.

Default rules expect file ‘environment $(promises.active)/promises.cf’ to exist and to contain bundle

‘agent main’, this bundle is included last from main promises.cf and should implement/include/use any

environment-specific rules.

9.2 Implementing workflows in Nova

Workflows are implemented easily with Nova, administrator starts with defining necessary set of envi-

ronments (usually those are ‘development’, ‘testing’ and ’production’), then develops new configuration

in one enviroment, and promotes rules first to testing and then to production environment.

Promotion of rules is performed by copying rules from one environment’s subdirectory to next one.

Chapter 10: Virtualization 77

10 Virtualization

10.1 What are virtualization and cloud computing?

Virtualization refers to the ability to run multiple host instances on a single physical node. Cloud

computing typically refers to what is called ‘platform as a service’, or deployment of virtual machines

on demand, often as an on-line service.

In this document, virtualization support refers specifically to hypervisor technologies supported by

the open source library layer libvirt project, which includes interfaces for Xen, KVM, Vmware-ESX, and

more. CFEngine thus integrates freely with other tools based on this library, such as virsh and the

Virtual Manager graphical user interface.

10.2 Why build virtualization support into CFEngine?

Virtualization engines (usually called supervisors or hypervisors) are seeing an explosion of development.

They exist as a number of projects in various stages of maturity. The libvirt project was designed as

an integration layer based on an XML specification.

The tools for management are still quite primitive and require much manual work. CFEngine has a

unique role to play in maintaining desired state in virtual machine systems.

In the cloud, virtual machines may be rented from remote commercial providers, and managed as

disposable resources. Convergent or ‘self-healing’ maintenance is an essential method for managing

machines that are geographically remote and awkward to access, e.g. machines in other time-zones

that it is impractical to monitor by legacy methods.

10.3 What can CFEngine do with virtual machines?

The simple answer is: anything that libvirt can do, with added convergence to a desired state: that

means, creating, destroying and starting and stopping machines. By starting virtual machines through

CFEngine, you can be sure that a given ‘virtual guest’ is running on one and only one physical host,

thus avoiding conflicts that are difficult to detect with centralized systems.

CFEngine does not support everything that libvirt does – it offers a simplified interface that is meant

for robustness, stability and hands-free repeatability.

� �
CFEngine does not use libvirt’s TLS based web communication layer. It manages every host as

an independent entity, in typical CFEngine fashion, using CFEngine’s own distributed cooperation to

provide the implicit communication. CFEngine does not currently support so-called ‘live migration’ of

virtual machines.
 	

78 CFEngine Nova Technical Supplement

10.4 Guest environments promises

A virtual machine is one example of what CFEngine calls an ‘guest environment’. You can promise to

create (and host) an environment with certain attributes, just as you can promise to host a file or a

process. Here is a simple example:

body common control

–

bundlesequence =¿ – ”my˙vm˙cloud” ˝;

˝

###

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml,

environment˙type =¿ ”xen”,

environment˙host =¿ ”my˙physical˙computer”, # ipv4˙10˙1˙2˙3

environment˙state =¿ ”create”;

˝

###

body environment˙resources virt˙xml

–

env˙spec˙file =¿ ”/srv/xen/centos5-libvirt-create.xml”;

˝

• The promiser (in this case ‘myUbuntu’) is the name of the virtual machine. This should be a

unique identifier, as we need to be able to refer to machines uniquely.

• The guest environment host is the name of the computer that is the host for the virtual machine.

• Normally when we want to ensure something on a machine, we use classes to decide where the

promise will be made. For guest environments, however, we need to make promises about the

uniqueness of the machine. When you make a machine instance you normally want it to be

running on one and only one host. So you want every machine to make a promise. On the

guest environment’s host, you want to promise that the guest environment is running, and on

every other machine you want to promise that it is not. In CFEngine, you simply include a unique

class belonging to host in the promise using environment˙host and CFEngine assumes that rest.

Unique classes might include

• Hostname class e.g. myhost˙CFEngine˙com

• IP address class e.g. ipv4˙123˙456˙789˙123

Chapter 10: Virtualization 79

An alternative way to write this example is to quote the XML specification in CFEngine directly. This

has a few advantages: you can re-use the data and use it as a template, filling in CFEngine-variables.

You can thus adapt the configuration using CFEngine’s classes.

80 CFEngine Nova Technical Supplement

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml(”$(this.promiser)”),

environment˙type =¿ ”xen”,

environment˙host =¿ ”myphysicalcomputer”;

environment˙state =¿ ”create”

˝

###

body environment˙resources virt˙xml(host)

–

env˙spec˙file =¿

”¡domain type=’xen’¿

¡name¿$(host)¡/name¿

¡os¿

¡type¿linux¡/type¿

¡kernel¿/var/lib/xen/install/vmlinuz-ubuntu10.4-x86˙64¡/kernel¿

¡initrd¿/var/lib/xen/install/initrd-vmlinuz-ubuntu10.4-x86˙64¡/initrd¿

¡cmdline¿ kickstart=http://example.com/myguest.ks ¡/cmdline¿

¡/os¿

¡memory¿131072¡/memory¿

¡vcpu¿1¡/vcpu¿

¡devices¿

¡disk type=’file’¿

¡source file=’/var/lib/xen/images/$(host).img’/¿

¡target dev=’sda1’/¿

¡/disk¿

¡interface type=’bridge’¿

¡source bridge=’xenbr0’/¿

¡mac address=’aa:00:00:00:00:11’/¿

¡script path=’/etc/xen/scripts/vif-bridge’/¿

¡/interface¿

¡graphics type=’vnc’ port=’-1’/¿

¡console tty=’/dev/pts/5’/¿

¡/devices¿

¡/domain¿

”;

˝

You should consult the libvirt documentation for the details of the XML specification.

Chapter 10: Virtualization 81

10.5 Virtualization types supported

CFEngine currently supports virtualization only through libvirt, so it supports those technologies that

libvirt supports. Currently this includes most popular technologies. You must choose the type of

monitor that is to be responsible for keeping the guest environment promise. In CFEngine, you should

choose between a machine environment or network environment of the following types:

xen A Xen hypervisor virtual domain.

kvm A KVM hypervisor virtual domain.

esx A VMware hypervisor virtual domain.

test The libvirt test-hypervisor virtual domain.

xen˙net A Xen hypervisor virtual network.

kvm˙net A KVM hypervisor virtual network

esx˙net An ESX/VMWare hypervisor virtual network.

test˙net The test hypervisor virtual network.

zone A Solaris zone (future development)

ec2 An Amazon EC2 instance (future development)

eucalyptus

A Eucalyptus instance (future development)

Once again, you must consult the libvirt documentation for details.

10.6 Distinct states

Libvirt recognizes a number of distinct states are transliterated into CFEngine as

create Build and start an guest environment.

delete Halt and remove runtime resources associated with an guest environment.

running An existing guest environment is in a running state.

suspended An existing guest environment is in a ‘paused’ state.

down An existing guest environment is in a halted state.

The default promised state is for a machine to be running wherever the environment˙host class

is true, and suspended or down elsewhere.

10.7 Example deployment

Prerequisites: you need to make a ‘disk image’ for the machine, or a virtual disk of blocks that can be

allocated. This image does not have to contain any data, it will simply as a block device for the VM.

You can then install it by booting the machine from a network image, like a PXE/kickstart installation.

If you want to allocate disk blocks as the file grows, you can create a file with a hole. The following

command will creates a file of 2048MB, but the actual data blocks are allocated in a lazy fashion:

82 CFEngine Nova Technical Supplement

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M seek=2047 count=1

To reserve all the data blocks right away:

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M count=2048

Libvirt uses an XML file format that cannot be circumvented. CFEngine promises to honor the

promises that are expressed in this file, as in the examples above. You need to find out about this

file format from the libvirt website. To get CFEngine to Honor these promises, you point it to the

specification that it should promise using spec˙file.

You need to set up a network for virtual machines to communicate with the outside world. This can

also be done with CFEngine, using the network promise types to build a bridge into a virtual network.

Then just run CFEngine to start, stop or manage the guest environments on each localhost. Run

in verbose mode to see how CFEngine maintains the states convergently.

cf-agent -v

Chapter 11: Content-Driven Policies 83

11 Content-Driven Policies

In Nova 2.0, Content-Driven Policies (CDP) were introduced to make policy management easier. In

contrast to policies written in the CFEngine language, these are semi-colon separated fields in a text

file that the user just fills with content. All the underlying enforcement and reporting are taken care of

automatically by Nova.

For example, to manage three Windows services, the following services-CDP will suffice.

masterfiles/cdp˙inputs/service˙list.txt

Dnscache;stop;fix;windows

ALG;start;warn;windows

RemoteRegistry;start;fix;Windows˙Server˙2008

The meanings of the fields are different depending of the CDP-type, but explained in the file header.

With these three lines, we ensure the correct status of three services on all our Windows machines

and are given specialized reports on the outcome. The Content-Driven Policy services report is shown

below.

11.1 Benefits of Content-Driven Policies

As seen in the example above, Content-Driven Policies are easy to write and maintain, especially for

users unfamiliar with the CFEngine language. They are designed to capture the essence of a specific,

popular use of CFEngine, and make it easier. For example, the services Content-Driven Policy above

has the following equivalent in the CFEngine language.

bundle agent service˙example

–

services:

”Dnscache”

comment =¿ ”Check services status of Dnscache”,

handle =¿ ”srv˙Dnscache˙windows”,

service˙policy =¿ ”stop”,

service˙method =¿ force˙deps,

action =¿ policy(”fix”),

ifvarclass =¿ ”windows”;

”ALG”

comment =¿ ”Check services status of ALG”,

handle =¿ ”srv˙ALG˙windows”,

service˙policy =¿ ”start”,

service˙method =¿ force˙deps,

84 CFEngine Nova Technical Supplement

action =¿ policy(”warn”),

ifvarclass =¿ ”windows”;

”RemoteRegistry”

comment =¿ ”Check services status of ALG”,

handle =¿ ”srv˙ALG˙windows”,

service˙policy =¿ ”start”,

service˙method =¿ force˙deps,

action =¿ policy(”fix”),

ifvarclass =¿ ”Windows˙Server˙2008”;

˝

Writing this policy is clearly more time-consuming and error-prone. On the other hand, it allows for

much more flexibility than Content-Driven Policies, when that is needed.

CFEngine provides Content-Driven Policies to cover mainstream management tasks like the follow-

ing.

• File change/difference management

• Service management

• Database management

• Application / script management

11.2 Getting started

All the CDP input files are located in /var/cfengine/masterfiles/cdp˙inputs on your policy hub.

Nova is bundled with some examples, but ensure to edit the examples before enabling them.

To enable all the CDPs located in cdp˙inputs/, open promises.cf in your masterfiles directory.

Remove the comment (#) in front of the cdp entries in bundlesequence and inputs, to make it look

like the following.

bundlesequence =¿ –

”def”,

”cfengine˙management”,

”service˙catalogue”,

”cdp”,

...

inputs =¿ –

...

”cdp˙lib/cdp.cf”,

”cdp˙lib/cdp˙acls.cf”,

”cdp˙lib/cdp˙registry.cf”,

”cdp˙lib/cdp˙file˙changes.cf”,

”cdp˙lib/cdp˙file˙diffs.cf”,

”cdp˙lib/cdp˙services.cf”,

”cdp˙lib/cdp˙commands.cf”,

...

Chapter 11: Content-Driven Policies 85

When the hosts start reporting back on the outcome of these policies (usually within 10 minutes),

you can view the reports from your Knowledge Map on the policy hub. Go to the Status tab, find the

Content-Driven Policies drop-down, select the CDP type (e.g. Services) and click Generate.

Chapter 12: Windows-specific features in Nova 87

12 Windows-specific features in Nova

In this section, we will explore the Windows-specific features of the native Windows version of CFEngine

Nova, and how it integrates with Windows. We will also consider features that are more interesting or

popular on Windows than on other platforms.

Feature highlights include Windows service management and integration, event logging, Windows

registry repair, and fine-tuned file security support through access control lists. See the sections on

databases and ACLs to find information on Windows registry repair and NTFS ACLs, respectively. We

will look at some of the other added features next.

12.1 Windows service management

CFEngine Nova can maintain complete control of the state of all Windows services, in addition to Unix

daemons. Services prone to security issues or errors can easily be given a disabled state.

A service can also be given a running state, in which case CFEngine Nova ensures that it is running,

and starts it if it is not, with parameters if desired. More advanced policy options are also available,

including support for starting and stopping dependencies, and configuring when the services should be

started (e.g. only when they are being used).

Furthermore, the CFEngine executor in Nova now runs as a Windows service itself. This means it

runs in the background an starts with Windows, before any user logs in. It can be configured, started

and stopped from the “Services” listing in Windows.

Note that the name of a service in Windows may be different from its “Display name”. CFEngine

Nova policies use the name, not the display name, due to the need of uniqueness.

88 CFEngine Nova Technical Supplement

12.2 Windows event logging

Event logs are the Windows counterpart to syslog from Unix. The main difference is that event logs

aim to group similar log messages, giving each group an event id.

A program that creates logs, such as CFEngine Nova, must define the possible event IDs, and their

meaning. In many applications, only one event id is defined, a generic log message. However, CFEngine

Nova defines the following range of event IDs, which allows for automatic handling of log messages.

Description Event ID Type

Promise kept 100 Information

Promise repaired 101 Information

Promise not repaired due warn only policy 102 Error

Promise not repaired due to error 103 Error

Report promise 104 Information

Generic information 105 Information

Generic verbose 106 Information

Generic warning 107 Warning

Chapter 12: Windows-specific features in Nova 89

Generic error 108 Error

The Nova event logs can be found under the “System” logs. Almost all monitoring products for

Windows supports reading event logs, and they can thus monitor logs from CFEngine Nova as well.

This makes it possible to do more advanced querying on the status of a machine running CFEngine

Nova, e.g. to show all promises that have not been kept in a certain time interval. However, we

recommend using the Knowledge Map to do more advanced things, as it is specifically made for this

purpose and supports all operating systems that CFEngine runs on.

12.3 Windows special variables

Three new special variables have been added to the Windows version of CFEngine Nova.

• sys.windir contains the Windows directory, e.g. “C:“WINDOWS”.

• sys.winsysdir contains the Windows system directory, e.g. “C:“WINDOWS“system32”.

• sys.winprogdir contains the program files directory, e.g. “C:“Program Files”.

Note that these variables are not statically coded, but retrieved from the current system. For

example, sys.winprogdir is often different on Windows versions in distinct languages.

12.4 Windows hard classes

The Windows version of CFEngine Nova defines hard classes to pinpoint the exact version of Windows

that it is running on, the service pack version and if it’s a server or workstation.

First of all, the class windows is defined on all Windows platforms. For Windows workstations, such

as Windows XP, WinWorkstation is defined. On Windows servers, such as Windows Server 2003,

90 CFEngine Nova Technical Supplement

WinServer is defined. In addition, if the server is a domain controller, DomainController is defined.

Note that if DomainController is defined, then WinServer is also defined, for natural reasons.

The class Service˙Pack˙X˙Y is defined according to the service pack version. For example, at the

time of writing, Service˙Pack˙3˙0 is set on an updated Windows XP operating system.

To allow taking specific actions on different Windows versions, one of the following hard classes is

defined.

• Windows˙7
• Windows˙Server˙2008˙R2
• Windows˙Server˙2008
• Windows˙Vista
• Windows˙Server˙2003˙R2
• Windows˙Home˙Server
• Windows˙Server˙2003
• Windows˙XP˙Professional˙x64˙Edition
• Windows˙XP
• Windows˙2000

Note that all defined hard classes for a given system is shown by running cf-promises -v.

12.5 Notes on windows policies

A potential problem source when writing policies for windows is that paths to executables often contain

spaces. This makes it impossible for CFEngine to know where the executable ends and the parameters

to it starts. To solve this, we place escaped quotes around the executable.

Additionally, Windows does not support that processes start themselves in in the background (i.e.

fork off a child process in the Unix world). The result is that CFEngine is always waiting for the

commands to finish execution before checking the next promise. To avoid this, use the background

attribute in the action body-part.

Both these things are demonstrated in the following example.

body common control

–

bundlesequence =¿ – ”main” ˝;

˝

bundle agent main

–

commands:

”“”C:“Program Files“Some Dir“program name.bat“” --silent --batch”

action =¿ background;

˝

body action background

–

Chapter 12: Windows-specific features in Nova 91

background =¿ ”true”;

˝

Finally, one should note that Windows lacks support for certain features that are utilized in Unix

versions of CFEngine. These include symbolic links, file groups, user and group identifiers.

Thus, the parts of promises containing these features will be ignored. For example, the getgid()

function does not return anything on Windows. The reference manual documents exactly which

promises are ignored and not. Also, cf-agent from CFEngine Nova prints warning messages on

ignored attributes when run in verbose mode.

