
Upgrading from CFEngine 2 to 3
A CFEngine Handbook

CFEngine AS

Copyright c© 2009- CFEngine AS

i

Table of Contents

1 General remarks and expectations . 1
1.1 On the translation of policies . 1
1.2 On ‘best practices’ . 1
1.3 Completely new features . 2

2 Conversion Strategy . 5
2.1 Converting by module . 5
2.2 Assembling a compilable file set . 5
2.3 Validating the conversion . 8
2.4 Optimizing the configuration . 8

3 Translation Codebook . 9
3.1 upgrading from CFEngine 2 ‘acl’ . 9
3.2 upgrading from CFEngine 2 ‘admit’ . 11
3.3 upgrading from CFEngine 2 ‘alerts’ . 12
3.4 upgrading from CFEngine 2 ‘binservers’ . 13
3.5 upgrading from CFEngine 2 ‘broadcast’ . 15
3.6 upgrading from CFEngine 2 ‘control’ . 16
3.7 upgrading from CFEngine 2 ‘classes’ . 19
3.8 upgrading from CFEngine 2 ‘copy’ . 20
3.9 upgrading from CFEngine 2 ‘defaultroute’ 21
3.10 upgrading from CFEngine 2 ‘deny’ . 22
3.11 upgrading from CFEngine 2 ‘disks’ . 23
3.12 upgrading from CFEngine 2 ‘directories’ 24
3.13 upgrading from CFEngine 2 ‘disable’ . 25
3.14 upgrading from CFEngine 2 ‘editfiles’ . 26
3.15 upgrading from CFEngine 2 ‘files’ . 28
3.16 upgrading from CFEngine 2 ‘filters’ . 30
3.17 upgrading from CFEngine 2 ‘groups’ . 31
3.18 upgrading from CFEngine 2 ‘homeservers’ 32
3.19 upgrading from CFEngine 2 ‘ignore’ . 34
3.20 upgrading from CFEngine 2 ‘import’ . 35
3.21 upgrading from CFEngine 2 ‘interfaces’ . 36
3.22 upgrading from CFEngine 2 ‘links’ . 37
3.23 upgrading from CFEngine 2 ‘mailserver’ . 38
3.24 upgrading from CFEngine 2 ‘methods’ . 39
3.25 upgrading from CFEngine 2 ‘miscmounts’ . 41
3.26 upgrading from CFEngine 2 ‘mountables’ . 42
3.27 upgrading from CFEngine 2 ‘processes’ . 43
3.28 upgrading from CFEngine 2 ‘packages’ . 46
3.29 upgrading from CFEngine 2 ‘rename’ . 47
3.30 upgrading from CFEngine 2 ‘required’ . 48

ii Upgrading from CFEngine 2 to 3

3.31 upgrading from CFEngine 2 ‘resolve’ . 49
3.32 upgrading from CFEngine 2 ‘scli’ . 50
3.33 upgrading from CFEngine 2 ‘shellcommands’ 51
3.34 upgrading from CFEngine 2 ‘strategies’ . 52
3.35 upgrading from CFEngine 2 ‘tidy’ . 53
3.36 upgrading from CFEngine 2 ‘unmount’ . 54

Chapter 1: General remarks and expectations 1

1 General remarks and expectations

This document concerns the translation of system configuration policies from the legacy
CFEngine 2 language to the new CFEngine 3 promise language. CFEngine 3 is a new lan-
guage that was designed with careful research to satisfy the needs of system configuration in
a convergent fashion.

1.1 On the translation of policies

Translating one language directly into another rarely makes sense. Every language has its
quirks and idioms that make some formulations more natural than others.

In migrating from CFEngine 2 to CFEngine 3, you will see that the novelty is more of a
dialect than an unrelated language. The underlying parameterization of the promises is the
same, and you will recognize the main features, even if they are inflected with an ‘accent’.

This suggests that translation might be easy. However, we don’t want you to trivialize
this translation, as there are new mechanisms in CFEngine 3 that bring new benefits, and this
means that simple and direct translation can be a poor choice that misses the opportunity for
improvement. In this guide the principles for translation are simply as follows:

• We make as direct a translation as possible, sometimes offering alternatives that better
illustrate CFEngine 3 paradigms.

• We use standardized templates from the CFEngine Community Open Promise-Body Li-
brary to simplify the translation. However, readers should understand that in every ‘con-
straint’ expression in CFEngine, of the form,

LHS =¿ RHS

the left hand side is always a pre-defined CFEngine word, and the right hand side is always
a user-defined term. In other words, if you don’t like the choices we have made, you can
make your own choices on the right hand side.

1.2 On ‘best practices’

There are new features in CFEngine 3 that we strongly recommend you use. Perhaps the most
useful practice is to make use of the standard library of template parts for promise bodies and
bundles, called te CFEngine Community Open Promise-Body Library. This is available from the
CFEngine website. By standardizing simple template names, you will be able to communicate
more effectively with others, and facilitate knowledge efficiency in your organization.

Another feature is the ability to annotate or comment promises in a way that follows the
promise through its lifecycle. This is part of the strategy of integrated knowledge management
(see the Special Topics Guide on this subject).

2 Upgrading from CFEngine 2 to 3

� �
files:

”/etc/passwd” -¿ ”stakeholder”

comment =¿ ”Verify the integrity of the password file to change”,

content =¿ detect˙all˙changes;

 	
When a promise has a comment, this comment will be used to mark logs entries and error

messages, providing context to these events for effective knowledge management.

You can give each promise a name, if you like, to make it easy to refer to or search for.
We call this the promise ‘handle’.� �
files:

”/etc/passwd” -¿ ”stakeholder”

handle =¿ ”passwd˙change”,

comment =¿ ”Verify the integrity of the password file to change”,

content =¿ detect˙all˙changes;

 	
You can use this handle to document relationships between promises. For example, consider

this hypothetical promise:� �
files:

”/etc/group”

handle =¿ ”group˙change”,

comment =¿ ”Add new users to the user groups”,

depends˙on =¿ – ”passwd˙change”, ”other˙promise” ˝,

edit˙line =¿ fix˙groups;

 	
In CFEngine Nova and other commercial editions of the software, this documentation is

automatically turned into browsable system documentation.

1.3 Completely new features

The CFEngine 3 Community Edition has many new features over CFEngine 2, and CFEngine
Nova and the other commercial editions have many features over the Community Edition. You
can write promises in the Community Edition for any of the commercial features without error
– these will just not be functional in the Community Edition. This makes it easy to upgrade
(or downgrade) freely.

New features in CFEngine 3 Community Edition include:

Chapter 1: General remarks and expectations 3

• All the components of CFEngine are now configurable and they read the same configura-
tion file or files. In other words, you no longer have to maintain a separate input file for
the server and the agent – self-contained configurations can be made for all parts of the
system in one.

• Promises now have containers called promise bundles. There is no analogue of promise
bundles in CFEngine 2, so you will need to sort through your promises and divide them
into suitable bundles yourself, making sure to give each a sensible name.

• Powerful pattern matching and expression features that simplify the promises by allowing
a consistent promises to be made from a whole set of objects according to a programmed
pattern.

• Consistent use of Perl Compatible Regular Expressions for text matching.

• Array and list handling functions allow powerful associative patterns.

• Basic tools for Knowledge Management integrated with the configuration technology.

• Generic package management.

• Role based access control for remote activation of special promises.

New features in CFEngine Nova include:

• Automated Knowledge Management and analysis

• Database management promises.

• LDAP integration.

• Extended and integrated lightweight monitoring capabilities.

• Service and virtualization abstractions.

• Full native Windows support and promise types.

Chapter 2: Conversion Strategy 5

2 Conversion Strategy

2.1 Converting by module

To optimize the translation, you should think about the modularity of your code. First, look
at how your CFEngine 2 configuration is modularized and consider how you want your final
CFEngine 3 configuration to be modularized. CFEngine 3 has ‘promise bundles’ as modular
entities (like subroutines or methods in other languages). The typical procedure is to take
each file and convert it into a separate bundle. This makes each module into a separate entity
in the integrated knowledge management.

There are potentially many ways to cut the cake, however. You can organize your con-
figuration, by operating system, by service, by geography, etc. We recommend that you
make separate bundles for each ‘issue’, ‘service’ or slice of the system that you are managing.
Bundles should ‘bundle together’ related promises.

2.2 Assembling a compilable file set

The next step is to move as quickly as possible to a compilable CFEngine 3 configuration.
You will be tweaking and perfecting this basic file set for ever more, but the sooner you have
a syntactically valid file, the sooner you will benefit from the CFEngine tools.

1. Start by copying the Community Open Promise Body Library from the www.CFEngine.org
website into the ‘CFEngine3’ directory. We will base the converted configuration on these
industry standard templates.

2. Now create the new master configuration file ‘CFEngine3/promises.cf’. This will re-
place the ‘CFEngine2/cfagent.conf’ file.

Suppose you start with a top level cfagent.conf that is organized as in the example
below,

6 Upgrading from CFEngine 2 to 3

� �
control:

....

import:

any::

cfagent.global.conf

freebsd::

cfagent.freebsd.conf

123.456.789::

cfagent.usa.conf

MailServers::

cfagent.email.conf

 	
This file is typically converted to something of the following form.

body agent control

–

this is where control settings will go

˝

body executor control

–

this is where control settings will go

˝

###

body common control

–

Keep the bundlesequence simple

bundlesequence =¿ – ”g”, ”main” ˝;

The equivalent of imports

Chapter 2: Conversion Strategy 7

inputs =¿ –

”cfagent.freebsd.cf”,

”cfagent.usa.conf”,

”cfagent.email.conf”,

...

”cfengine˙stdlib.cf”

˝;

˝

###

bundle common g

–

vars:

”localroot” string =¿ ”/a/b/c”;

”cfsrvhost” string =¿ ”198.129.252.125”;

”masterBuild” string =¿ ”/usr/local/CFEngine˙export/RELEASE/build”;

classes:

...

˝

###

bundle agent main

–

methods:

any::

”any” usebundle =¿ global˙stuff;

freebsd::

”any” usebundle =¿ freebsd˙stuff;

MailServers::

”any” usebundle =¿ mail˙stuff;

˝

3. Compare these two control files above. Notice that there is no actionsequence in the
CFEngine 3 configuration. CFEngine 3 can determine an order more automatically using

8 Upgrading from CFEngine 2 to 3

a best-effort heuristic algorithm.1 All we need to do is include the different bundles in the
basic order that we want and CFEngine will do the rest.

2.3 Validating the conversion

Validating the conversion is potentially an arduous process and the work is not over yet.
Because CFEngine 3 uses body templates to simplify the appearence of promises, and promote
the reusability of code, the conversion requires us to create these.

To complete the conversion, you will need to:

1. Check that the intention of the converted promise matches the orginal.

2. Check that variable references are ok - global ones can be referenced with def.varname
(if they are defined in the bundle common def)

3. Insert comments

4. Simplifying repeated patterns using lists.

5. Run through cf-promises

2.4 Optimizing the configuration

You could optimize by not importing files that you don’t need on all systems. This reduces
memory and processing time. To do this, you can adapt the ‘inputs’ and ‘bundlesequence’
of the converted file appropriately.

1 Some scheduling tools talk about ‘sorting of dependencies’ to determine order, but this is not possible in a
dynamic environment, since you don’t know which dependencies will be in play until after the sort.

Chapter 3: Translation Codebook 9

3 Translation Codebook

3.1 upgrading from CFEngine 2 ‘acl’

File Access Control Lists have been completely re-implemented in CFEngine 3. They are only
available now in the commercial version of CFEngine, but with the benefit a unifying, platform-
independent (least common denominator) model (in addition to system specific models) for
Posix, Solaris, Linux, Windows and other ACL models.

files:

/some/path

acl=myacl

action=fixall

##

acl:

– myacl

fstype:posix

method:overwrite

mask:*:rwx

user:*:rwx

group:*:r-x

other:*:r

user:www:=rwx

user:mark:=rwx

default˙mask:=rwx

default˙user:=rwx

default˙group:=r

default˙other:=r

˝

In CFEngine Nova, this would become approximately:

10 Upgrading from CFEngine 2 to 3

� �
bundle agent acls

–

files:

”/some/path”

acl =¿ myacl;

˝

###

body acl myacl

–

acl˙method =¿ ”overwrite”;

acl˙type =¿ ”posix”;

acl˙directory˙inherit =¿ ”specify”;

aces =¿ –

”mask:rwx”,

”user:*:rwx”,

”group:*:r,-x”,

”all:r”,

”user:www:=rwx”,

”user:mark:=rwx”

˝;

specify˙inherit˙aces =¿

–

”mask:=rwx”,

”user:*:=rwx”,

”group:*:=r”,

”all:=r”

˝;

˝

 	

Chapter 3: Translation Codebook 11

3.2 upgrading from CFEngine 2 ‘admit’

The admit declarations belong to the server configuration.

admit: # or grant:

/export/nexus/local/gnu/bin/CFEngine *.example.com

/export/waldo/local/gnu/bin/CFEngine *.example.com

/export/nexus/local *.example.com

/export/nexus/ud dax.example.com

/export/nexus/u4 dax.example.com dump-truck.example.com

/etc *.example.com

These are translated as access promises:� �
bundle server rules

–

access:

”/export/nexus/local/gnu/bin/CFEngine” admit =¿ – ”.*.example.com” ˝;

”/export/waldo/local/gnu/bin/CFEngine” admit =¿ – ”.*.example.com” ˝

”/export/nexus/local” admit =¿ – ”.*.example.com” ˝;

”/export/nexus/ud” admit =¿ – ”dax.example.com”˝;

”/export/nexus/u4” admit =¿ – ”dax.example.com”, ”dump-truck.example.com” ˝;

”/etc” admit =¿ – ”.*.example.com” ˝;

˝
 	

12 Upgrading from CFEngine 2 to 3

3.3 upgrading from CFEngine 2 ‘alerts’

In CFEngine 2, the term for reporting was ‘alert’. This seemed too reactionary.

alerts:

myclass::

”Reminder: say hello every hour”

ifelapsed=60

nfsd˙in˙high˙dev2::

”High NFS server access rate 2dev at $(host)”

ShowState(incoming.nfs)

In CFEngine 3, you would write:� �
reports:

myclass::

”Reminder: say hello every hour”

action =¿ ifelapsed(”60”);

nfsd˙in˙high˙dev2::

”High NFS server access rate 2dev at $(host)”

showstate =¿ – ”incoming.nfs” ˝;

 	
CFEngine 3 extends the possiblities for messaging considerably. CFEngine Nova generates

many standard reports automatically.

Chapter 3: Translation Codebook 13

3.4 upgrading from CFEngine 2 ‘binservers’

The CFEngine Mount Model has been deprecated in version 3. The introduction of the
automounter largely superceded the use of this model, and while it is still possible to use
CFEngine as a static automounter, there is no longer any need for an explicit definition of
its parts, as simple pattern matching combined with mount promises suffices to solve this
problem, See Section 3.25 [upgrading from CFEngine 2 miscmounts], page 41.

control:

site = (mysite)

MountPattern = (/$(site)/$(host))

HomePattern = (home?)

actionsequence =

(

mountall

mountinfo

addmounts

mountall

)

mountables:

any::

serv1:/mysite/serv1/home1

serv1:/mysite/serv1/home2

serv1:/mysite/serv1/local

serv3:/mysite/serv3/local1

serv3:/mysite/serv3/local2

serv4:/mysite/serv4/homeA

serv4:/mysite/serv4/homeB

binservers:

group1::

serv1 serv2

group2::

serv3

In CFEngine 3, you might write this:

14 Upgrading from CFEngine 2 to 3

� �
storage:

group1::

”/mysite/serv1/local” mount =¿ nfs(”serv1”,”/mysite/serv1/local”);

group2::

”/mysite/serv3/local1” mount =¿ nfs(”serv3”,”/mysite/serv3/local1”);

”/mysite/serv3/local2” mount =¿ nfs(”serv3”,”/mysite/serv3/local2”);

Or use lists to iterate this
 	

Chapter 3: Translation Codebook 15

3.5 upgrading from CFEngine 2 ‘broadcast’

This is deprecated in CFEngine 3.

16 Upgrading from CFEngine 2 to 3

3.6 upgrading from CFEngine 2 ‘control’

In CFEngine 2, the control part has two muddled functions:

• Setting parameters that control the internal behaviour of CFEngine.

These are details that adjust the behaviour of promises that are hard-coded into CFEngine.
Thus, they belong formally in body declarations according to the CFEngine 3 promise
model.

• Defining user variables (macros).

These are actual user-defined promises (the promise that a certain name will represent a
certain value). They are thus represented as vars promises in CFEngine 3.

Note that there is no actionsequence in CFEngine 3. It is no longer needed and can be
ignored.

The following CFEngine 2 code

control:

Access = (root) # Only root should run this

site = (iu)

domain = (iu.hio.no)

sysadm = (CFEngine@example.com)

smtpserver = (smtp@example.com)

Welcome to Norway...!

timezone = (MET CET)

#

Where backup files (for copy/tidy) are kept

#

Repository = (/var/spool/CFEngine)

SplayTime = (4)

OutputPrefix = (”cf:$(host)”)

IfElapsed = (15)

ExpireAfter = (240)

SensibleSize = (1000)

SensibleCount = (2)

EditfileSize = (40000)

cfbin = (/var/cfengine/bin)

gnu = (”/local/gnu”)

Chapter 3: Translation Codebook 17

ftp = (/local/iu/ftp)

translates in CFEngine 3 into several pieces:� �
Hard-coded promise parameters, common to all parts

body common control

–

bundlesequence =¿ – ”global˙promises” ˝;

˝

Hard-coded promise parameters for cf-agent

body agent control

–

default˙repository =¿ ”/var/spool/CFEngine”;

ifelapsed =¿ ”15”;

expireafter =¿ ”240”;

sensiblesize =¿ ”1000”;

sensiblecount =¿ ”2”;

editfilesize =¿ ”40000”;

˝

Hard-coded promise parameters for cf-execd

body executor control

–

splaytime =¿ ”4”;

mailto =¿ ”cfengine@example.com”;

smtpserver =¿ ”smtp.example.com”;

˝

User defined promises common to all parts

bundle common global˙promises

–

vars:

”cfbin” string =¿ ”/var/cfengine/bin”;

”gnu” string =¿ ”/local/gnu”;

”ftp” string =¿ ”/local/iu/ftp”;

˝

 	

18 Upgrading from CFEngine 2 to 3

Note that vars promises that are declared ‘common’ are seen by all bundles and all agents.
It is also possible to have variables in ‘agent’ or ‘server’ bundles that are seen only by those
parts of CFEngine.

Control information from the ‘cfservd.conf’ file goes naturally into a control body:

control:

cfrunCommand = (”/var/cfengine/bin/cfagent”)

AllowConnectionsFrom = (127.0.0.1 ::1)

AllowMultipleConnectionsFrom = (127.0.0.1 ::1)

TrustKeysFrom = (127.0.0.1 ::1)

AllowUsers = (root mark)

becomes:� �
body server control

–

allowconnects =¿ – ”127.0.0.1” , ”::1” ˝;

allowallconnects =¿ – ”127.0.0.1” , ”::1” ˝;

trustkeysfrom =¿ – ”127.0.0.1” , ”::1” ˝;

cfruncommand =¿

”$(sys.workdir)/bin/cf-agent -f failsafe.cf && $(sys.workdir)/bin/cf-agent”;

allowusers =¿ – ”mark”, ”root” ˝;

˝
 	

Chapter 3: Translation Codebook 19

3.7 upgrading from CFEngine 2 ‘classes’

classes: # same as groups

Setup˙SSH˙OK = (’/usr/bin/test -f /etc/ssh2/ssh2˙config’)

science = (saga tor odin)

notthis = (!this)

ip˙in˙range˙1 = (IPRange(129.0.0.1-15))

ip˙in˙range˙2 = (IPRange(129.0.0.1/24))

compute˙nodes = (HostRange(cpu-,1-32))

science = (+science-allhosts)

physics˙theory = (+@physics-theory-sun4 dirac feynman schwinger)

group1 = (+mynetgroup -specialhost -otherhost)

group2 = (+bignetgroup -smallnetgroup)

SpecialTimes = (Hr00 Monday Day1)

These promises translate into CFEngine 3 as:� �
classes:

”Setup˙SSH˙OK” expression =¿ fileexists(”/etc/ssh2/ssh2˙config”);

”science” or =¿ – ”saga”, ”tor”, ”odin” ˝;

”notthis” expression =¿ ”!this”;

”ip˙in˙range” expression =¿ iprange(”129.0.0.1-15”);

”ip˙in˙range” expression =¿ iprange(”129.0.0.1/24”);

”compute˙nodes” expression =¿ hostrange(”cpu-”,”1-32”);

”science” expression =¿ hostinnetgroup(”science-allhosts”);

”physics˙theory” or =¿ –

hostinnetgroup(”physics-theory-sun4”,

”dirac”,

”feynman”,

”schwinger”

˝;

”group1” and =¿ –

hostinnetgroup(”mynetgroup”),

”!specialhost”,

”!otherhost

˝;

”helper” expression =¿ hostinnetgroup(smallnetgroup”);

”group2” and =¿ – hostinnetgroup(”bignetgroup”), ”!helper” ˝;

”SpecialTimes” or =¿ – ”Hr00”, ”Monday”, ”Day1” ˝;
 	

20 Upgrading from CFEngine 2 to 3

3.8 upgrading from CFEngine 2 ‘copy’

Copying of files from one location to another had the following form in CFEngine 2:

copy:

/masterfiles/hosts.deny dest=/etc/hosts.deny mode=644 server=nexus

!(dax—cube—sigmund)::

/masterfiles/hosts.allow dest=/etc/hosts.allow mode=644 server=nexus

128˙39˙89.!securehosts::

/masterfiles/ssh˙banner˙message˙89 dest=/etc/ssh2/ssh˙banner˙message

mode=644 owner=root group=root

encrypt=true

In CFEngine 3, beware that the order of the source and destination have been reversed to
follow the general principle in CFEngine 3 that the affected object (in this case the destination)
is always the first object in the promise (the promiser).� �
files:

”/etc/hosts.deny”

copy˙from =¿ remote˙cp(”/masterfiles/hosts.deny”,”nexus”),

perms =¿ m(”644”);

#

!(dax—cube—sigmund)::

”/etc/hosts.allow”

copy˙from =¿ remote˙cp(”/masterfiles/hosts.allow”,”nexus”),

perms =¿ m(”644”);

#

128˙39˙89.!securehosts::

”/etc/ssh2/ssh˙banner˙message”

copy˙from =¿ secure˙cp(”/masterfiles/ssh˙banner˙message˙89”)

perms =¿ mog(”644”,”root”,”root”);
 	

Chapter 3: Translation Codebook 21

3.9 upgrading from CFEngine 2 ‘defaultroute’

This function is deprecated in CFEngine 3. Today it can normally be implemented by editing
a file.

22 Upgrading from CFEngine 2 to 3

3.10 upgrading from CFEngine 2 ‘deny’

deny:

$(public)/special *.moneyworld.com

becomes:� �
access:

”$(public)/special”

deny =¿ – ”*.moneyworld.com” ˝;

 	

Chapter 3: Translation Codebook 23

3.11 upgrading from CFEngine 2 ‘disks’

disks:

/usr

freespace=10%

becomes� �
storage:

”/usr”

volume =¿ min˙free˙space(”10%”);

 	

24 Upgrading from CFEngine 2 to 3

3.12 upgrading from CFEngine 2 ‘directories’

directories:

/usr/local/bin

mode=755

owner=root

group=wheel

becomes� �
files:

”/usr/local/bin/.”

create =¿ ”true”,

perms =¿ mog(”755”,”root”,”wheel”);

 	

Chapter 3: Translation Codebook 25

3.13 upgrading from CFEngine 2 ‘disable’

Disabling files has many meanings in CFEngine 2. It covers log rotation as well as file disable-
ment.

disable:

/usr/bin/rsh

/var/log/xferlog rotate=3

/local/etc/fingerdir/userdata rotate=empty

� �
files:

”/usr/bin/rsh” rename =¿ disable;

”/var/log/xferlog”

rename =¿ rotate(”3”);

”/local/etc/fingerdir/userdata”

rename =¿ rotate(”0”);

 	

26 Upgrading from CFEngine 2 to 3

3.14 upgrading from CFEngine 2 ‘editfiles’

File editing is a complex subject. A few examples are provided.

editfiles:

!rom21X::

– /etc/ssh2/sshd2˙config

ReplaceAll ”PrintMotd.*yes” With ”PrintMotd no”

ReplaceAll ”.*Ssh1Compatibility.*yes.*” With ”Ssh1Compatibility no”

AppendIfNoSuchLine ”Ssh1Compatibility no”

HashCommentLinesMatching ”.*Sshd1Path.*”

DeleteLinesMatching ”.*PasswordAuthentication.*”

DeleteLinesMatching ”.*PubkeyAuthentication.*”

DeleteLinesMatching ”.*AllowCshrcSourcingWithSubsystems.*”

˝

� �
files:

!rom21X::

”/etc/ssh2/sshd2˙config”

edit˙line =¿ ssh˙config;

..

bundle edit˙line ssh˙config

–

replace˙patterns:

”PrintMotd.*yes”

replace˙with =¿ all(”PrintMotd no”);

”.*Ssh1Compatibility.*yes.*”

replace˙with =¿ value(”Ssh1Compatibility no”);

”.*Sshd1Path.*”

replace˙with =¿ comment(”#”);

delete˙lines:

”.*PasswordAuthentication.*”;

”.*PubkeyAuthentication.*”;

”.*AllowCshrcSourcingWithSubsystems.*”;

insert˙lines:

”Ssh1Compatibility no”;

˝
 	

Chapter 3: Translation Codebook 27

editfiles:

– /etc/shells

AppendIfNoSuchLine ”/bin/tcsh”

AppendIfNoSuchLine ”/bin/bash”

AppendIfNoSuchLine ”/local/gnu/bin/bash”

˝

� �
vars:

”lines” slist =¿ – ”/bin/tcsh”, ”/bin/bash”, ”/local/gnu/bin/bash” ˝;

files:

”/etc/shells”

edit˙line =¿ append˙if˙no˙lines(@(lines));

 	
or an alternative solution� �

files:

”/etc/shells”

edit˙line =¿ shells;

..

bundle edit˙line shells

–

insert˙lines:

”/bin/tcsh”;

”/bin/bash”;

”/local/gnu/bin/bash”;

˝

 	

28 Upgrading from CFEngine 2 to 3

3.15 upgrading from CFEngine 2 ‘files’

The files action in CFEngine 2 was mostly about permissions. In CFEngine 3, all file related
operations are collected under this banner.

files:

PrimeServers::

/local/dns/pz

owner=dns

mode=644

action=fixall

recurse=1

exclude=Fixserial

/local/dns/pz/Fixserial

m=755

action=fixplain

NameServers::

/local/logs/admin

o=dns

m=644

act=fixplain

/local/logs/security

o=dns

m=644

act=fixplain

/local/logs/updates

o=dns

m=644

act=fixplain

/local/logs/xfer o=dns m=644 act=fixplain

#

Make sure anonymous ftp areas have the correct

protection, or logins won’t be able to read files

#

$(ftp)/pub mode=644 o=root g=other act=fixall

$(ftp)/pub mode=644 act=fixall r=inf

$(ftp)/etc mode=111 o=root g=other act=fixdirs

$(ftp)/usr/bin/ls mode=111 o=root g=other act=fixall

$(ftp)/dev mode=555 o=root g=other act=fixall

$(ftp)/usr mode=555 o=root g=other act=fixdirs

may be translated into:

Chapter 3: Translation Codebook 29

� �
vars:

”ns˙files” slist =¿ –

”/local/logs/admin”,

”/local/logs/security”,

”/local/logs/updates”,

”/local/logs/xfer”

˝;

files:

PrimeServers::

”/local/dns/pz”

perms =¿ mo(”644”,”dns”)

depth˙search =¿ recurse(”1”),

file˙select =¿ exclude(”FixSerial”);

”/local/dns/pz/FixSerial”

perms =¿ m(”755”),

file˙select =¿ plain;

NameServers::

”$(ns˙files)”

perms =¿ mo(”644”,”dns”),

file˙select =¿ plain;

#

Make sure anonymous ftp areas have the correct

protection, or logins won’t be able to read files

#

”$(ftp)/pub”

perms =¿ mog(”644”,”root”,”other”);

”$(ftp)/pub”

perms =¿ m(”644”),

depth˙search =¿ recurse(”inf”);

”$(ftp)/etc” perms =¿ mog(”111”,”root”,”other”);

”$(ftp)/usr/bin/ls” perms =¿ mog(”111”,”root”,”other”);

”$(ftp)/dev” perms =¿ mog(”555”,”root”,”other”);

”$(ftp)/usr” perms =¿ mog(”555”,”root”,”other”);
 	

30 Upgrading from CFEngine 2 to 3

3.16 upgrading from CFEngine 2 ‘filters’

Filters have been redefined as ‘select’ body templates. Filters exist for processes and files in
CFEngine 2. These translate into keywords process˙select and file˙select.

filters:

– testfilteralias

Owner: ”mark”

Group: ”cfengine”

Type: ”dir—link”

Result: ”Type—(Owner.Group)” # Both owner AND group required correct

˝

becomes� �
body file˙select testfilteralias

–

search˙owners =¿ – ”mark” ˝;

search˙groups =¿ – ”cfengine” ˝;

file˙types =¿ – ”dir”,”symlink” ˝;

file˙result =¿ ”file˙types—(owners.groups)”;

˝
 	

Chapter 3: Translation Codebook 31

3.17 upgrading from CFEngine 2 ‘groups’

Groups are a synonym for classes, see See Section 3.7 [upgrading from CFEngine 2 classes],
page 19.

32 Upgrading from CFEngine 2 to 3

3.18 upgrading from CFEngine 2 ‘homeservers’

The CFEngine Mount Model has been deprecated in version 3. The introduction of the
automounter largely superceded the use of this model, and while it is still possible to use
CFEngine as a static automounter, there is no longer any need for an explicit definition of
its parts, as simple pattern matching combined with mount promises suffices to solve this
problem, See Section 3.25 [upgrading from CFEngine 2 miscmounts], page 41.

control:

site = (mysite)

MountPattern = (/$(site)/$(host))

HomePattern = (home?)

actionsequence =

(

mountall

mountinfo

addmounts

mountall

)

mountables:

any::

serv1:/mysite/serv1/home1

serv1:/mysite/serv1/home2

serv1:/mysite/serv1/local

serv3:/mysite/serv3/local1

serv3:/mysite/serv3/local2

serv4:/mysite/serv4/homeA

serv4:/mysite/serv4/homeB

homeservers:

group1::

serv1 serv2

group2::

serv4

In CFEngine 3, you might write this:

Chapter 3: Translation Codebook 33

� �
storage:

group1::

”/mysite/serv1/home1” mount =¿ nfs(”serv1”,”/mysite/serv1/home1”);

”/mysite/serv1/home2” mount =¿ nfs(”serv1”,”/mysite/serv1/home2”);

group2::

”/mysite/serv4/homeA” mount =¿ nfs(”serv4”,”/mysite/serv3/homeA”);

”/mysite/serv4/homeB” mount =¿ nfs(”serv4”,”/mysite/serv3/homeB”);
 	

34 Upgrading from CFEngine 2 to 3

3.19 upgrading from CFEngine 2 ‘ignore’

Ignore is used in CFEngine 2 to skip directories or filenames during searches. CFEngine 3 does
not have a global list for this, but uses local lists analogous to the ‘ignore=’ attributes.

To make a global list in CFEngine 3, you can simply define a list of names and attach it to
any promise in the program. Instead of CFEngine 2:

ignore:

one

two

three

we use:� �
bundle common defs

–

vars:

”ignore˙list” slist =¿ – ”one”, ”two”, ”three” ˝;

˝

...

bundle agent filestuff

–

files:

”/mypath”

depth˙search =¿ recurse˙ignore(”inf”,@(defs.ignore˙list));

˝
 	

Chapter 3: Translation Codebook 35

3.20 upgrading from CFEngine 2 ‘import’

import:

one.cf

two.cf

three.cf

becomes� �
bundle common control

–

inputs =¿ – ”one.cf”, ”two.cf”, ”three.cf” ˝;

˝
 	
In CFEngine 3, file imports are no longer order sensitive in the manner of CFEngine 2.

36 Upgrading from CFEngine 2 to 3

3.21 upgrading from CFEngine 2 ‘interfaces’

This promise type has been temporarily placed on hold, pending future developments. Interface
management has become much simpler since the early days of CFEngine, but this will eventually
include routing promises for network management.

Chapter 3: Translation Codebook 37

3.22 upgrading from CFEngine 2 ‘links’

Linking files in CFEngine 2:

links:

nexus::

/etc/rsyncd.conf -¿ /local/etc/rsyncd.conf

In CFEngine 3 this becomes� �
files:

nexus::

”/etc/rsyncd.conf”

link˙from =¿ ln˙s(”/local/etc/rsyncd.conf”);

 	
Linking directories of multiple children:

links:

/usr/local/bin +¿ /usr/local/lib/perl/bin

/opt +¿! /local

In CFEngine 3 this becomes� �
files:

”/usr/local/lib/perl/bin” =¿ linkchildren(”/usr/local/bin”);

”/local” =¿ linkchildren(”/opt”);

Or alternatively, use recursive copy with linkcopy˙patterns =¿ – ”.*” ˝
 	

38 Upgrading from CFEngine 2 to 3

3.23 upgrading from CFEngine 2 ‘mailserver’

This section has been deprecated in CFEngine 3. It can be handled by mount promises.

Chapter 3: Translation Codebook 39

3.24 upgrading from CFEngine 2 ‘methods’

In CFEngine 2, methods were experimental. Methods are ways of making subroutines of
CFEngine code. They were executed as separate programs following a special protocol, and
could be activated remotely.

There is no direct mapping between methods in CFEngine 2 and CFEngine 3. In CFEngine
3, methods are simply bundles of promises that are executed as a group. These bundles can be
parameterized and re-used. They are what methods should have been in CFEngine 2. Remote
methods, are not implemented in CFEngine 3. Instead CFEngine Nova provides the means for
agents to share data remotely by ‘voluntary cooperation’.

cfagent.conf

control:

actionsequence = (methods)

###

methods:

SimpleMethod(null)

action=cf.simple

returnvars=null

returnclasses=null

server=localhost

and

cf.simple

control:

MethodName = (SimpleMethod)

MethodParameters = (null)

actionsequence = (timezone)

classes:

dummy = (any)

##

alerts:

dummy::

”This simple method does nothing”

ReturnVariables(void)

ReturnClasses(void)

This can be achieved more simply in CFEngine 3 as:

40 Upgrading from CFEngine 2 to 3

� �
bundle agent parent

–

methods:

”some˙id” usebundle =¿ SimpleMethod;

#...

˝

bundle agent SimpleMethod

–

classes:

”dummy” expression =¿ ”any”;

reports:

dummy::

”This simple method does nothing”;

˝
 	

Chapter 3: Translation Codebook 41

3.25 upgrading from CFEngine 2 ‘miscmounts’

miscmounts:

host:/foo /mnt/foo

myserver:/$(site)/libraryserver/data1

/mnt/data1 ro

consistent syntax

myserver:/$(site)/libraryserver/data2

/mnt/data2 mode=ro

� �
storage:

”/foot” mount =¿ nfs(”host”,”/foo”);

”/$(site)/libraryserver/data1”

mount =¿ nfs˙p(”myserver”,”/$(site)/libraryserver/data1”,”ro”);

”/$(site)/libraryserver/data2”

mount =¿ nfs˙p(”myserver”,”/$(site)/libraryserver/data2”,”ro”);

 	

42 Upgrading from CFEngine 2 to 3

3.26 upgrading from CFEngine 2 ‘mountables’

This list has been deprecated in CFEngine 3, see See Section 3.25 [upgrading from CFEngine
2 miscmounts], page 41.

Chapter 3: Translation Codebook 43

3.27 upgrading from CFEngine 2 ‘processes’

In CFEngine 2 process promises were muddled with commands that were used to restart pro-
cesses that were not running. The led to inconsistency in the handling of commands. CFEngine
3 separates commands to restart processes so that the full range of promise attributes can be
applied during process start control.

processes:

”inetd”

signal=hup

”bootp”

signal=kill

exclude=rpc.bootparamd

”cfservd”

restart ”/usr/local/sbin/cfservd”

useshell=false

matches=¿6 warn number of matches is greater than or equal to 6

matches=1 warn if not exactly 1 matching process

matches=¡2 warn if there are less than or equal to 2 matching processes

Translates to:

44 Upgrading from CFEngine 2 to 3

� �
processes:

”inetd”

signals =¿ – ”hup” ˝;

”bootp”

signals =¿ – ”kill” ˝,

process˙select =¿ exclude˙procs(”.*rpc.bootparamd.*”);

”cf-serverd”

restart˙class =¿ ”start˙cfserverd”;

process˙count =¿ check˙range(cfserv,6,inf); warn number of matches is greater than or equal to 6

process˙count =¿ check˙range(cfserv,1,1); warn if not exactly 1 matching process

process˙count =¿ check˙range(cfserv,0,2); warn if there are less than or equal to 2 matching processes

commands:

start˙cfserverd::

”/usr/local/sbin/cf-serverd”;

reports:

cfserv˙out˙of˙range::

”cf-serverd is out of control!!”;

 	
We can make use of lists to simplify the checking of multiple processes:

processes:

Syslogdhup::

”Syslogd” signal=hup

any::

”snmp” signal=kill

”powerd” signal=kill

”mibiisa” signal=kill

becomes:

Chapter 3: Translation Codebook 45

� �
vars:

”kill˙list” slist =¿ – ”snmp”, ”powerd”, ”mibiisa” ˝;

processes:

Syslogdhup::

”Syslogd” signals =¿ – ”hup” ˝;

any::

”$(kill˙list)” signals =¿ – ”kill” ˝;

 	
Lists can also be used to simplify process starting. The following script

processes:

”named” restart ”/local/sbin/named -u dns”

useshell=false

inform=true

”cfservd” restart ”/var/cfengine/bin/cfservd”

”cfenvd” restart ”/var/cfengine/bin/cfenvd”

”cfexecd” restart ”/var/cfengine/bin/cfexecd”

would translate more efficiently into:� �
vars:

”daemons” slist =¿ – ”cf-monitord”, ”cf-serverd”, ”cf-execd” ˝;

processes:

”named” restart˙class =¿ ”restart˙named”;

”$(daemons)” restart˙class =¿ canonify(”start˙$(component)”);

commands:

”/bin/echo /var/cfengine/bin/$(component)”

ifvarclass =¿ canonify(”start˙$(component)”);

restart˙named::

”/local/sbin/named -u dns”

action =¿ inform;
 	

46 Upgrading from CFEngine 2 to 3

3.28 upgrading from CFEngine 2 ‘packages’

Package handling in CFEngine 3 is far superior and more flexible than in CFEngine 2. There
are many ways to code packages promises. Here is a simple way to code specific lists of
versioned packages. In CFEngine 2 one might write:

packages:

autoconf-2.13.000227˙6 version=2.13.000227˙6 cmp=ge action=install

automake-1.9.6˙3 version=1.9.6˙3 cmp=ge action=install

gmake-3.81˙3 version=3.81˙3 cmp=ge action=install

help2man-1.36.4˙2 version=1.36.4˙2 cmp=ge action=install

mysql-server-5.0.67 version=5.0.67 cmp=ge elsedefine=InstallMySQL

...

This could be translated efficiently using an associative array:� �
vars:

”v[autoconf-2.13.000227˙6]” string =¿ ”2.13.000227˙6”

”v[automake-1.9.6˙3]” string =¿ ”1.9.6˙3”

”v[gmake-3.81˙3]” string =¿ ”3.81˙3”

”v[help2man-1.36.4˙2]” string =¿ ”1.36.4˙2”

...

”packages” slist =¿ getindices(”v”);

packages:

”$(packages)”

package˙policy =¿ ”add”,

package˙method =¿ freebsd,

package˙select =¿ ”¿=”,

package˙version =¿ ”$(v[$(package)])”;
 	

Chapter 3: Translation Codebook 47

3.29 upgrading from CFEngine 2 ‘rename’

This is an alias, see See Section 3.13 [upgrading from CFEngine 2 disable], page 25.

48 Upgrading from CFEngine 2 to 3

3.30 upgrading from CFEngine 2 ‘required’

This is an alias, see See Section 3.11 [upgrading from CFEngine 2 disks], page 23.

Chapter 3: Translation Codebook 49

3.31 upgrading from CFEngine 2 ‘resolve’

The special resolver configuration in CFEngine 2 has been deprecated in favour of using
straightforward editing commands to manage the resolver file. The special variable
$(sys.resolv) points to the system’s current resolver configuration file. Thus the CFEngine
2 configuration:

resolve:

”search iu.hio.no CFEngine.com”

128.39.89.10

158.36.85.10

129.241.1.99

may be translated as:� �
vars:

”r” slist =¿ – ”128.39.89.10”, ”158.36.85.10”, ”129.241.1.99” ˝;

files:

”$(sys.resolv)”

edit˙line =¿ resolvconf(”iu.hio.no CFEngine.com”,@(mybundle.r));

edit˙default =¿ empty;
 	

50 Upgrading from CFEngine 2 to 3

3.32 upgrading from CFEngine 2 ‘scli’

SCLI (SNMP Command Line Interface) promises are deprecated in CFEngine 3. There are no
plans to integrate CFEngine directly with SNMP.

Users of CFEngine Nova can use the generic measurement promises to encapsulate SNMP
monitoring into the CFEngine framework if necessary.

Chapter 3: Translation Codebook 51

3.33 upgrading from CFEngine 2 ‘shellcommands’

Shellcommands scheduled the execution of scripts and programs external to the CFEngine
framework in CFEngine 2. The following examples

shellcommands:

nexus::

”/usr/sbin/shareall”

ifelapsed=240

cube.nfs˙update::

”/etc/init.d/nfs-server restart ¿ /dev/null 2¿&1”

may be translated as:� �
commands:

nexus::

”/usr/sbin/shareall”

action =¿ ifelapsed(”240”);

cube.nfs˙update::

”/etc/init.d/nfs-server restart ¿ /dev/null 2¿&1”

contain =¿ in˙shell;

 	

52 Upgrading from CFEngine 2 to 3

3.34 upgrading from CFEngine 2 ‘strategies’

Strategies in CFEngine 2 define probabilistic classes. This has become part of a classes
promise is CFEngine 3.

strategies:

– spread˙load

percent˙10: ”1”

percent˙30: ”3”

precent˙60: ”6”

˝

translates as:� �
classes:

”percent” dist =¿ – ”10”, ”30”, ”60” ˝;

 	

Chapter 3: Translation Codebook 53

3.35 upgrading from CFEngine 2 ‘tidy’

tidy:

/tmp/ pattern=* recurse=inf age=1

/var/tmp pattern=* recurse=inf age=2

/ pattern=core r=1 a=0

/etc pattern=core r=1 a=0

This may be translated into the following:� �
files:

”/tmp”

depth˙search =¿ recurse(”1”),

file˙select =¿ name˙age(”.*”,”1”);

”/var/tmp”

depth˙search =¿ recurse(”inf”),

file˙select =¿ name˙age(”.*”,”2”);

”/”

depth˙search =¿ recurse(”1”),

file˙select =¿ name˙age(”core”,”0”);

”/etc”

depth˙search =¿ recurse(”1”),

file˙select =¿ name˙age(”core”,”0”);

 	

54 Upgrading from CFEngine 2 to 3

3.36 upgrading from CFEngine 2 ‘unmount’

unmount:

/mnt

Translates to:� �
storage:

”/mnt” mount =¿ unmount;

 	

