
CFEngine Quick Start Guide
A CFEngine Handbook

Updated 26. February 2013

CFEngine AS

� �
This short guide explains how to install the software and get it running.
 	

Copyright c© 2011- CFEngine AS

i

Table of Contents

Welcome to CFEngine! . 1
CFEngine Automation Overview . 1
CFEngine Components – What Are they and How Do They Work? . . 1
Hubs, Servers and Clients . 1

CFEngine by Example . 2
Installation . 2
CFEngine File Structure . 4
Create and Manually Execute a Policy . 5
CFEngine Client, Server Operations . 6

Next steps . 10

1

Welcome to CFEngine!

CFEngine is a systems management tool designed to help you configure and automate your IT
infrastructure. It can expertly handle any number of tasks, ranging from the standardization
of server builds to the deployment and management of software and services. In terms of real
time administration, CFEngine has the ability to maintain system security from both a file
system and process perspective and report on environmental health and status.

CFEngine Automation Overview

CFEngine is a distributed solution that is completely independent of host operating systems,
network topology or system processes. You describe the ideal state of a given system by
creating promises and the CFEngine agent ensures that the necessary steps are taken to
achieve this state. Automation in CFEngine is executed through a series of components that
run locally on all managed nodes.

CFEngine Components – What Are they and How Do They Work?

The power behind CFEngine lies in its components and the scripting language used to interact
with them. Once you know the scripting language, you can clearly and specifically express
your desired end state, allowing CFEngine to achieve your goals with precision.

There are a number of components in CFEngine, with each component performing a unique
function. The following components form the basis of automation:

cf-execd The cf-execd process can be likened to the cron process in UNIX/Linux or the
Windows Scheduler. It runs as a daemon and its job is to start the cf-agent
process at a specified time interval. This user configurable interval defaults to 5
minutes.

cf-agent Is an agent that is called by the cf-execd process. The cf-agent component does
the heavy work of system automation and maintenance.

cf-serverd

The cf-serverd process is used to distribute policy and/or data files.

In conjunction with the process/agents listed, CFEngine needs to know what you would
like to automate, maintain or configure. For this purpose, CFEngine has two additional com-
ponents: promises and policies. A promise is a statement, written in plain text using the
CFEngine language, that describes the desired state of a system. A policy is a collection of
one or more related promises, which is executed every time the cf-agent runs.

Next are the actual working files which are processed by CFEngine whenever the cf-agent
process runs. Perhaps the most important file is the default policy file, which is called
promises.cf. It is stored locally on every host, enabling execution with or without network
dependencies. If you would like to update a policy, you simply make a change to the desired
policy file on the hub/policy server, then update promises.cf accordingly. Each client Agent
will automatically pull the new version in, then execute the new instructions on the next run.

Hubs, Servers and Clients

Once CFEngine is installed on a system, it can function as either a standalone client or as a
part of a multi-node infrastructure. Clients are designed to pull policies from either a CFEngine
policy server/hub, or, from themselves in the absence of a policy server. If a system is dedicated

2 CFEngine Quick Start Guide

as a CFEngine policy server or hub, it is still a client that will maintain it’s own state regardless
of it’s function to the rest of CFEngine infrastructure. In addition, a client can assume various
roles in any given infrastructure; be it a version control repository, distribution server or end
host.

Checkpoint:

• CFEngine uses agents and language to perform automation and configuration tasks

• Instructions written in CFEngine syntax are known as promises

• One or more related promises can be written into a text file known as a policy

• The promise.cf file references policy files that each system will run in order to perform
local automation, configuration and security tasks

• CFEngine maintains a desired system state on networked systems by utilizing client initi-
ated pull technology; changes are never pushed or forced

• Networked CFEngine clients will check its policy server/hub in order pull new policy
changes when they are updated

• The cf-agent process verifies the promises.cf file, then applies the policies to ensure that
all promises are being kept

• The cf-execd daemon starts cf-agent process on a regular intervals

• The cf-serverd runs on a hub or server and allows client systems to retrieve policy changes
and files.

CFEngine by Example

For the purpose of these exercises, it would be ideal to have 2 test systems available for
CFEngine installation and configuration. You will name the first test system cfhub and the
second system, which you will use in Step 3, will be named cfhost. Although installation and
testing on a single host will sufficiently demonstrate the power of promises and policies, using
2 or more systems will allow you to experience what CFEngine brings to the table in terms of
multi-system management.

Installation

The CFEngine package comes in many different flavors. For Linux systems, CFEngine is avail-
able as a pre-compiled binary for many distributions, including: Debian, Fedora, RHEL, SuSE
and Ubuntu. These packages are available from http://cfengine.com/inside/myspace.
To unpack the binaries (you must install them as root):

CFEngine 3 Enterprise Installation:
For CFEngine 3 Enterprise, you will designate one at least one server as the hub,
which should be installed first.

CFEngine 3 Enterprise is provided in three packages (two hub and one client
package). These are the three packages (inside the respective hub and client
listings found under each platform in the software download page, example for 64
bit rpm packages):

- hub/cfengine-nova-3.0.xxx.x86 64.rpm

- hub/cfengine-nova-expansion-3.0.xxx.x86 64.rpm

- client/cfengine-nova-3.0.xxx.x86 64.rpm

http://cfengine.com/inside/myspace

3

The difference between the two cfengine-nova-3.0.xxx packages (for hub and
client) is that the agent binaries for the hub are linked to the MongoDB library
while the binary for clients are not. Installing a client package on the hub will
result in a database connection error, the Mission Portal will not be available and
reports will not be collected. Installing the hub package on clients will result in
error reports stating that the agent failed to connect to MongoDB (because it
is not existent in client packages; danger of filling up error logs), but otherwise
functionality will be assured. Please take care to install the correct packages on
the corresponding nodes. The expansion package is only installed on the policy
hub. You should install and set up the hub first.

RedHat/SuSE
rpm -ihv cfengine-nova-¡version˙number¿.rpm

rpm -ihv cfengine-nova-¡version˙number¿.rpm

Debian/Ubuntu
dpkg --install cfengine-nova-¡version˙number¿.deb

dpkg --install cfengine-nova-expansion.¡version˙number¿.deb

To install CFEngine 3 Enterprise on non-Hub systems:

RedHat/SuSE
rpm -ihv cfengine-nova-¡version˙number¿.rpm

Debian/Ubuntu
dpkg --install cfengine-nova-¡version˙number¿.deb

On the hub, a public key has now been created in

‘/var/cfengine/ppkeys/localhost.pub’

as part of the package installation. You should send this public key to CFEngine
Support as an attachment in the ticket system, to obtain a license file license.dat.
Save the returned license file to ‘/var/cfengine/masterfiles/license.dat’
on the hub before continuing.

For more details on software licensing see:

https://cfengine.com/software/Licensing.pdf

Community Installation:
Prior to installing CFEngine, you should first ensure that the following packages
are installed:

OpenSSL Open source Secure Sockets Layer for encryption.
URL: http://www.openssl.org

Tokyo Cabinet (version 1.4.42 or later)
Lightweight flat-file database system.
URL: http://fallabs.com/tokyocabinet/

PCRE Perl Compatible Regular Expression library.
URL: http://www.pcre.org/

On Windows machines, you need to install the basic Cygwin DLL
from http://www.cygwin.com in order to run CFEngine.

https://cfengine.com/software/Licensing.pdf
http://www.openssl.org
http://fallabs.com/tokyocabinet/
http://www.pcre.org/
http://www.cygwin.com

4 CFEngine Quick Start Guide

If they are not installed, then you can easily install them using the appropriate
package manager:

Debian/Ubuntu:
apt-get install libtokyocabinet-dev libpcre3-dev

libssl-dev

CentOS/RedHat:
yum install tokyocabinet-devel pcre openssl

SuSE: zypper install libtokyocabinet-devel pcre libopenssl

Once the prerequisites are installed or verified, you may proceed to the CFEngine
installation.

RedHat/SuSE:
rpm -ihv cfengine-community-3.x.y.rpm

Debian/Ubuntu:
dpkg --install cfengine-community-3.x.y.deb

For other UNIX/Linux systems, you may download and compile the source code,
which is available from http://cfengine.com/source code.

CFEngine File Structure

The CFEngine application is fully contained within the ‘/var/cfengine’ directory tree. For
CFEngine 3 Entprise files will also be placed in the operating system specific web document
root (for instance in /var/www/ on Debian/Ubuntu). Although you will get to know this file
system intimately as you progress, here is a quick breakdown of the directory structure and
some of the files and functions associated with each subdirectory:

‘/var/cfengine/bin - Consists of the agents and daemons that run CFEngine,
including:’

• ‘cf-agent’ - Agent: Executes the promises.cf file; ensures that all promises
are being kept

• ‘cf-execd’ - Daemon: Starts the cf-agent process at a specified time inter-
val.

• ‘cf-serverd’ - Daemon: Provides network services; used to distribute policy
and data files

• ‘cf-monitord’ - Daemon: Collects system statistics

• ‘cf-promises’ - Agent: Verifies CFEngine’s configuration syntax

• ‘cf-runagent’ - Agent: Contacts a remote system to run cf-agent

• ‘cf-report’ - Agent: Extracts and presents report data in HTML,XML or
graph formats

• ‘cf-know’ - Agent (CFEngine Enterprise only): Builds knowledge maps based
on promises and data

‘/var/cfengine/masterfiles’
Policy repository which grants access to local or bootstrapped CFEngine
clients when they need to update their policies. Policies obtained from

5

‘/var/cfengine/masterfiles’ are then cached in ‘/var/cfengine/inputs’
for local policy execution. The ‘cf-agent’ executable does not execute policies
directly from this repository.

‘/var/cfengine/inputs’
Cached policy repository located on a CFEngine client. The ‘cf-agent’ exe-
cutable executes policies from this repository.

‘/var/cfengine/outputs’
Directory where ‘cf-agent’ creates its output files.

‘/var/cfengine/ppkeys’
Directory used to store encrypted public/private keys for CFEngine client/server
network communications.

‘/var/cfengine/reports’
Directory used to store reports generated by cf-report .

‘/var/cfengine/lib’
Directory to store shared objects and dependencies that are in the bundled pack-
ages.

Create and Manually Execute a Policy

If you have ever taken a course in programming, then you are probably familiar with the Hello
World program. For CFEngine 3, the Hello World policy would look like this:

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

bundle agent test

–

reports:

cfengine˙3::

”Hello world!”;

˝

This policy can be manually run by performing the following steps:

1. Log on to the new host; copy and paste the above Hello World script into a text file
named ‘/var/cfengine/inputs/test.cf’

2. Verify the syntax by running cf-promises – if verification is successful, you will see no
output:

root@cfhub # cf-promises -f /var/cfengine/inputs/test.cf

3. Execute the policy – if everything was successful, the string ‘R: Hello World!’ will be
outputted immediately below the command:

root@cfhub # cf-agent -f /var/cfengine/inputs/test.cf

R: Hello world!

Like many languages, CFEngine has a structure which allows declarations, variables and
classes. The body structure is a place to list constraints and items that control the flow of a

6 CFEngine Quick Start Guide

policy. It can be seen as a template macro (similar to the main() function in c) that organizes
promise attributes. The bundle structure can be viewed as a collection of promises under a
single name, much like a subroutine in other languages.

Looking at the ‘Hello World’ promise syntax, you will notice that it starts with the following
body structure:

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

In this example, the body common control is used to control promise behavior by calling
the bundle agent test, which is a collection of promise attributes:

bundle agent test

–

reports:

cfengine˙3::

”Hello world!”;

˝

This bundle structure contains a special type of promise known as reports: , which will
automatically output ‘Hello World’ if all conditions of the promise are kept. Finally, there is
the cfengine˙3:: class. This class is defined by CFEngine out of the box. When it’s used in
a promise, it checks to see that the CFEngine client is running version 3.

So, to summarize; the promise that you just wrote and executed checked that the version
of CFEngine you are running is at version 3; and if it is at version 3, it sent the Hello World
string to the command line.

Now that you have a better understanding of how the syntax works, we will go over the
method we used to execute the policy. The policy that you wrote, test.cf was manually
executed by the cf-agent binary. Prior to running the ‘cf-agent’ command, you checked the
promise syntax by running the ‘cf-promises’ binary:

root@cfhub # cf-promises -f /var/cfengine/inputs/test.cf

Normally, cf-promises is automatically executed by cf-agent as part of its run time oper-
ations, where, by default, it verifies the configuration syntax in the ‘promises.cf’ file. By
adding the -f flag and specifying a file name and path, you directed cf-promises to check and
verify the specified file only: test.cf. In addition, we chose to run the policy manually, which
is why we invoked cf-agent from the command line:

root@cfhub # cf-agent -f /var/cfengine/inputs/test.cf

As a rule, CFEngine is fully automated and the cf-agent binary is started by the cf-execd
daemon at a user specified interval (defaults to 5 minutes). Again, in this instance, the agent
was manually started using the -f flag to execute the specified file.

If you would like to experiment with promise construction and manual execution, the fol-
lowing link will take you to a web based site designed for that purpose: Quickstart Promise
Editor http://cfengine.com/policy˙wizard/

CFEngine Client, Server Operations

In Step 2, we demonstrated how CFEngine operates as a standalone system. While there may
be a few instances where running CFEngine on a standalone system is ideal; the real power

http://cfengine.com/policy_wizard/

7

of CFEngine lies in its ability to perform multiple tasks in a multi-tiered network environment.
To demonstrate the working relationship between a CFEngine policy server and client, we will
set up a client named cfhost and configure it to pull and execute policies from the cfhub
system, which will be set up as the policy server. Before we start, it might be helpful to get
a ‘look’ at how CFEngine maintains a configured state in a networked environment. Note
that the revision control system is optional. You only need to place your policy file into the
‘/var/cfengine/masterfiles’ directory, then update the promises.cf file accordingly.

The objective of this exercise is to check that a file named ‘cf˙test˙file’ exists on both
the CFEngine policy server and client. If it does not exists, we are instructing CFEngine to
create it. Additionally, we are directing CFEngine to ensure that the permissions are set to
644; that it is owned by root; and the group ownership is the ‘sys’ group.

1. Create a second test system and name it cfhost.

2. Log on to cfhost; install and configure CFEngine according to the instructions given in
Step 1.

3. Open a new terminal window and log on to cfhub.

4. Find the hostname or IP address of cfhub, here we will assume the address is
172.16.100.134

5. Designate cfhub as the policy server by bootstrapping it using its own IP address:
root@cfhub# /var/cfengine/bin/cf-agent --bootstrap --policy-server 172.16.100.134

6. CFEngine will output diagnostic information upon bootstrap. If all is well you should see
the following in the output:

8 CFEngine Quick Start Guide

-¿ Bootstrap to 172.16.100.134 completed successfully

7. Return to cfhost and bootstrap it to the IP address of the policy server cfhub:
172.16.100.134

root@cfhost# /var/cfengine/bin/cf-agent --bootstrap --policy-server 172.16.100.134

Ensure that the bootstrap was successful. If you have problems with this step, the most
common issues are related to:

Firewall Make sure port 5308 is open for both incoming and outgoing traffic.

Policy access control list (acl)
By default, the hub is available to clients that reside in the same class B
network. If some clients are not part of that network, make sure the IPs
are added to the acl in ‘/var/cfengine/masterfiles/def.cf’, bundle
common def:

”acl” slist =¿ –

Assume /16 LAN clients to start with

”$(sys.policy˙hub)/16”,

Add clients’ IP addresses (or IP range) here (for

example: an acl of 192.168.0.0/16 would allow all

clients that have an IP address that starts with

192.168 to connect to the hub)

cf-serverd is not running on the hub
The CFEngine component cf-serverd takes care of all CFEngine commu-
nication. It can take a few minutes after you bootstrapped the hub to itself
before this component is started, just wait a bit and retry.

8. On cfhub, go to the /var/cfengine/masterfiles directory, create a new file and name it
cftest1.cf, then copy the following lines into it:

bundle agent test

–

files:

”/tmp/cf˙test˙file”

comment =¿ ”Promise that a plain file exists with stated permissions”,

perms =¿ mog(”644”, ”root”, ”sys”),

create =¿ ”true”;

˝

9. Open the /var/cfengine/masterfiles/promises.cf file and locate the body common control
section:

body common control

–

bundlesequence =¿ – ”main” ˝;

inputs =¿ –

”cfengine˙stdlib.cf”,

˝;

version =¿ ”Community Promises.cf 1.0.0”;

˝

9

Modify this section by adding the new bundle name and input file:

body common control

–

bundlesequence =¿ – ”main”,”test” ˝;

inputs =¿ –

”cfengine˙stdlib.cf”,

”cftest1.cf”,

˝;

version =¿ ”Community Promises.cf 1.0.0”;

˝

10. Save the /var/cfengine/masterfiles/promises.cf file.

11. Return to cfhost and manually start the agent by running: ‘/var/cfengine/bin/cf-agent
-Kv’. The ‘-K’ switch will bypass any locks and the ‘-v’ switch will allow you to see the
actual output.

12. After the agent runs successfully, check to see if the promise was kept by looking for the
‘/tmp/cf˙test˙file’ file on both cfhub and cfhost.

Additionally, take a look at the ‘/var/cfengine/inputs’ on cfhost; you will now see the
cftest1.cf file, which was moved from cfhub. You will also notice that the original promises.cf
file has been saved and the ‘promises.cf’ file from cfhub is now in its place.

The exercise above was a simple example utilizing a very straightforward client/ server
setup. CFEngine can scale to fit any existing environment as illustrated in the image below:

In this example, there are multiple policy distribution servers. Each policy server acts as a
discrete distribution point for policies that are unique to a specific subset of hosts. Additionally,

10 CFEngine Quick Start Guide

a CFEngine 3 Enterprise Hub can act as a policy distribution point for Windows and Macs.
The Enterprise Hub also provides a management and reporting Web interface for all of the
systems that it manages.

We hope that this document has been a helpful first step in your quest to unleash the
power of CFEngine in your environment! For more information, please visit the CFEngine
Web Site, where you will find a wealth of documentation; including tips, tricks, tutorial’s,
manual’s, references, How-To’s and cookbooks.

Next steps

We recommend the following reading:

• CFEngine Concepts: http://cfengine.com/manuals/cf3-conceptguide.html

• Get started, first promises: http://cfengine.com/manuals/cf3-tutorial.html#First-promises

For a complete overview:

• Tutorial: http://cfengine.com/manuals/cf3-tutorial.html

• Reference manual: http://cfengine.com/manuals/cf3-Reference.html

Links to external resources:

• Getting Started with CFEngine 3 by Vertical Sysadmin:
http://www.verticalsysadmin.com/cfengine/Getting˙Started˙with˙CFEngine˙

3.pdf

• CFEngine 3 Beginning Examples:
http://www.verticalsysadmin.com/cfengine/beginning˙examples/

This is, basically, a selection from /var/cfengine/share/doc/examples/ which has over
200 examples.

• ”CFEngine 3 Tutorial” by Neil Watson:
http://watson-wilson.ca/2011/05/cfengine-3-cookbook-begins.html

http://cfengine.com/manuals/cf3-conceptguide.html
http://cfengine.com/manuals/cf3-tutorial.html#First-promises
http://cfengine.com/manuals/cf3-tutorial.html
http://cfengine.com/manuals/cf3-Reference.html
http://www.verticalsysadmin.com/cfengine/Getting_Started_with_CFEngine_3.pdf
http://www.verticalsysadmin.com/cfengine/Getting_Started_with_CFEngine_3.pdf
http://www.verticalsysadmin.com/cfengine/beginning_examples/
http://watson-wilson.ca/2011/05/cfengine-3-cookbook-begins.html

