
CFEngine 3 Concept Guide
A CFEngine AS workbook

CFEngine AS

Copyright c© 2011 CFEngine AS

i

Table of Contents

1 Introduction - System automation . 3
1.1 Managing diverse and challenging environments seamlessly and

invisibly . 3
1.2 Managing expectations - a theory of promises . 3
1.3 Why automation? . 4
1.4 How do you view CFEngine? . 4

2 The components of CFEngine . 7
2.1 The players . 7
2.2 About the CFEngine architecture . 8
2.3 The policy decision flow . 9

3 Bodies and bundles . 11
3.1 Bodies . 11

3.1.1 Body parts . 11
3.1.2 Control bodies . 13

3.2 Bundles . 13
3.2.1 Bundle scope . 14

3.3 A simple syntax pattern . 14

4 A simple crash course in concepts 17
4.1 Rules are promises . 17
4.2 Best practice for writing promises . 18
4.3 Decisions . 19
4.4 Types in CFEngine 3 . 23
4.5 Datatypes in CFEngine 3 . 23
4.6 Variables . 24

4.6.1 Scalar variable expansion . 24
4.6.2 List variable substitution and expansion . 24
4.6.3 Special list value cf˙null . 27
4.6.4 Arrays in CFEngine 3 . 27

4.7 Loops . 28
4.8 The main promise types . 29
4.9 Test a promise? . 30

5 Knowledge Management . 31
5.1 Promises and Knowledge . 31
5.2 The basics of knowledge . 32
5.3 Annotating promises . 32
5.4 A promise model of topic maps . 33
5.5 What topic maps offer . 34
5.6 The nuts and bolts of topic maps . 35

ii CFEngine 3 Concept Guide

5.6.1 Topic map definitions . 35
5.7 Example of topics promises . 36

5.7.1 Analyzing and indexing the policy . 37
5.7.2 cf-know . 38

5.8 Modeling configuration promises as topic maps 39

6 More... 41

1

This document is an abbreviated version of the CFEngine tutorial (http://cfengine.com/manuals/cf3-
tutorial.html).

Chapter 1: Introduction - System automation 3

1 Introduction - System automation

1.1 Managing diverse and challenging environments seamlessly and
invisibly

CFEngine was designed to enable scalable configuration management, for the whole system
life-cycle, in any kind of environment. Almost every other system for configuration assumes
that there will be a reliable network in place and that changes will be pushed out top-down
from an authoritative node. Those systems are useless in environments like

• Mobile systems with partial or unreliable connectivity (e.g. a submarine).

• Systems where bandwidths are very low (e.g. a satellite or space probe).

• Systems where computing power is very low (e.g. ad hoc sensors or kitchen appliances).

CFEngine does not need reliable infrastructure. It works opportunistically in almost any
environment, using few resources. It has few software dependencies. So, not only does it
work in all of the traditional fixed-plan scenarios, but it is capable of working in totally ad hoc
deployment: an temporary incident room, a submarine drifting on and off line, a satellite or a
robot explorer.

One could argue ‘well I don’t need that kind of system, because my network is reliable’.
However, your network is not as reliable as you think, and mobility is an increasingly important
topic. Even with a very strong redundant network, the services that support the network can
be paralyzed by any of a number of failed dependencies or mishaps. It is crucial in a modern
pervasive environment that systems remain available, fault tolerant and as far as possible
independent of external requirements. This is how to build scalable and reliable services.� �

CFEngine works in all the places you think it should, and all the new places you haven’t
even thought of yet. How do we know? Because it is based on almost 20 years of careful
research and experience.
 	

1.2 Managing expectations - a theory of promises

One of the hardest things in management is to make everyone aware of their roles and tasks,
and to be able to rely on others to do the same. Trust is an economic time-saver. If you can’t
trust you have to verify, and that is expensive.

To improve trust we make promises. A promise is the documentation of an intention to
act or behave in some manner. This is what we need to learn to trust systems, no matter
whether they are machines or humans.

One CFEngine user once said to me, that the thing that had helped him the most in
deploying CFEngine was its design based around voluntary cooperation. “Our main problems
were not technical but political – getting everyone to agree in all of our departments around
the world”. This was because, for all the technology, it is people who make the decisions and
people need to feel that the system is empowering rather than disempowering them.

4 CFEngine 3 Concept Guide

� �
CFEngine works on a simple notion of promises. Everything in CFEngine can be thought

of as a promise to be kept by different resources in the system.

Combining promises with patterns to describe where and when promises should apply is
what CFEngine is all about.
 	

1.3 Why automation?

Humans are good at making decisions and awful at reliable implementation. Machines are
pitiful at making decisions and very good at reliable implementation. It makes sense to let
each side do the job that they are good at.

The main problem in managing systems is a loss of self-discipline. Discipline does not imply
that orders have to be barked from a central command. It only requires that every part of the
system knows its job and carries it out seamlessly and flawlessly.

Skilled workers tend to think that it is enough to be smart. In fact this is wrong: smart peo-
ple tend to be problem solvers and will happily solve the same problem many times, wasting time
and effort. Moreover, human intervention is often based on panic and lack of understanding
so every time someone logs onto a system by hand, they jeopardize everyone’s understanding
of the system. Only the self-discipline of stable procedures leads to predictability.

Ad hoc changes are bad because:

• Others have no idea what happened.

• There is no record of changes or intentions.

• A scar is left from the change.

People often rile against automation saying that it dehumanizes their work. In fact the
opposite is true: forcing humans to do the work of machines, in repetitive and reliable ways is
what dehumanizes people. The only way to make progress with a bad habit is to recognize it
and be willing to abandon the habit.

1.4 How do you view CFEngine?

CFEngine is a framework. It is not so complex, but it is certainly extensive. Often when trying
to describe CFEngine, it seems that there is too much to tell and it is hard to convey in a
simple way what the software can do. The picture below shows a few ways in which you can
think of CFEngine.

Chapter 1: Introduction - System automation 5

For many users, CFEngine is simply a configuration tool – i.e. software for deploying and
patching systems according to a policy. Policy is described using promises – indeed, every
statement in CFEngine 3 is a promise to be kept at some time or location. More than this,
however, CFEngine is not like most automation tools that ‘roll out’ an image of some software
once and hope for the best. Every promise that you make in CFEngine is continuously verified
and maintained. It is not a one-off operation, but an encapsulated process that repairs itself
should anything deviate from the policy.

That clearly places CFEngine in the realm of automation, which often begs the question:
so it’s just another scripting language? Certainly CFEngine contains a powerful scripting
language, but it is not like any other. CFEngine is not a low level language like Perl, Python
or Ruby; it is a language of promises, in which you express very high level intentions about the
system and the inner details figure out the algorithms needed to implement the result.

Above all, CFEngine is aimed to promote human understanding of complex processes. Its
promises are easily documentable using comments that the system remembers and reminds us
about in error reporting. It hides irrelevant and transitory details of implementation so that the
intentions behind the promises are highlighted for all to see. This means that the knowledge
of your organization can be encoded into the CFEngine language.� �

WHY DOES KNOWLEDGE MATTER? 1. Technical descriptions are hard to remember.
You might understand your configuration decisions when you are writing them, but a few
months later when something goes wrong, you will probably have forgotten what you were
thinking. That costs you time and effort to diagnose. 2. Organizations are fragile to the
loss of those individuals who code policy. If they leave, often there is no one left who can
understand or fix the system. Only with proper documentation is it possible to immunize
against loss.
 	

Chapter 2: The components of CFEngine 7

2 The components of CFEngine

CFEngine comprises a number of components. In this chapter we’ll consider how to build
them and what they are for.

2.1 The players

A CFEngine system is something like an orchestra. It is composed of any number of computers
(players), each of which has its own copy of the music and knows what to play. It might or
might not have a conductor to help coordinate the individual parts – that’s up to you.

CFEngine’s software agents are independent components that run on each individual com-
puter. They can communicate if they need to, as depicted in the figure below. This means
you don’t have to arrange risky login credentials to run your network – and if something goes
wrong with the communications network, CFEngine is where it needs to be to repair or protect
the system during the outage.

If the network is not working, CFEngine just skips these parts and continues with what it
can do. It is fault tolerant and opportunistic.

cf-promises
The promise verifier and compiler. This is used to pre-check a set of configuration
promises before attempting to execute.

cf-agent

This is the instigator of change. The agent is the part of CFEngine that manip-
ulates system resources.

8 CFEngine 3 Concept Guide

cf-serverd

The server is able to share files and receive requests to execute existing policy
on an individual machine. It is not possible to send (push) new information to
CFEngine from outside.

cf-execd

This is a scheduling daemon (which can either supplement or replace cron). It
also works as a wrapper, executing and collecting the output of cf-agent and
E-mailing it if necessary to a system account.

cf-runagent
This is a helper program that can talk to cf-serverd and request that it execute
cf-agent with its existing policy. It can thus be used to simulate a push of
changes to CFEngine hosts, if their policy includes that they check for updates.

cf-report

This generates summary and other reports in a variety of formats for export or
integration with other systems.

cf-know

This agent can generate an ISO standard Topic Map from a number of promises
about system knowledge. It is used for rendering documentation as a ‘semantic
web’.

2.2 About the CFEngine architecture

This section explains how CFEngine will operate autonomously in a network, under your guid-
ance. If your site is large (thousands of servers) you should spend some time discussing with
CFEngine experts how to tune this description to your environment as scale requires you to
have more infrastructure, and a potentially more complicated configuration. The essence of
any CFEngine deployment is the same.

There are four commonly cited phases in managing systems, summarized as follows:

• Build

• Deploy

• Manage

• Audit

These separate phases originate with a model of system management based on transac-
tional changes. CFEngine’s conception of management is somewhat different, as transaction
processing is not a good model for system management, but we can use this template to see
how CFEngine works differently.

Build A system is based on a number of decisions and resources that need to be ‘built’
before they can be implemented. Building the trusted foundations of a system is
the key to guiding its development. You don’t need to decide every detail, just
enough to build trust and predictability into your system.

In CFEngine, what you build is a template of proposed promises for the machines
in an organization such that, if the machines all make and keep these promises,

Chapter 2: The components of CFEngine 9

the system will function seamlessly as planned. This is how it works in a human
organization, and this is how is works for computers too.

Deploy Deploying really means implementing the policy that was already decided. In
transaction systems, one tries to push out changes one by one, hence ‘deploying’
the decision. In CFEngine you simply publish your policy (in CFEngine parlance
these are ‘promise proposals’) and the machines see the new proposals and can
adjust accordingly. Each machine runs an agent that is capable of implementing
policies and maintaining them over time without further assistance.

Manage Once a decision is made, unplanned events will occur. Such incidents traditionally
set off alarms and humans rush to make new transactions to repair them. In
CFEngine, the autonomous agent manages the system, and you only have to deal
with rare events that cannot be dealt with automatically.

Audit In traditional configuration systems, the outcome is far from clear after a one-shot
transaction, so one audits the system to determine what actually happened. In
CFEngine, changes are not just initiated once, but locally audited and maintained.
Decision outcomes are assured by design in CFEngine and maintained automati-
cally, so the main worry is managing conflicting intentions. Users can sit back and
examine regular reports of compliance generated by the agents, without having
to arrange for new ‘roll out’ transactions.

� �
ROLL-OUT and ROLL-BACK? You should not think of CFEngine as a roll-out system, i.e.

one that attempts to force out absolute changes and perhaps reverse them in case of error.
Roll-out and roll-back are theoretically flawed concepts that only sometimes work in practice.
With CFEngine, you publish a sequence of policy revisions, always moving forward (because
like it or not, time only goes in one direction). All of the desired-state changes are managed
locally by each individual computer, and continuously repaired to ensure on-going compliance
with policy.
 	

2.3 The policy decision flow

CFEngine does not make absolute choices for you, like other tools. Almost everything about
its behavior is matter of policy and can be changed. However, a structure for use, like the
following, is recommended (see the following figure).

In order to keep operations as simple as possible, CFEngine maintains a private working
directory on each machine referred to in documentation as WORKDIR and in policy by the vari-
able $(sys.workdir). By default, this is located at ‘/var/cfengine’ or ‘C:“var“CFEngine’.
It contains everything CFEngine needs to run.

10 CFEngine 3 Concept Guide

The figure below shows how decisions flow through the parts of a system.

• It makes sense to have a single point of coordination. Decisions are therefore usually made
in a single location (the Policy Definition Point). The history of decisions and changes
can be tracked by a version control system of your choice (e.g. Subversion, CVS, etc.).

• Decisions are made by editing CFEngine’s policy file ‘promises.cf’ (or one of its included
sub-files). This process is carried out off-line.

• Once decisions have been formalized and coded, this new policy is copied manually (a
human decision) to a decision distribution point, which by default is located in the directory
‘/var/cfengine/masterfiles’ on all policy distribution servers.

In this introduction, we shall assume that there is only one central policy distribution
server, a specially-appointed server which is referred to simple as the policy server.

• Every client machine contacts the policy server and downloads these updates. The policy
server can be replicated if the number of clients is very large, but we shall assume here
that there is only one policy server.

Once a client machine has a copy of the policy, it extracts only those promise proposals
that are relevant to it, and implements any changes without human assistance. This is how
CFEngine manages change.� �

WHY DO THIS? CFEngine tries to minimize dependencies by decoupling processes. By
following this pull-based architecture, CFEngine will tolerate network outages and will recover
from deployment errors easily. By placing the burden of responsibility for decision at the top,
and for implementation at the bottom, we avoid needless fragility and keep two independent
quality assurance processes apart.
 	

Chapter 3: Bodies and bundles 11

3 Bodies and bundles

To emphasize the fact that CFEngine is not an imperative programming language, and to
keep closely to the nomenclature of Promise Theory, CFEngine uses two concepts throughout:
bundles and bodies.

3.1 Bodies

Promises are the fundamental statements in CFEngine. Promises are the policy atoms. If
there is no promise, nothing happens.

However, promises can become quite complicated and readability becomes an issue, so it
is useful to have a way of breaking them down into independent components. The structure
of a promise is this:

Promiser This is the object that formally makes the promise. It is always the affected
object, since objects can only make promises about their own state or behavior in
CFEngine.

Promisee (optional)
This is a possible stakeholder, someone who is interested in the outcome of the
promise. It is used as documentation, and it is used for reasoning in the commercial
CFEngine product.

Promise body
Everything else about a promise is defined in the body of the promise. We use
this word in the sense of ‘body of a contract’ or the ‘body of a document’ (like
¡body¿) tags in HTML, for example.

A promise body is a list of declarations of the following form:

CFEngine˙attribute˙type =¿ user˙defined˙value or template

3.1.1 Body parts

The CFEngine reserved word body is used to define parameterized templates for bodies to
hide the details of complex promise specifications. For complex body lists, you must fill in a
body declaration as an ‘attachment’ to the promise, e.g.

files:

”/tmp/promiser” # Promiser

perms =¿ myexample; # The body is just one line,

but needs an attachment

The attachment is declared like this, with a ‘type’ that matches the left hand side of the
declaration in the promise:

body perms myexample

–

mode =¿ ”644”;

owners =¿ – ”mark”, ”sarah”, ”angel” ˝;

12 CFEngine 3 Concept Guide

groups =¿ – ”users”, ”sysadmins”, ”mythical˙beasts” ˝;

˝

The structure is this:

� �
promiser

LVALUE =¿ RVALUE

..

body LVALUE RVALUE
–

LVALUE =¿ RVALUE;
LVALUE =¿ RVALUE;
˝
 	

Another way of looking at it is this:

� �
promiser

CFEngine word =¿ user˙defined˙value

..

body CFEngine word user˙defined˙value
–

CFEngine word =¿ user˙defined˙value;
CFEngine word =¿ user˙defined˙value;
...

˝
 	

Body attachments are required items. You cannot choose to put the attachments in-line.
This is a lesson that was learned from CFEngine 2. Readability is quickly lost if too many
details are placed in-line.

Chapter 3: Bodies and bundles 13

3.1.2 Control bodies

Some promises in CFEngine are implicit and hard-coded into the program. For example,
the fact that CFEngine looks for a number of files to read and execute them in a sequence
cannot be changed. However, you can change the behavior of such promises by setting control
parameters. These are formally parts of the ‘promise body’, so we use the body structure to
set them. Each agent, (CFEngine software component) has a special body whose name is
control, used for setting these parameters. For cf-agent and cf-serverd we can have:

body agent control

–

bundlesequence =¿ – ”test” ˝;

˝

body server control

–

allowconnects =¿ – ”127.0.0.1” , ”::1”, @(def.acl) ˝;

˝

3.2 Bundles

A bundle is a simple concept. A bundle is merely a collection of promises in a ‘sub-routine-
like’ container. The purpose of bundles is to allow you greater flexibility to break down the
contents of your policies and give them names. Bundles also allow you to re-use promise code
by parameterizing it.

Like bodies, bundles also have ‘types’. Bundles belong to the agent that is used to keep
the promises in the bundle. So cf-agent has bundles declared as

bundle agent my˙name

–

˝

The cf-serverd program has bundles declared as:

bundle server my˙name

–

14 CFEngine 3 Concept Guide

˝

and so on.

3.2.1 Bundle scope

Variables and classes defined inside bundles are not directly visible outside. All variables in
CFEngine are globally accessible, however if you refer to a variable by ‘$(unqualified)’,
then it is assumed to belong to the current bundle. To access any other (scalar)
variable, you must qualify the name using the name of the bundle in which it is defined:
‘$(bundle˙name.qualified)’.

Some promise types, like var, classes may be made by any agent. These are called
common promises. Bundles of type common are special. They may contain common promises.
Classes defined in common bundles have global scope.

3.3 A simple syntax pattern

The syntax of CFEngine follows a simple pattern in all cases and has a few simple rules:

• CFEngine built-in words, and identifiers of your choosing (the names of variables, bundles,
body templates and classes) may only contain the usual alphanumeric and underscore
characters (‘a-zA-Z0-9˙’).

• All other ‘literal’ data must be quoted.

• Declarations of promise bundles in the form:

bundle agent-type identifier

–

...

˝

• Declarations of promise body-parts in the form:

body constraint˙type template˙identifier

–

...

˝

matching and expanding on a reference inside a promise of the form ‘constraint˙type
=¿ template˙identifier’.

• CFEngine uses many ‘constraint expressions’ as part of the body of a promise. These
take the form: left-hand-side (cfengine word) ‘=¿’ right-hand-side (user defined data).
This can take several forms:

cfengine˙word =¿ user˙defined˙template(parameters)

user˙defined˙template

builtin˙function()

”quoted literal scalar”

– list ˝

In each of these cases, the right hand side is a user choice.

Once you have learned this pattern, it will make sense anywhere in the program. The figure
below illustrates this pattern. Some words are reserved by CFEngine, and are used as types or

Chapter 3: Bodies and bundles 15

categories for talking about promises. Other words (in blue) are to be defined by you. Look
at the examples and try to identify these patterns yourself.

Chapter 4: A simple crash course in concepts 17

4 A simple crash course in concepts

4.1 Rules are promises

Everything in CFEngine 3 can be interpreted as a promise. Promises can be made about
all kinds of different subjects, from file attributes, to the execution of commands, to access
control decisions and knowledge relationships.

This simple but powerful idea allows a very practical uniformity in CFEngine syntax. There
is only one grammatical form for statements in the language that you need to know and it
looks generically like this:

type:

classes::

”promiser” -¿ – ”promisee1”, ”promisee2”, ... ˝

attribute˙1 =¿ value˙1,

attribute˙2 =¿ value˙2,

...

attribute˙n =¿ value˙n;

We speak of a promiser (the abstract object making the promise), the promisee is the abstract
object to whom the promise is made, and then there is a list of associations that we call the
‘body’ of the promise, which together with the promiser-type tells us what it is all about.� �

The promiser is always the object affected by the promise.
 	
Not all of these elements are necessary every time. Some promises contain a lot of implicit

behavior. In other cases we might want to be much more explicit. For example, the simplest
reports promise looks like this:

reports:

”hello world”;

And the simplest commands promise looks like this

commands:

”/bin/echo hello world”;

This promise has default attributes for everything except the ‘promiser’, i.e. the command
string that promises to execute. A more complex promise contains many attributes:

Promise type

files:

promiser -¿ promisee (no curly braces needed if only one)

”/home/mark/tmp/test˙plain” -¿ ”system blue team”,

18 CFEngine 3 Concept Guide

attribute =¿ value

comment =¿ ”This comment follows the rule for knowledge integration”,

perms =¿ owner(”@(usernames)”),

create =¿ ”true”;

The list of promisees is not used by CFEngine except for documentation, just as the
comment attribute (which can be added to any promise) has no actual function other than to
provide more information to the user in error tracing and auditing.

You see several kinds of object in this example. All literal strings (e.g. ”true”) in CFEngine
3 must be quoted. This provides absolute consistency and makes type-checking easy and error-
correction powerful. All function-like objects (e.g. users(”..”)) are either built-in special
functions or parameterized templates which contain the ‘meat’ of the right hand side.

The words commands, and files are built-in promise types. Promise types generally belong
each to a particular component of CFEngine, as the components are designed to keep different
kinds of promises. A few types, such as vars, classes and reports are common to all the
different component bundles. You will find a full list of the promise types that can be made
by the different components in the reference manual.

4.2 Best practice for writing promises

When writing promises, get into the habit of giving every promise a comment that explains its
intention.

Also, give related promises handles, or labels that can be used to refer to them by.

files:

”/var/cfengine/inputs”

handle =¿ ”update˙policy”,

comment =¿ ”Update the configuration from a master server”,

perms =¿ system(”600”),

copy˙from =¿ mycopy(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

If a promise affects another promise in some way, you can make the affected promise one
of the promisees, like this:

access:

”/master/cfengine/inputs” -¿ – ”update˙policy”, ”other˙promisee” ˝,

comment =¿ ”Grant access to policy to our clients”,

handle =¿ ”serve˙updates”,

Chapter 4: A simple crash course in concepts 19

admit =¿ – ”217.77.34.*” ˝;

Conversely, if a promise might depend on another in some (even indirect) way, document
this too.

files:

”/var/cfengine/inputs”

comment =¿ ”Update the configuration from a master server”,

handle =¿ ”update˙policy”,

depends˙on =¿ –”serve˙updates”˝,

perms =¿ system(”600”),

copy˙from =¿ mycopy(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

Get into the habit of adding the cause-effect lines of influence. Enterprise editions of
CFEngine will track the dependencies between these promises and map out impact analyses.

4.3 Decisions

CFEngine decisions are made behind the scenes and the results of certain true/false proposi-
tions are cached in Booleans referred to as ‘classes’. There are no if-then-else statements in
CFEngine; all decisions are made with classes.

CFEngine runs on every computer individually and each time it wakes up the underlying
generic agent platform discovers and classifies properties of the environment or context in
which it runs. This information is effectively cached and may be used to make decisions about
configuration.

Classes fall into hard (discovered) and soft (user-defined) types. A single hard class can be
one of several things:

• The name of an operating system architecture e.g. ultrix, sun4, etc.

• The unqualified name of a particular host. If your system returns a fully qualified
domain name for your host, CFEngine truncates it at the first dot. Note:
www.sales.company.com and www.research.company.com have the same unqualified
name – www.

• The name of a user-defined group of hosts.

• A day of the week (in the form Monday, Tuesday, Wednesday, ..).

• An hour of the day, current time zone (in the form Hr00, Hr01 ... Hr23).

20 CFEngine 3 Concept Guide

• An hour of the day GMT (in the form GMT˙Hr00, GMT˙Hr01 ... GMT˙Hr23). This is
consistent the world over, in case you need virtual simultaneity of change coordination.

• Minutes in the hour (in the form Min00, Min17 ... Min45).

• A five minute interval in the hour (in the form Min00˙05, Min05˙10 ... Min55˙00)

• The quarter-hour (in the form Q1, Q2, Q3, Q4).

• A day of the month (in the form Day1, Day2, ... Day31).

• A month (in the form January, February, ... December).

• A year (in the form Yr1997, Yr2004).

• A shift in Night,Morning,Afternoon,Evening, which fall into six hour blocks starting
at 00:00 hours.

• A ‘lifecycle index’, which is the year number modulo 3 (used in long term resource mem-
ory).

• An arbitrary user-defined string.

• The IP address octets of any active interface (in the form ipv4˙192˙0˙0˙1,
ipv4˙192˙0˙0, ipv4˙192˙0, ipv4˙192).

To see all of the classes define on a particular host, run
host# cf-promises -v

as a privileged user. Note that some of the classes are set only if a trusted
link can be established with cfenvd, i.e. if both are running with privilege, and the
‘/var/cfengine/state/env˙data’ file is secure. More information about classes can be
found in connection with allclasses.

User-defined or soft classes are defined in bundles. Bundles of type common yield classes
that are global in scope, whereas in all other bundle types classes are local. Soft classes are
evaluated when the bundle is evaluated. They can be based on test functions or simply from
other classes:

bundle agent myclasses

–

classes:

”solinus” expression =¿ ”linux——solaris”;

List form useful for including functions

”alt˙class” or =¿ – ”linux”, ”solaris”, fileexists(”/etc/fstab”) ˝;

”oth˙class” and =¿ – fileexists(”/etc/shadow”), fileexists(”/etc/

passwd”) ˝;

reports:

alt˙class::

This will only report ”Boo!” on linux, solaris, or any system

Chapter 4: A simple crash course in concepts 21

on which the file /etc/fstab exists

”Boo!”;

˝

Classes may be combined with the operators listed here in order from highest to lowest prece-
dence:

‘()’ The parenthesis group operator.

‘!’ The NOT operator.

‘.’ The AND operator.

‘&’ The AND operator (alternative).

‘—’ The OR operator.

‘——’ The OR operator (alternative).

So the following expression would be only true on Mondays or Wednesdays from 2:00pm to
2:59pm on Windows XP systems:

(Monday—Wednesday).Hr14.WinXP::

Consider the following more advanced example. Promises in bundles of type ‘common’ are
global in scope – all other promises are local to the scope of their bundle.

body common control

–

bundlesequence =¿ – ”g”,”ls˙1”, ”ls˙2” ˝;

˝

#################################

bundle common g

–

classes:

The promise ”zero” is always satisfied , and is global in scope

”zero” expression =¿ ”any”;

˝

#################################

bundle agent ls˙1

–

classes:

The promise ”one” is always satisfied , and is local in scope to ls˙1

22 CFEngine 3 Concept Guide

”one” expression =¿ ”any”;

˝

#################################

bundle agent ls˙2

–

classes:

The promise ”two” is always satisfied , and is local in scope to ls˙2

”two” expression =¿ ”any”;

reports:

zero.!one.two::

This report @b–will˝ be generated

”Success”;

˝

Here we see that class ‘zero’ is global while classes ‘one’ and ‘two’ are local. The report
‘Success’ result is therefore true because only ‘zero’ and ‘two’ are in scope in the ‘ls˙2’
bundle (and the class expression for bundle ‘ls˙2’ requires that both ‘zero’ and ‘two’ be true
and that ‘one’ not be true).

CFEngine is controlled by a series of locks which prevent it from checking promises too
often, and which prevent it from spending too long trying to verify promises it already verified
recently. The locks work in such a way that you can start several CFEngine processes simul-
taneously without them interfering with each other. You can control two things about each
kind of action in the action sequence:

‘ifelapsed’
The minimum time (in minutes) which should have passed since the last time that
promise was verified. It will not be executed again until this amount of time has
elapsed. (Default time is 1 minute.)

‘expireafter’
The maximum amount (in minutes) of time cf-agent should wait for an old in-
stantiation to finish before killing it and starting again. (Default time is 120
minutes.)

You can set these values either globally (for all actions) or for each action separately. If you
set global and local values, the local values override the global ones. All times are written in
units of minutes. Global setting is in the control body:

body agent control

–

ifelapsed =¿ ”60”; # one hour

˝

Chapter 4: A simple crash course in concepts 23

or locally in the transaction bodies:

body action example

–

ifelapsed =¿ ”90”; # 1.5 hours

˝

These locks do not prevent the whole of cf-agent from running, only atomic promise checks.
Several different atoms can be run concurrently by different cf-agents. The locks ensure that
atoms will never be started by two cf-agents at the same time, or too soon after a verification,
causing contention and wasting CPU cycles.

4.4 Types in CFEngine 3

A key difference in CFEngine 3 compared to earlier versions is the presence of types. Types
are a mechanism for associating values and checking consistency in a language. Once again,
there is a simple pattern to types in CFEngine.

The principle is very simple: types exist in order to match like a plug-socket relationship.
In the examples above, you can see two places where types are used to match templates:

• Matching bundles to components:

bundle TYPE name # matches TYPE to running agent

–

˝

• Match bodies templates to lvalues in lvalues =¿ rvalue constraints:

body TYPE name # matches TYPE =¿ name in promise

–

˝

4.5 Datatypes in CFEngine 3

CFEngine variables have two meta-types: scalars and lists. A scalar is a single value, a list is a
collection of scalars. Each scalar may have one of three types: string, int or real. Typing
is dynamic, so these are interchangeable in many instances. However arguments to special
functions check legal type for consistency.

Integer constants may use suffixes to represent large numbers.

• ’k’ = value times 1000.

• ’K’ = value times 1024.

• ’m’ = value times 1000ˆ2

• ’M’ = value times 1024ˆ2

• ’g’ = value times 1000ˆ3

• ’G’ = value times 1024ˆ3

24 CFEngine 3 Concept Guide

• ’%’ meaning percent, in limited contexts

• ’inf’ = a constant representing an unlimited value.

4.6 Variables

Variables (or ”variable definitions”) are also promises – the promise to represent their values.
We can write these in any promise bundle. CFEngine recognizes two variable object types:
scalars and lists (lists contain 0 or more objects)1, as well as three data-types (string, integer
and real). Typing in CFEngine is dynamic, as in Perl and other scripting languages. Thus
variables of any data-type may be used as strings.

4.6.1 Scalar variable expansion

Scalar variables hold a single value. The are declared as follows:

bundle ¡type¿ name

–

vars:

”my˙scalar” string =¿ ”String contents...”;

”my˙int” int =¿ ”1234”;

”my˙real” real =¿ ”567.89”;

˝

The ‘¡type¿’ indicates that any kind of bundle applies here. Scalar variables are referenced
by ‘$(name)’ (or ‘$–name˝’) and they represent a single value at a time.

• Scalars that are written without a context, e.g. ‘$(myvar)’ are local to the current
bundle.

• Scalars are globally available everywhere provided one uses the context to verify them e.g.
‘$(context.myvar)’ may be written to access the variable ‘myvar’ in bundle ‘context’.

4.6.2 List variable substitution and expansion

List variables hold several values. The are declared as follows:

bundle ¡type¿ name

–

vars:

”my˙slist” slist =¿ – ”list”, ”of”, ”strings” ˝;

”my˙ilist” ilist =¿ – ”1234”, ”5678” ˝;

”my˙rlist” rlist =¿ – ”567.89” ˝;

˝

An entire list is referred to with the at symbol ‘@’, but it does not usually make sense to
use this reference in a string. For instance

reports:

1 Arrays can be scalars or lists of the RHS (rvalues). An array is really just a pattern in the names of the LHS
(lvalues), not a separate type.

Chapter 4: A simple crash course in concepts 25

cfengine˙3::

”My list is @(my˙slist)”;

means nothing and cannot be expanded (it does not generate an error, but instead inserts the
text @(my slist) into the string); but if we use the scalar reference to a list variable, CFEngine
will iterate over the values in the list essentially making this into a list of promises.

To summarize:

• Scalar references to local list variables imply iteration, e.g. suppose we have local list
variable ‘@(list)’, then the scalar ‘$(list)’ implies an iteration over every value of the
list.

• Lists can be passed in their entirety in any context where a list is expected as ‘@(list)’.,
e.g.

vars:

”longlist” slist =¿ – @(shortlist), ”plus”, ”plus” ˝;

”shortlist” slist =¿ – ”you”, ”me” ˝;

The declaration order does not matter – CFEngine will execute the promise to assign the
variable ‘@(shortlist)’ before the promise to assign the variable ‘@(longlist)’.

• Only local lists can be expanded directly. Thus ‘$(list)’ can be expanded but not
‘$(context.list)’. Global list references have to be mapped into a local context if you
want to use them for iteration.

Instead of doing this in some arbitrary way, with possibility of name collisions, CFEngine
asks you to make this explicit. There are two possible approaches.

The first uses parameterization to map a global list into a local context.

#

Show access of external lists.

#

- to pass lists globally, use a parameter to dereference them

#

body common control

–

bundlesequence =¿ – hardening(@(va.tmpdirs)) ˝;

˝

###

bundle common va

–

vars:

26 CFEngine 3 Concept Guide

”tmpdirs” slist =¿ – ”/tmp”, ”/var/tmp”, ”/usr/tmp” ˝;

˝

##

bundle agent hardening(x)

–

classes:

”ok” expression =¿ ”any”;

vars:

”other” slist =¿ – ”/tmp”, ”/var/tmp” ˝;

reports:

ok::

”Do $(x)”;

”Other: $(other)”;

˝

This alternative uses a direct ‘short-circuit’ approach to map the global list into the local
context.

#

Show access of external lists.

#

body common control

–

bundlesequence =¿ – hardening ˝;

˝

###

bundle common va

–

vars:

”tmpdirs” slist =¿ – ”/tmp”, ”/var/tmp”, ”/usr/tmp” ˝;

˝

Chapter 4: A simple crash course in concepts 27

##

bundle agent hardening

–

classes:

”ok” expression =¿ ”any”;

vars:

”other” slist =¿ – ”/tmp”, ”/var/tmp” ˝;

”x” slist =¿ – @(va.tmpdirs) ˝;

reports:

ok::

”Do $(x)”;

”Other: $(other)”;

˝

4.6.3 Special list value cf˙null

As of CFEngine core version 3.1.0, the value ‘cf˙null’ may be used as a NULL value within
lists. This value is ignored in list variable expansion.

vars:

”empty˙list” slist =¿ – ”cf˙null” ˝;

4.6.4 Arrays in CFEngine 3

Array variables are written with ‘[’ and ‘]’ brackets, e.g.

bundle agent example

–

vars:

”component” slist =¿ – ”cf-monitord”, ”cf-serverd”, ”cf-execd” ˝;

”array[cf-monitord]” string =¿ ”The monitor”;

”array[cf-serverd]” string =¿ ”The server”;

”array[cf-execd]” string =¿ ”The executor, not executioner”;

commands:

28 CFEngine 3 Concept Guide

”/bin/echo $(component) is”

args =¿ ”$(array[$(component)])”;

˝

Arrays are associative and may be of type scalar or list. Enumerated arrays are simply
treated as a special case of associative arrays, since there are no numerical loops in CFEngine.
Special functions exist to extract lists of keys from array variables for iteration purposes.

Thus one could have written the example above in the form of the following example:

bundle agent array

–

vars:

”v[index˙1]” string =¿ ”value˙1”;

”v[index˙2]” string =¿ ”value˙2”;

”parameter˙name” slist =¿ getindices(”v”);

reports:

Yr2008::

”Found index: $(parameter˙name)”;

˝

4.7 Loops

If you are looking for loops in CFEngine then we need to reprogram you a little, as you are
thinking like a programmer! CFEngine is not a programming language that is meant to give
you low level control, but rather a set of declarations that embody processes. It’s the difference
between the gears on a bicycle and the automated transmission in a transporter.

Loops are executed implicitly in CFEngine, but there is no visible mechanism for it – because
that would steal attention from the intention of the promises. The way to express them is
through lists.

Loops are really a way to iterate a variable over a list. Try the following.

body common control

–

bundlesequence =¿ – ”example” ˝;

˝

Chapter 4: A simple crash course in concepts 29

###

bundle agent example

–

vars:

This is a list

”component” slist =¿ – ”cf-monitord”, ”cf-serverd”, ”cf-execd” ˝;

This is an associative array

”array[cf-monitord]” string =¿ ”The monitor”;

”array[cf-serverd]” string =¿ ”The server”;

”array[cf-execd]” string =¿ ”The executor, not executionist”;

reports:

cfengine˙3::

”$(component) is $(array[$(component)])”;

˝

The output looks something like this:

/var/cfengine/bin/cf-agent -f ./unit˙loops.cf -K

R: cf-monitord is The monitor

R: cf-serverd is The server

R: cf-execd is The executor, not executionist

You see from this that, if we refer to a list variable using the scalar reference operator
‘$()’, CFEngine interprets this to mean “please iterate over all values of the list”. Thus, we
have effectively a ‘foreach’ loop, without the attendant syntax.

4.8 The main promise types

The following promise types may be used in any bundle:

vars A promise to be a variable, representing a value.

classes A promise to be a class representing a state of the system.

reports A promise to report a message.

These additional promise types may be used only in agent bundles

commands A promise to execute a command.

30 CFEngine 3 Concept Guide

databases

A promise to configure a database.

files A promise to configure a file, including its existence, attributes and contents.

interfaces

A promise to configure a network interface.

methods A promise to take on a whole bundle of other promises.

packages A promise to install a package.

storage A promise to verify attached storage.

These promise types belong to other components:

access A promise to grant or deny access to file objects in cf-serverd.

measurements

A promise to measure or sample data from the system, for monitoring or reporting
in cf-monitord (CFEngine Nova and above).

roles A promise to allow certain users to activate certain classes when executing cf-
agent remotely, in cf-serverd.

topics A promise to associate knowledge with a name, and possibly other topics, in
cf-know.

occurrences

A promise to point or refer to a knowledge resource, in cf-know.

4.9 Test a promise?

If you are impatient to get hands-on experience, now might be a good time to take a break from
Concepts and try out your first promises (http://cfengine.com/manuals/cf3-tutorial.html#First-promises.
Still, since knowledge management is an integral part of CFEngine, we strongly recommend
to read the following section on this very issue sooner rather than later.

http://cfengine.com/manuals/cf3-tutorial.html#First-promises

Chapter 5: Knowledge Management 31

5 Knowledge Management

A unique aspect of CFEngine, that is fully developed in the commercial editions of the software,
its ability to enable integrated knowledge management as part of an automation process, and
to use its configuration technology as a ‘semantic’ documentation engine.

Knowledge management is the challenge of our times. Organizations frequently waste
significant effort re-learning old lessons because they have not been documented and entered
into posterity. Now you can alleviate this problem with some simple rules of thumb and even
build sophisticated index-databases of documents.

5.1 Promises and Knowledge

The learning curve for configuration management systems has been the brunt of frequent
criticism over the years. Users are expected to either confront the informational complexity of
systems at a detailed level, or abandon the idea of fine control altogether. This has led either
to information overload or over-simplification. The ability to cope with information complexity
is therefore fundamental to IT management

CFEngine introduced the promise model for configuration in order to flatten out this learn-
ing curve. It can lead to simplifications in use, because a lot of the thinking has been done
already and is encapsulated into the model. One of its special properties is that it is both a
model for system behaviour and a model for knowledge representation (this is what declara-
tive languages seek to be, of course). More specifically, it incorporated a subset of the ISO
standard for ‘Topic Maps’, an open technology for semantic indexing of information resources.
By bringing together these two technologies (which are highly compatible), we end up with a
seamless front-end for sewing together and browsing system information.

Knowledge management is a field of research in its own right, and it covers a multitude
of issues both human and technological. Most would agree that knowledge is composed of
facts and relationships and that there is a need both for clear definitions and semantic context
to interpret knowledge properly; but how do we attach meaning to raw information without
ambiguity?

32 CFEngine 3 Concept Guide

Knowledge has quite a lot in common with configuration: what after all is knowledge
but a configuration of ideas in our minds, or on some representation medium (paper, silicon
etc). It is a coded pattern, preferably one that we can agree on and share with others. Both
knowledge and configuration management are about describing patterns. A simple knowledge
model can be used to represent a policy or configuration; conversely, a simple model of policy
configuration can manufacture a knowledge structure just as it might manufacture a filesystem
or a set of services.

5.2 The basics of knowledge

Knowledge only truly begins when we write things down:

• The act of formulating something in writing brings a discipline of thought than often lends
clarity to an idea.

• You never confront an idea fully until you try to put it into language.

• Any written record that is kept allows others to read it and pass on the knowledge.

The trouble is that writing is something people don’t like to do, and few are very good
at. To an engineer, it can feel like a waste of time, especially during a busy day, to break off
from the doing to write about the doing. Also, writing requires a spurt of creative thinking
and engineers are often more comfortable with manipulating technical patterns and notations
than writing fluent linguistic formulations that seem overtly long-winded.

CFEngine tries to bridge this gap by making documentation simple and part of the technical
configuration. CFEngine’s knowledge agent then uses AI and network science algorithms to
construct a readable documentation from these technical annotations. It can do this because
a lot of thought has already gone into the meaning of the promise model.

5.3 Annotating promises

The beginning of knowledge is to annotate the technical specifications. Remember that the
point of a promise is to convey an intention. When writing promises, get into the habit of giving
every promise a comment that explains its intention. Also, expect to give special promises
handles, or helpful labels that can be used to refer to them in other promise statements. A
handle could be something dumb like ‘xyz’, but you should try to use more meaningful titles
to help make references clear.

files:

”/var/cfengine/inputs”

handle =¿ ”update˙policy”,

comment =¿ ”Update the CFEngine input files from the policy server”,

perms =¿ system(”600”),

copy˙from =¿ rcp(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

Chapter 5: Knowledge Management 33

If a promise affects another promise in some way, you can make the affected one promise one
of the promisees, like this:

access:

”/master/CFEngine/inputs” -¿ – ”update˙policy”, ”other˙promisee” ˝,

handle =¿ ”serve˙updates”,

admit =¿ – ”217.77.34.*” ˝;

Conversely, if a promise might depend on another in some (even indirect) way, document this
too.

files:

”/var/cfengine/inputs”

handle =¿ ”update˙policy”,

comment =¿ ”Update the CFEngine input files from the policy

server”,

depends˙on =¿ – ”serve˙updates” ˝,

perms =¿ system(”600”),

copy˙from =¿ rcp(”$(master˙location)”,”$(policy˙server)”),

depth˙search =¿ recurse(”inf”),

file˙select =¿ input˙files,

action =¿ immediate;

This use of annotation is the first level of documentation in CFEngine. The annotations are
used internally by CFEngine to provide meaningful error messages with context and to compute
dependencies that reveal the existence of process chains. These can be turned into a topic
map for browsing the policy relationships in a web browser, using cf-know.� �

The CFEngine Knowledge Map is only available in commercial editions of the software,
where the necessary support to set up and maintain this technology can be provided.
 	

5.4 A promise model of topic maps

CFEngine’s model of promises can also be used to promise information and its relevance in
different contexts. The Knowledge agent cf-know understands three kinds of promise.

topics: A topic is merely a string that can be associated with another string. It represents
a ‘subject to be talked about’. Like other promise types, you can use contexts,
which are formed from other topics expressions to limit the scope of the current
topic promise.

things: Things are a simplified interface to topics, that were introduced to make it easier
for users to contribute knowledge about more concrete ‘things’, or less abstract

34 CFEngine 3 Concept Guide

ideas. A challenge with knowledge management is the abstract and technical
nature of the models one must use to represent it. Things attempt to make that
task easier.

occurrences:

An occurrence is a reference to a document or a piece of text that actually rep-
resents knowledge content about the topic concerned. Occurrences are generally
URLs or strings explaining things or topics.

5.5 What topic maps offer

CFEngine is capable of automating the documentation of a policy, using basic annotations
provided above, as a knowledge map. They require very little effort from the user. If you
are using the Community Edition of CFEngine, you can develop a topic map, but we do
not support the backend technology without a commercial license. In either case, once you
become familiar with the use of Topic Maps, you will want to extend your knowledge manually
to incorporate things like:

• Local (high level) policy documents

• Related databases, such as CMDBs

So let us spend a while showing how to encode knowledge in topic maps using cf-know.

The kind of result you can expect is shown in the pictures below. The example figures show
typical pages generated by the knowledge agent cf-know. The first of these shows how we
use the technology to power the web knowledge base in the commercial CFEngine product.

In this use, all of the data are based on documentation for the CFEngine software, and
most of the relationships are manually entered.

For a second example, consider how CFEngine can generate such a knowledge map analysis
of its own configuration (self-analysis). The data in the images below describe the CFEngine
configuration promises. One such page is generated, for instance, for each policy promise, and
pages are generated for reports from different computers etc. You can also create you own
‘topic pages’ for any local (enterprise) information that you have.

In this example, the promise has been given the promise-handle update˙policy, and the
associations and the lower graph shows how this promise relates to other promises through
its documented dependencies (these are documented from the promisees and depends˙on
attributes of other promises.).

The example page shows two figures, one above the other. The upper figure shows the
thirty nearest topics (of any kind) that are related to this one. Here the relationships are
unspecific. This diagram can reveal pathways to related information that are often unexpected,
and illustrates relationships that broaden one’s understanding of the place the current promise
occupies within the whole.

Although the graphical illustrations are just renderings of semantic associations shown more
fully in text, they are useful for visualizing several levels of depth in the associative network.
This can be surprisingly useful for brainstorming and reasoning alike. In particular, one can see
the other promises that could be affected if we were to make a change to the current promise.
Such impact analyses can be crucial to planning change and release management of policy.

Chapter 5: Knowledge Management 35

� �
A knowledge base is a slightly improved implementation of a Topic Map which is an ISO

standard technology. A topic map works like an index that can point to many different kinds
of external resources, and may contain simple text and images internally. So you use it to bind
together documents of any kind. A CFEngine knowledge base is not a new document format,
it is an overlay map that joins ideas and resources together, and displays relationships.
 	

5.6 The nuts and bolts of topic maps

5.6.1 Topic map definitions

Topic maps are really electronic indices, but they form and work like webs. A topic is the
technical representation of a ‘subject’, i.e. anything you might want to discuss, abstract
or physical e.g. an item of ‘abstract knowledge’, which probably has a number of concrete
exemplars. It might be a person, a machine, a quality, etc.

Topics can be classified into boxes called topic-types so that related things can be collated
and unrelated things can be separated, e.g. types allow us to distinguish between rmdir the
Unix utility and rmdir the Unix system-call.

Each typed topic can further point to a number of references or exemplars called oc-
currences. For instance, an occurrence of the topic ‘computer’ might include books, web
documents, database entries, physical manifestations, or any other information. An occur-
rence is a reference that exemplifies the abstract topic. Occurrence references are like the
page numbers in an index.

A book index typically has ‘see also’ references which point from one topic to another.
Topic Maps allow one to define any kind of association between topics. Unlike an ordinary
index, a topic map has a rich (potentially infinite) variety of cross reference types. For instance,

topic˙1 ‘‘is a kind of’’ topic˙2

topic˙1 ‘‘is improved by’’ topic 2

topic˙1 ‘‘solves the problem of’’ topic˙2

The topic map model thus has three levels of containers:

Contexts The box into which we classify a topic to disambiguate different topics with the
same name (‘in the context of’)1.

Topics/Things
The representation of a subject (an index term).

Occurrence Types
A term that explains how an actual document occurrence relates to the topic is
claims to say something about. e.g. (tutorial, manual, or example, definition,
photo-album etc).

Occurrences
Specific information resources: these are pointers to the actual documents that
we want to read (like page numbers in an index).

Contexts map conveniently into CFEngine classes. Topics map conveniently into promisers.
Occurrences also map to promisers of a different type. These three label different levels of

1 Here, CFEngine differs from the topic map standard in allowing contexts to be overlapping sets, rather than
mutually exclusive ‘types’. CFEngine is guided by Promise Theory in this respect in order to enable distributed
cooperation and the development of a free and emergent ontology.

36 CFEngine 3 Concept Guide

granularity of meaning. Contexts represent a set of topics that might be relevant, which in
turn encompass a set of occurrences of resources that contain actual information about the
topics in that context. The primacy of topics in this stems from their ability to form networks
by association.

The classic approach to information modeling is to build a hierarchical decomposition of
non-overlapping objects. Data are manipulated into non-overlapping containers which often
prove to be overly restrictive. Topic maps allow us to avoid the kinds of mistakes that have
led to monstrosities like the Common Information Model (CIM) with its thousands of strictly
non-overlapping type categories.

Each topic allows us to effectively ‘shine a light’ onto the occurrences of information that
highlight the concepts pertinent to the topic somehow.

5.7 Example of topics promises

You can use cf-know to render a topic map either as text (for command line use) or as HTML
(for web rendering). We begin with the text rendering as it requires less infrastructure. You
will just need a database.

Try typing in the following knowledge promises:

body common control

–

bundlesequence =¿ – ”tm” ˝;

˝

###

bundle knowledge tm

–

topics:

”server” comment =¿ ”Common name for a computer in a desktop”;

”desktop” comment =¿ ”Common name for a computer for end users”;

programs:: # context of programs

”httpd” comment =¿ ”A web service process”;

”named” comment =¿ ”A name service process”;

services::

”WWW” comment =¿ ”World Wide Web service”,

association =¿ a(”is implemented by”,

”programs::httpd”,

”implements”);

if we don’t specify a context, it is ”any”

”WWW” association =¿ a(”looks up addresses with”,

”named”,

”serves addresses to”);

occurrences:

Chapter 5: Knowledge Management 37

httpd::

”http://www.apache.org”

represents =¿ – ”website” ˝;

˝

###

body association a(f,name,b)

–

forward˙relationship =¿ ”$(f)”;

backward˙relationship =¿ ”$(b)”;

associates =¿ – $(name) ˝;

˝

The simplified things interface is similar, but uses fixed relations:

bundle knowledge company˙knowledge

–

things:

regions::

”EMEA” comment =¿ ”Europe, The Middle-East and Africa”;

”APAC” comment =¿ ”Asia and the Pacific countries”;

countries::

”UK” synonyms =¿ – ”Great Britain” ˝,

is˙located˙in =¿ – ”EMEA”, ”Europe” ˝;

”Netherlands” synonyms =¿ – ”Holland” ˝,

is˙located˙in =¿ – ”EMEA”, ”Europe” ˝;

”Singapore” is˙located˙in =¿ – ”APAC”, ”Asia” ˝;

locations::

”London˙1” is˙located˙in =¿ – ”London”, ”UK” ˝;

”New˙Jersey” is˙located˙in =¿ – ”USA” ˝;

networks::

”192.23.45.0/24” comment =¿ ”Secure network, zone 0. Single octet for corporate offices”,

is˙connected˙to =¿ – ”oslo-hub-123” ˝;

5.7.1 Analyzing and indexing the policy

CFEngine can analyze the promises you have made, index and cross reference them using the
command:

cf-promises -r

Normally, the default policy in Nova/Enterprise will perform this command each time the
policy is changed.

38 CFEngine 3 Concept Guide

5.7.2 cf-know

CFEngine’s knowledge agent cf-know allows you to make promises about knowledge and its
inter-relationships. It is not specifically a generic topic map language: rather it provides a
powerful configuration language for managing a knowledge base that can be compiled into a
topic map.

To build a topic map from a set of knowledge promises in ‘knowledge.cf’, you would
write:

cf-know -b -f ./knowledge.cf

The syntax of this file is hinted at below. The full ISO standard topic map model is
too rich to be a useful tool for system knowledge management. However, this is where
powerful configuration management can help to simplify the process: encoding a topic map is
a complex problem in configuration, which is exactly what CFEngine is for. CFEngine’s topic
map promises have the following form:

bundle knowledge example

–

topics:

topic˙type˙context:: # canonical container

”Topic name” # short topic name

comment =¿ ”Use this for a longer description”,

association =¿ a(”forward assoc to”,”Other topic”,”backward assoc”);

”Other topic”;

occurrences:

Topic˙name:: # Topic

”http://www.example.org/document.xyz” # URI to instance

represents =¿ – ”Definition”, ”Tutorial”˝; # sub-types

˝

The association body templates look like this:

body association a(f,name,b)

–

forward˙relationship =¿ ”$(f)”;

backward˙relationship =¿ ”$(b)”;

associates =¿ – $(name) ˝;

˝

� �
Promise theory adds a clear structure to the topic map ontology, which is highly beneficial

as experience shows that weak conceptual models lead to poor knowledge maps.
 	

Chapter 5: Knowledge Management 39

5.8 Modeling configuration promises as topic maps

We can model topic maps as promises within CFEngine; the question then remains as to
how to use topic maps to model configurations so that CFEngine users can navigate the
documented promises using a web browser and be able to see all of the relationships between
otherwise isolated and fragmentary rules. This will form the basis of a semantic Configuration
Management Database (sCMDB) for the CFEngine software. The key to making these ends
meet is to see the configuration of the topic map as a number f promises made in the abstract
space of topics and the turning each promise into a meta-promise that models the configuration
as a topic with attendant associations. Consider the following CFEngine promise.

bundle agent update

–

files:

any::

‘‘/var/cfengine/inputs’’ -¿ – ‘‘policy˙team’’, ’’dependent’’ ˝,

comment =¿ ‘‘Check policy updates from source’’,

perms =¿ true,

mode =¿ 600,

copy˙from =¿ true,

copy˙source =¿ /policy/masterfiles,

compare =¿ digest,

depth˙search =¿ true,

depth =¿ inf,

ifelapsed =¿ 1;

˝

This system configuration promise can be mapped by CFEngine into a number of other
promise proposals intended for the cf-know agent. Suppressing some of the details, we have:

type˙files::

”/var/cfengine/inputs”

association =¿ a(”promise made in bundle”,”update”,”bundle

contains promise”);

”/var/cfengine/inputs”

association =¿ a(”specifies body type”,”perms”,”is specified in”);

”/var/cfengine/inputs”

association =¿ a(”specifies body type”,”mode”,”is specified in”);

”/var/cfengine/inputs”

association =¿ a(”specifies body type”,”copy˙from”,”is specified

in”);

etc ...

40 CFEngine 3 Concept Guide

occurrences:

˙var˙CFEngine˙inputs::

”promise˙output˙common.html#promise˙˙var˙CFEngine˙inputs˙update˙cf˙13”

represents =¿ – ”promise definition” ˝;

Note that in this mapping, the actual promise (viewed as a real world entity) is an occurrence
of the topic ‘promise’; at the same time each promise could be discussed as a different topic
allowing meta-modeling of the entity-relation model in the real-world data. Conversely the
topics themselves become configuration items or ‘promisers’ in the promise model. The effect
is to create a navigable semantic web for traversing the policy; this documents the structure
and intention of the policy using a small ontology of standard concepts and can be extended
indefinitely by human domain experts.

Chapter 6: More... 41

6 More...� �
You will find extensive help, examples and documentation as part of the commercial CFEngine
support. Visit the website http://www.cfengine.com for more details.
 	

Need help getting started?

• CFEngine Installation: http://cfengine.com/manuals/cf3-installation.html

• Get started, first promises: http://cfengine.com/manuals/cf3-tutorial.html#First-promises

For a complete overview:

• Tutorial: http://cfengine.com/manuals/cf3-tutorial.html

• Reference manual: http://cfengine.com/manuals/cf3-Reference.html

http://www.cfengine.com
http://cfengine.com/manuals/cf3-installation.html
http://cfengine.com/manuals/cf3-tutorial.html#First-promises
http://cfengine.com/manuals/cf3-tutorial.html
http://cfengine.com/manuals/cf3-Reference.html

