
Get started with CFEngine
A CFEngine Handbook

CFEngine AS

� �
This guide provides the first steps in understanding and writing your own
CFEngine policy files. It is recommended that you have a general understand-
ing of CFEngine concepts before proceeding (see CFEngine 3 Concept Guide:
http://cfengine.com/manuals/cf3-ConceptGuide.html).
 	

Copyright c© 2011- CFEngine AS

http://cfengine.com/manuals/cf3-ConceptGuide.html

i

Table of Contents

1 Getting started with CFEngine . 1
1.1 Prerequisites . 1
1.2 The work directory . 1
1.3 Example template . 1

2 How to execute and test a CFEngine policy 3
2.1 Hello world . 3
2.2 Create a file . 4
2.3 Create a directory . 6
2.4 Copy a file . 7
2.5 Copy directory trees . 7
2.6 Edit password files . 7
2.7 Disabling and rotating files . 8
2.8 Hashing for change detection (tripwire) . 8
2.9 Command or script execution . 8
2.10 Kill process . 9
2.11 Restart process . 9
2.12 Check filesystem space . 9
2.13 Mount a filesystem . 9
2.14 Software and patch installation . 10

3 An example bundle - update . 11

4 Beyond Getting Started . 13

Chapter 1: Getting started with CFEngine 1

1 Getting started with CFEngine

1.1 Prerequisites

This guide is assumes that CFEngine has been correctly installed on your system (see
installation guide: http://cfengine.com/manuals/cf3-installation.html. We
recommend you that have a basic understanding of CFEngine concepts before proceeding
(http://cfengine.com/manuals/cf3-conceptguide.html), but thanks to CFEngine’s
clear syntax you can also get a fair understanding by starting directly with these examples.

1.2 The work directory

CFEngine operates with the notion of a work-directory. The default work directory for the
root user is /var/cfengine. For any other user, the work directory lies in the user’s home
directory, named ˜/.cfagent. CFEngine prefers you to keep certain files here, you should not
resist this too strongly or you will make unnecessary trouble for yourself. Most experiments
can be safely tested as an ordinary user. You should spend some time experimenting with
small examples before setting out to configure a system as root. To do that you should log
onto your system as a regular unprivileged user and copy the binaries into the work directory:

host$ mkdir -p ˜/.cfagent/bin

host$ cp /usr/local/sbin/cf-* ˜/.cfagent/bin

You can now test the software and play with self-written experiments.

1.3 Example template

To begin with we will provide entire example policy files for clarity, but as we go along we will
drop the parts that are purely repetitive. In such cases we will abide by the following template,
you may test by entering the example as indicated and run CFEngine:

body common control

–

bundlesequence =¿ – ”test” ˝;

inputs =¿ – ”cfengine˙stdlib.cf” ˝;

˝

bundle agent test

–

example goes here

˝

http://cfengine.com/manuals/cf3-installation.html
http://cfengine.com/manuals/cf3-conceptguide.html

Chapter 2: How to execute and test a CFEngine policy 3

2 How to execute and test a CFEngine policy

2.1 Hello world

Here is the simplest ‘Hello world’ program in CFEngine 3:

Every policy must have a bundlesequence

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

#

bundle agent test

–

reports: # This is a promise type

cfengine˙3:: # This is a class context (the promise will only

be kept on a CFEngine˙3 system)

”Hello world”; # This is a simple promise (it generates a report

that says ”Hello world”)

˝

Type this in to a file, e.g. ‘emacs ˜/test.cf’. Then check the syntax like this

/usr/local/sbin/cf-promises -f ˜/test.cf

If all is well there should be no output. Now execute as follows:

/usr/local/sbin/cf-agent -f ˜/test.cf

You should see this:

R: Hello world

The ‘R:’ tells you this is the output from a report (as opposed to a log ‘L:’, or the quoted
output of some embedded program ‘Q:’).

This is not a typical CFEngine program, primarily because CFEngine is not normally meant to
print messages except in exceptional circumstances. As a starter however, it is reassuring to
see some output.

If you repeat the command immediately nothing will happen. But if you wait a minute, it
will work again. Run the command in verbose mode (use the -v or the --verbose switch) to
see why:

/usr/local/sbin/cf-agent --verbose -f ˜/test.cf

Now you will see:

cf3¿ ===

cf3¿ reports in bundle hello (1)

cf3¿ ===

4 Get started with CFEngine

cf3¿

cf3¿ XX Nothing promised here [lock.hello.reports..Hello˙worl] (0/1

minutes elapsed)

cf3¿

This tells you that CFEngine believes it is too soon to try to keep this promise again. The
time it sets on this is determined by the ifelapsed parameter, which can be set individually
for every promise. You can also ask CFEngine to ignore these locks using the ‘-K’ option.

Before the ‘Hello world’ string, you see the class expression ‘cfengine˙3::’. This is how
CFEngine makes decisions. The promise to print the message will only apply if this condition
is true. To see that this class is true for the execution, look at the verbose output from the
command you just typed. You will see something like this:

Defined Classes = (any verbose˙mode Tuesday Hr08 Morning Min48

Min45˙50 Q4 Hr08˙Q4 Day7 July Yr2009 Lcycle˙2 GMT˙Hr6 linux atlas

undefined˙domain 64˙bit linux˙2˙6˙27˙23˙0˙1˙default x86˙64

linux˙x86˙64 linux˙x86˙64˙2˙6˙27˙23˙0˙1˙default

linux˙x86˙64˙2˙6˙27˙23˙0˙1˙default˙˙1˙SMP˙2009˙05˙26˙17˙02˙05˙˙0400

compiled˙on˙linux˙gnu localhost˙localdomain localhost net˙iface˙lo

net˙iface˙wlan0 ipv4˙192˙168˙1˙100 ipv4˙192˙168˙1 ipv4˙192˙168

ipv4˙192 fe80˙˙21c˙bfff˙fe6e˙70ef CFEngine˙3˙0˙2b4 CFEngine˙3˙0

CFEngine 3 SuSE lsb˙compliant suse suse˙n/a suse˙11˙1 suse˙11
agent)

i.e. a list of all the currently defined classes. Any one of these classes (or a combination)
could have been used to label the promise. That is the way CFEngine points to which promises
will be kept in which scenarios.

A final thing to note: if you try to process this using the ‘cf-promises -r’ command, you
will see something like this:

atlas$ ˜/LapTop/CFEngine3/trunk/src/cf-promises -r -f ˜/test.cf

Summarizing promises as text to ˜/test.cf.txt

Summarizing promises as html to ˜/test.cf.html

The ‘-r’ option produces a report. Examine the files produced:
cat ˜/test.cf.txt

firefox ˜/test.cf.html

You will see a summary of how CFEngine interprets the files, either in HTML or text. All
the CFEngine components will produce debugging file with an expanded view when using this
option (e.g. for the configuration file named ‘promise˙output˙agent.h’, they will create the
files ‘promise˙output˙agent.html’ and ‘promise˙output˙agent.txt’).

Until now we have tested examples from a file in your home directory (˜/). It is of course
possible to place and execute files anywhere, but it is good practice to keep a separate directory
for your CFEngine policy files. The default directory is ˜/.cfagent/inputs/ for regular users,
and /var/cfengine/inputs/ for root. In the following we assume that you work from the
default input directory.

2.2 Create a file

We will be using the CFEngine Community Open Promise-Body Library (cfengine stdlib.cf) in
the following example. This is a library of definitions that can be obtained from the CFEngine
website (most recent version) or found in ‘/usr/local/share/cfengine/masterfiles’. It
should be included in the ‘inputs’ directory and used as shown in the example below. To copy
the file to ‘inputs’:

Chapter 2: How to execute and test a CFEngine policy 5

cp /usr/local/share/cfengine/masterfiles/cfengine˙stdlib.cf ˜/.cfagent/inputs

Go to the default input directory (e.g. cd ˜/.cfagent/inputs). Type in the following exam-
ple in ‘˜/.cfagent/inputs/test.cf’:

body common control

–

bundlesequence =¿ – ”test” ˝;

inputs =¿ – ”cfengine˙stdlib.cf” ˝;

˝

bundle agent test

–

files:

This is a throw-away comment, below is a full-bodied promise

”/tmp/testfile” # promiser

comment =¿ ”This is for keeps”, # Live comment

create =¿ ”true”, # Constraint 1

perms =¿ m(”612”); # Constraint 2, rw---x-w-

˝

The template ‘m’ is defined within ‘cfengine˙stdlib.cf’:

This is a trivial body template, which makes parameterizing

the promise body tidier and re-usable

body perms m(x)

–

mode =¿ ”$(x)”;

˝

This example shows how additional attributes are added to the body of the promise. The
right hand side of the perms declaration is a template which we have called ‘m()’, which uses
a parameter. The template is defined below the bundle of promises that uses it, showing how
we can create re-usable sets of parameters. In this case, the example is trivial, but we have
barely begun. When things get more sophisticated, we shall hide a huge amount of detail in
these parameters, thus keeping the main promise uncluttered and its intention clear.� �

In every ’promise constraint’ of the form ‘left-hand-side =¿ right-hand-side’, the left
hand side is a CFEngine reserved word, and the right hand side is a decision you make, possibly
expressed in terms of standard templates.
 	

Now execute cf-agent with this promise:

6 Get started with CFEngine

host$ /usr/local/sbin/cf-agent -f test.cf -I
Couldn’t find a private key (/home/geir/.cfagent/ppkeys/localhost.priv) - use cf-key to get one

!!! System error for fopen: ”No such file or directory”

-¿ Created file /tmp/testfile, mode = 612

The ‘-I’ flag tells CFEngine to ’inform’ us about changes only. This provides a digestible
amount of output that is more than the default (which is to only report un-fixable problems
or explicit reports). Despite the error message,1 we see that CFEngine creates the file as
ordered, and sets the permissions appropriately. Look for the file that was that was created
and see what happens when permissions are changed:

host$ ls -l /tmp/testfile
-rw---x-w- 1 mark users 33 2009-06-30 06:06 /tmp/testfile

host$ chmod 400 /tmp/testfile

host$ ls -l /tmp/testfile
-r-------- 1 mark users 33 2009-06-30 06:06 /tmp/testfile

host$ /usr/local/sbin/cf-agent -f test.cf -I
-¿ Object /tmp/testfile had permission 400, changed it to 612

host$ ls -l /tmp/testfile
-rw---x-w- 1 mark users 33 2009-06-30 06:06 /tmp/testfile

Once again, remember the comment about locking and ifelapsed from the previous
example.

Notice that this promise does not have a class expression like cfengine˙3::. The default
class any:: applies if nothing is stated, which means ‘anytime, anyplace, anywhere’.

2.3 Create a directory

Creating a directory is not much different from creating a file, suffice to replace the file
name with a directory name in the test bundle (inside bundle agent test; keep the rest of
‘test.cf’ as is):

bundle agent test

–

files:

”/tmp/test˙dir/.” ¡--- This is the only change!

comment =¿ ”Creating dir...”,

create =¿ ”true”,

perms =¿ m(”612”);

˝

1 Encryption keys are user-specific and CFEngine complains since none have been created for users that
are not root. This is not important in the setting of these examples, but you will have to set up a key
if you wish to communicate with other machines as a non-root user under CFEngine management (see
http://cfengine.com/manuals/cf3-reference.html#Remote-access-troubleshooting). Type cf-key to create
keys and avoid seeing this error message in the future.

Chapter 2: How to execute and test a CFEngine policy 7

2.4 Copy a file

To copy the contents of our CFEnginge test policy file ‘test.cf’ to ‘testfile’:

files:

”/tmp/testfile”

copy˙from =¿ local˙cp(”$(sys.workdir)/inputs/test.cf”);

2.5 Copy directory trees

files:

”/tmp/test˙dir”

copy˙from =¿ local˙cp(”$(sys.workdir)/bin/.”),

depth˙search =¿ recurse(”inf”);

2.6 Edit password files

To change root password of a system, we need to edit a file. A file is a complex object – once
open there is a new world of possible promises to make about its contents. CFEngine has
bundles of promises that are specially for editing. Make a copy of a shadow file and copy it to
‘/tmp’ so that you can play with it. We will use the sudo command to temporarily act as root
in order to do this (you will be prompted for the root password), ¡OWNER¿ is your username,
¡GROUP¿ is your user group (often the same as your username on ubuntu, or users on other
systems)):

host$ sudo cp /etc/shadow /tmp
host$ sudo chown ¡OWNER¿:¡GROUP¿ /tmp/shadow

Type the following into your test bundle:

files:

”/tmp/shadow”

comment =¿ ”Set the root password”,

edit˙line =¿ set˙user˙field(”root”,2,”xyajd673j.ajhfu”);

Thanks to CFEngine’s easy-to-understand syntax this is all we need to see on first inspection
to understand the promise that is being made. Now execute cf-agent with this promise:

host$ ˜/.cfagent/inputs$ /usr/local/sbin/cf-agent -f test.cf -I
-¿ Setting field sub-value xyajd673j.ajhfu in /tmp/shadow

-¿ Edited field inside file object /tmp/shadow

-¿ Edited file /tmp/shadow

8 Get started with CFEngine

Have a look at the file to see that the changes have been made:

host$ cat /tmp/shadow
root:xyajd673j.ajhfu:15112:0:99999:7:::

daemon:*:15112:0:99999:7:::

...

2.7 Disabling and rotating files

Examples will become more generic from now, you may need to modifiy to adapt to local
variables.

files:

”/tmp/test˙create”

rename =¿ disable;

”/tmp/rotateme”

rename =¿ rotate(”4”);

2.8 Hashing for change detection (tripwire)

files:

”/home/mark/tmp” -¿ ”me”

changes =¿ detect˙all˙change,

depth˙search =¿ recurse(”inf”),

action =¿ background;

”/home/mark/LapTop/words” -¿ ”you”

changes =¿ detect˙all˙change,

depth˙search =¿ recurse(”inf”);

2.9 Command or script execution

commands:

Sunday.Hr04.Min05˙10.myhost::

”/usr/bin/update˙db”;

any::

Chapter 2: How to execute and test a CFEngine policy 9

”/etc/mysql/start”

contain =¿ setuid(”mysql”);

2.10 Kill process

processes:

”snmpd”

signals =¿ – ”term”, ”kill” ˝;

2.11 Restart process

processes:

”httpd”

restart˙class =¿ ”lift˙off”;

commands:

lift˙off::

”/etc/init.d/apache2 restart”;

Why? Separating this into two parts gives a high level of control and conistency to CFEngine.
There are many options for command execution, like the ability to run commands in a sandbox
or as ‘setuid’. These should not be reproduced in processes.

2.12 Check filesystem space

storage:

”/usr” volume =¿ mycheck(”10%”);

2.13 Mount a filesystem

storage:

”/home/mark/server˙home”

10 Get started with CFEngine

mount =¿ nfs(”myserver”,”/home/mark”);

2.14 Software and patch installation

packages:

”apache2”

package˙policy =¿ ”add”,

package˙method =¿ generic;

Chapter 3: An example bundle - update 11

3 An example bundle - update

The default CFEngine configuration contains a bundle of promises that copies the CFEngine
binaries into the cache directory and copies the policy files from the server into the default
location. This example is for local copying from file to file on the filesystem. Later, when we
set up a server component, you will be able to copy from a remote host. This is a simple
example of system provisioning, with automated update.

bundle agent update

–

vars:

A standard location for the source point

”master˙location” string =¿ ”/var/cfengine/masterfiles”;

files:

”/var/cfengine/inputs”

comment =¿ ”Update the policy files from the master”,

perms =¿ u˙m(”600”),

copy˙from =¿ u˙cp(”$(master˙location)”,”localhost”),

depth˙search =¿ u˙recurse(”inf”);

”/var/cfengine/bin”

comment =¿ ”Update the cached binaries from installation”,

perms =¿ u˙m(”700”),

copy˙from =¿ u˙cp(”/usr/local/sbin”,”localhost”),

depth˙search =¿ u˙recurse(”2”);

˝

These promises contain several attributes in their bodies that we have not seen yet. The
copy˙from attribute tells CFEngine how to source (copy) a file from a master location. The
depth˙search tells it to search recursively through the sub-directories and their files.

Try changing the source files and executing the agent.

Again there are library reusable templates:

body perms u˙m(p)

–

mode =¿ ”$(p)”;

˝

#

body copy˙from u˙cp(from,server)

12 Get started with CFEngine

–

servers =¿ – ”$(server)”, ”failover.example.org” ˝;

source =¿ ”$(from)”;

compare =¿ ”digest”;

˝

#

body depth˙search u˙recurse(d)

–

depth =¿ ”$(d)”;

exclude˙dirs =¿ – ”“.X11”, ”.*kde.*”, ”logs”, ”log” ˝;

˝

Here is an exercise: try using the reference manual to look up the elements in this example.
See if you can understand all the parts.

Chapter 4: Beyond Getting Started 13

4 Beyond Getting Started

You should now have a basic understanding of CFEngine and how it works. A good place to
continue is the CFEngine Solutions guide (http://cfengine.com/manuals/cf3-solutions.html),
which shows solutions to generic low- and high-level issues. You may skip the Introduction as
it has been covered in this document.

We recommend the following reading:

• CFEngine Concepts: http://cfengine.com/manuals/cf3-conceptguide.html

• Installation: http://cfengine.com/manuals/cf3-installation.html

For a complete overview:

• Tutorial: http://cfengine.com/manuals/cf3-tutorial.html

• Reference manual: http://cfengine.com/manuals/cf3-reference.html

Links to external resources:

• Getting Started with CFEngine 3 by Vertical Sysadmin:
http://www.verticalsysadmin.com/cfengine/Getting˙Started˙with˙CFEngine˙

3.pdf

• CFEngine 3 Beginning Examples:
http://www.verticalsysadmin.com/cfengine/beginning˙examples/

This is, basically, a selection from /usr/local/share/doc/cfengine/ which has over 200
examples.

• ”CFEngine 3 Tutorial” by Neil Watson:
http://watson-wilson.ca/2011/05/cfengine-3-cookbook-begins.html

http://cfengine.com/manuals/cf3-solutions.html
http://cfengine.com/manuals/cf3-conceptguide.html
http://cfengine.com/manuals/cf3-installation.html
http://cfengine.com/manuals/cf3-tutorial.html
http://cfengine.com/manuals/cf3-reference.html
http://www.verticalsysadmin.com/cfengine/Getting_Started_with_CFEngine_3.pdf
http://www.verticalsysadmin.com/cfengine/Getting_Started_with_CFEngine_3.pdf
http://www.verticalsysadmin.com/cfengine/beginning_examples/
http://watson-wilson.ca/2011/05/cfengine-3-cookbook-begins.html

