
Cfengine Reference Manual
Auto generated, self-healing knowledge

Documentation for core version 3.1.0
Contains Nova extensions at version 2.0.0

cfengine.com

� �
Under no circumstances shall Cfengine AS be liable for errors or omissions in this document. All
efforts have been made to ensure the correctness of the information contained herein.
 	

Copyright c© 2008,2010 to the year of issue Cfengine AS

i

Table of Contents

1 Cfengine 3.1.0 – Getting started . 1

1.1 Software components . 1
1.1.1 cf-agent . 1
1.1.2 cf-execd . 2
1.1.3 cf-know* . 2
1.1.4 cf-monitord . 2
1.1.5 cf-promises . 2
1.1.6 cf-runagent . 2
1.1.7 cf-serverd . 2
1.1.8 cf-report . 2
1.1.9 cf-key . 2
1.1.10 cf-hub . 3

1.2 Core concepts . 3
1.3 A renewed cfengine . 3
1.4 Installation . 4
1.5 Syntax, identifiers and names . 5
1.6 The work directory . 5
1.7 Cfengine hard classes . 6
1.8 Global and local classes . 7
1.9 Filenames and paths . 8
1.10 Upgrading from cfengine 2 . 9
1.11 Testing as a non-privilieged user . 9
1.12 The ‘bare necessities’ of a cfengine 3 . 10
1.13 Familiarizing yourself . 11
1.14 Remote access troubleshooting . 14

1.14.1 Server connection . 14
1.14.2 Key exchange . 14
1.14.3 Time windows (races) . 15
1.14.4 Other users than root . 16
1.14.5 Encryption . 16

2 A simple crash course in concepts . 17

2.1 Rules are promises . 17
2.2 Best practice for writing promises . 18
2.3 Containers . 19
2.4 When and where are promises made? . 20
2.5 Types in cfengine 3 . 22
2.6 Datatypes in cfengine 3 . 22
2.7 Variable expansion in cfengine 3 . 22

2.7.1 Scalar variable expansion . 22
2.7.2 List variable substitution and expansion . 23
2.7.3 Special list value cf_null . 25
2.7.4 Arrays in cfengine 3 . 25

ii Cfengine reference manual

2.8 Normal ordering . 26
2.8.1 Agent normal ordering . 26
2.8.2 Server normal ordering . 27
2.8.3 Monitor normal ordering . 27
2.8.4 Knowledge normal ordering . 28

2.9 Loops and lists in cfengine 3 . 28
2.10 Pattern matching and referencing . 30

2.10.1 Runaway change warning . 33
2.10.2 Commenting lines . 33
2.10.3 Regular expressions in paths . 34
2.10.4 Anchored vs. unanchored regular expressions 36
2.10.5 Special topics on Regular Expressions . 36

2.11 Distributed discovery . 37
2.12 Developer structures . 38

3 How to run cfengine 3 examples . 39

4 A complete configuration . 41

4.1 ‘promises.cf’ . 41
4.2 ‘site.cf’ . 43
4.3 ‘update.cf’ . 50
4.4 ‘failsafe.cf’ . 51
4.5 What should a failsafe and update file contain? . 52
4.6 Recovery from errors in the configuration . 52
4.7 Recovery from errors in the software . 54

5 Control promises . 57

5.1 common control promises . 57
5.1.1 bundlesequence . 57
5.1.2 ignore_missing_bundles . 59
5.1.3 ignore_missing_inputs . 59
5.1.4 inputs . 60
5.1.5 version . 61
5.1.6 lastseenexpireafter . 61
5.1.7 output_prefix . 61
5.1.8 domain . 62
5.1.9 require_comments . 62
5.1.10 host_licenses_paid . 63
5.1.11 syslog_host . 63
5.1.12 syslog_port . 64
5.1.13 fips_mode . 64

5.2 agent control promises . 65
5.2.1 abortclasses . 65
5.2.2 abortbundleclasses . 66
5.2.3 addclasses . 67
5.2.4 agentaccess . 68
5.2.5 agentfacility . 68

iii

5.2.6 auditing . 69
5.2.7 binarypaddingchar . 70
5.2.8 bindtointerface . 70
5.2.9 hashupdates . 70
5.2.10 childlibpath . 71
5.2.11 checksum_alert_time . 71
5.2.12 defaultcopytype . 72
5.2.13 dryrun . 72
5.2.14 editbinaryfilesize . 73
5.2.15 editfilesize . 74
5.2.16 environment . 74
5.2.17 exclamation . 75
5.2.18 expireafter . 75
5.2.19 files_single_copy . 76
5.2.20 files_auto_define . 76
5.2.21 hostnamekeys . 77
5.2.22 ifelapsed . 77
5.2.23 inform . 78
5.2.24 intermittency . 79
5.2.25 max_children . 79
5.2.26 maxconnections . 80
5.2.27 mountfilesystems . 81
5.2.28 nonalphanumfiles . 81
5.2.29 repchar . 82
5.2.30 default_repository . 82
5.2.31 secureinput . 83
5.2.32 sensiblecount . 83
5.2.33 sensiblesize . 84
5.2.34 skipidentify . 84
5.2.35 suspiciousnames . 85
5.2.36 syslog . 85
5.2.37 track_value . 86
5.2.38 timezone . 86
5.2.39 default_timeout . 87
5.2.40 verbose . 87

5.3 server control promises . 88
5.3.1 cfruncommand . 88
5.3.2 maxconnections . 89
5.3.3 denybadclocks . 89
5.3.4 allowconnects . 90
5.3.5 denyconnects . 90
5.3.6 allowallconnects . 91
5.3.7 trustkeysfrom . 92
5.3.8 allowusers . 92
5.3.9 dynamicaddresses . 92
5.3.10 skipverify . 93
5.3.11 logallconnections . 93
5.3.12 logencryptedtransfers . 94

iv Cfengine reference manual

5.3.13 hostnamekeys . 94
5.3.14 auditing . 95
5.3.15 bindtointerface . 96
5.3.16 serverfacility . 96
5.3.17 port . 97
5.3.18 keycacheTTL . 97

5.4 monitor control promises . 98
5.4.1 forgetrate . 98
5.4.2 monitorfacility . 99
5.4.3 histograms . 99
5.4.4 tcpdump . 100
5.4.5 tcpdumpcommand . 101

5.5 runagent control promises . 101
5.5.1 hosts . 102
5.5.2 port . 102
5.5.3 force_ipv4 . 103
5.5.4 trustkey . 103
5.5.5 encrypt . 104
5.5.6 background_children . 105
5.5.7 max_children . 105
5.5.8 output_to_file . 106
5.5.9 timeout . 107

5.6 executor control promises . 107
5.6.1 splaytime . 107
5.6.2 mailfrom . 108
5.6.3 mailto . 108
5.6.4 smtpserver . 109
5.6.5 mailmaxlines . 109
5.6.6 schedule . 110
5.6.7 executorfacility . 110
5.6.8 exec_command . 111

5.7 knowledge control promises . 111
5.7.1 build_directory . 112
5.7.2 document_root . 113
5.7.3 generate_manual . 113
5.7.4 graph_directory . 114
5.7.5 graph_output . 114
5.7.6 html_banner . 115
5.7.7 html_footer . 115
5.7.8 id_prefix . 116
5.7.9 manual_source_directory . 116
5.7.10 query_engine . 117
5.7.11 query_output . 117
5.7.12 sql_type . 118
5.7.13 sql_database . 118
5.7.14 sql_owner . 119
5.7.15 sql_passwd . 119
5.7.16 sql_server . 119

v

5.7.17 sql_connection_db . 120
5.7.18 style_sheet . 120
5.7.19 view_projections . 121

5.8 reporter control promises . 121
5.8.1 aggregation_point . 122
5.8.2 auto_scaling . 122
5.8.3 build_directory . 123
5.8.4 csv2xml . 124
5.8.5 error_bars . 124
5.8.6 html_banner . 125
5.8.7 html_embed . 125
5.8.8 html_footer . 126
5.8.9 query_engine . 126
5.8.10 reports . 127
5.8.11 report_output . 128
5.8.12 style_sheet . 128
5.8.13 time_stamps . 129

5.9 hub control promises . 130
5.9.1 export_zenoss . 130
5.9.2 hub_schedule . 131

6 Bundles of common . 133

6.1 vars promises . 133
6.1.1 string . 133
6.1.2 int . 134
6.1.3 real . 134
6.1.4 slist . 135
6.1.5 ilist . 136
6.1.6 rlist . 136
6.1.7 policy . 137

6.2 classes promises . 138
6.2.1 or . 138
6.2.2 and . 138
6.2.3 xor . 139
6.2.4 dist . 139
6.2.5 expression . 140
6.2.6 not . 140

6.3 reports promises . 140
6.3.1 friend_pattern . 141
6.3.2 intermittency . 141
6.3.3 lastseen . 141
6.3.4 printfile (compound body) . 142
6.3.5 report_to_file . 143
6.3.6 showstate . 144

6.4 * promises . 146
6.4.1 action (compound body) . 146
6.4.2 classes (compound body) . 158
6.4.3 ifvarclass . 163

vi Cfengine reference manual

6.4.4 handle . 164
6.4.5 depends_on . 165
6.4.6 comment . 165

7 Bundles of agent . 167

7.1 commands promises in ‘agent’ . 167
7.1.1 args . 168
7.1.2 contain (compound body) . 169
7.1.3 module . 174

7.2 databases promises in ‘agent’ . 176
7.2.1 database_server (compound body) . 179
7.2.2 database_type . 181
7.2.3 database_operation . 181
7.2.4 database_columns . 182
7.2.5 database_rows . 182
7.2.6 registry_exclude . 183

7.3 environments promises in ‘agent’ . 184
7.3.1 environment_host . 184
7.3.2 environment_interface (compound body) . 185
7.3.3 environment_resources (compound body) . 187
7.3.4 environment_state . 190
7.3.5 environment_type . 191

7.4 files promises in ‘agent’ . 192
7.4.1 acl (compound body) . 199
7.4.2 changes (compound body) . 204
7.4.3 copy_from (compound body) . 206
7.4.4 create . 219
7.4.5 delete (compound body) . 220
7.4.6 depth_search (compound body) . 222
7.4.7 edit_line . 226
7.4.8 edit_xml . 226
7.4.9 edit_defaults (compound body) . 226
7.4.10 file_select (compound body) . 229
7.4.11 link_from (compound body) . 238
7.4.12 move_obstructions . 241
7.4.13 pathtype . 242
7.4.14 perms (compound body) . 243
7.4.15 rename (compound body) . 245
7.4.16 repository . 248
7.4.17 touch . 248
7.4.18 transformer . 249

7.5 * promises in ‘edit_line’ . 250
7.5.1 select_region (compound body) . 251

7.6 delete_lines promises in ‘edit_line’ . 254
7.6.1 delete_select (compound body) . 254
7.6.2 not_matching . 258

7.7 insert_lines promises in ‘edit_line’ . 258
7.7.1 expand_scalars . 261

vii

7.7.2 insert_type . 262
7.7.3 insert_select (compound body) . 263
7.7.4 location (compound body) . 266
7.7.5 whitespace_policy . 268

7.8 field_edits promises in ‘edit_line’ . 269
7.8.1 edit_field (compound body) . 271

7.9 replace_patterns promises in ‘edit_line’ . 275
7.9.1 replace_with (compound body) . 276

7.10 interfaces promises in ‘agent’ . 277
7.10.1 tcp_ip (compound body) . 278

7.11 methods promises in ‘agent’ . 279
7.11.1 usebundle . 281

7.12 outputs promises in ‘agent’ . 281
7.12.1 output_level . 281
7.12.2 promiser_type . 282

7.13 packages promises in ‘agent’ . 283
7.13.1 package_architectures . 286
7.13.2 package_method (compound body) . 287
7.13.3 package_policy . 301
7.13.4 package_select . 302
7.13.5 package_version . 303

7.14 processes promises in ‘agent’ . 303
7.14.1 process_count (compound body) . 307
7.14.2 process_select (compound body) . 309
7.14.3 process_stop . 314
7.14.4 restart_class . 315
7.14.5 signals . 315

7.15 services promises in ‘agent’ . 317
7.15.1 service_policy . 318
7.15.2 service_dependencies . 318
7.15.3 service_method (compound body) . 319

7.16 storage promises in ‘agent’ . 321
7.16.1 mount (compound body) . 322
7.16.2 volume (compound body) . 325

8 Bundles of server . 329

8.1 access promises in ‘server’ . 329
8.1.1 Access Example . 330
8.1.2 admit . 330
8.1.3 deny . 331
8.1.4 maproot . 331
8.1.5 ifencrypted . 332
8.1.6 resource_type . 333

8.2 roles promises in ‘server’ . 334
8.2.1 authorize . 335

viii Cfengine reference manual

9 Bundles of knowledge . 337

9.1 topics promises in ‘knowledge’ . 337
9.1.1 association (compound body) . 338
9.1.2 comment . 339

9.2 occurrences promises in ‘knowledge’ . 340
9.2.1 represents . 340
9.2.2 representation . 341
9.2.3 web_root . 342
9.2.4 path_root . 342

9.3 inferences promises in ‘knowledge’ . 343
9.3.1 precedent . 344
9.3.2 qualifier . 344

10 Bundles of monitor . 345

10.1 measurements promises in ‘monitor’ . 345
10.1.1 stream_type . 348
10.1.2 data_type . 349
10.1.3 history_type . 350
10.1.4 units . 350
10.1.5 match_value (compound body) . 351

11 Special functions . 355

11.1 Introduction to functions . 355
11.1.1 Functions listed by return value . 355

Functions which return class . 355
Functions which return (i,r,s)list . 355
Functions which return int . 356
Functions which return (i,r)range . 356
Functions which return real . 356
Functions which return string . 356

11.1.2 Functions which fill arrays . 356
11.1.3 Functions which read “large” data . 357

Functions which read arrays . 357
Functions which read disk data . 357
Functions which read from a remote-cfengine . 357
Functions which read classes . 357
Functions which read command output . 357
Functions which read the environment . 357
Functions which read files . 357
Functions which read LDAP data . 358
Functions which read from the network . 358
Functions which read the Windows registry . 358
Functions which read (i,r,s)lists . 358
Functions which read strings . 358

11.1.4 Functions which look at file metadata . 358
11.1.5 Functions which look at variables . 358
11.1.6 Functions involving date or time . 359

ix

11.1.7 Functions which work with or on regular expressions 359
11.2 Function accessedbefore . 359
11.3 Function accumulated . 360
11.4 Function ago . 362
11.5 Function canonify . 363
11.6 Function changedbefore . 364
11.7 Function classify . 365
11.8 Function classmatch . 365
11.9 Function countclassesmatching . 366
11.10 Function countlinesmatching . 367
11.11 Function diskfree . 368
11.12 Function escape . 368
11.13 Function execresult . 369
11.14 Function fileexists . 370
11.15 Function filesexist . 371
11.16 Function getenv . 372
11.17 Function getfields . 373
11.18 Function getgid . 374
11.19 Function getindices . 375
11.20 Function getuid . 376
11.21 Function getusers . 377
11.22 Function grep . 377
11.23 Function groupexists . 378
11.24 Function hash . 379
11.25 Function hashmatch . 380
11.26 Function host2ip . 381
11.27 Function hostinnetgroup . 381
11.28 Function hostrange . 382
11.29 Function hostsseen . 383
11.30 Function hubknowledge . 383
11.31 Function iprange . 384
11.32 Function irange . 385
11.33 Function isdir . 385
11.34 Function isexecutable . 386
11.35 Function isgreaterthan . 387
11.36 Function islessthan . 388
11.37 Function islink . 389
11.38 Function isnewerthan . 389
11.39 Function isplain . 390
11.40 Function isvariable . 391
11.41 Function join . 392
11.42 Function lastnode . 393
11.43 Function laterthan . 394
11.44 Function ldaparray . 394
11.45 Function ldaplist . 395
11.46 Function ldapvalue . 396
11.47 Function now . 398
11.48 Function on . 398

x Cfengine reference manual

11.49 Function peers . 399
11.50 Function peerleader . 400
11.51 Function peerleaders . 402
11.52 Function product . 403
11.53 Function randomint . 404
11.54 Function readfile . 404
11.55 Function readintarray . 405
11.56 Function readintlist . 406
11.57 Function readrealarray . 407
11.58 Function readreallist . 408
11.59 Function readstringarray . 410
11.60 Function readstringarrayidx . 411
11.61 Function readstringlist . 413
11.62 Function readtcp . 414
11.63 Function regarray . 415
11.64 Function regcmp . 416
11.65 Function regextract . 418
11.66 Function registryvalue . 419
11.67 Function regline . 420
11.68 Function reglist . 421
11.69 Function regldap . 422
11.70 Function remotescalar . 423
11.71 Function remoteclassesmatching . 424
11.72 Function returnszero . 425
11.73 Function rrange . 426
11.74 Function selectservers . 426
11.75 Function splayclass . 428
11.76 Function splitstring . 430
11.77 Function strcmp . 431
11.78 Function sum . 432
11.79 Function translatepath . 432
11.80 Function usemodule . 433
11.81 Function userexists . 434

12 Special Variables . 437

12.1 Variable context const . 437
12.1.1 Variable const.dollar . 437
12.1.2 Variable const.endl . 437
12.1.3 Variable const.n . 437
12.1.4 Variable const.r . 438
12.1.5 Variable const.t . 438

12.2 Variable context edit . 438
12.2.1 Variable edit.filename . 439

12.3 Variable context match . 439
12.3.1 Variable match.0 . 439

12.4 Variable context mon . 440
12.4.1 Variable mon.value users . 440
12.4.2 Variable mon.av users . 440

xi

12.4.3 Variable mon.dev users . 440
12.4.4 Variable mon.value rootprocs . 440
12.4.5 Variable mon.av rootprocs . 440
12.4.6 Variable mon.dev rootprocs . 440
12.4.7 Variable mon.value otherprocs . 440
12.4.8 Variable mon.av otherprocs . 440
12.4.9 Variable mon.dev otherprocs . 441
12.4.10 Variable mon.value diskfree . 441
12.4.11 Variable mon.av diskfree . 441
12.4.12 Variable mon.dev diskfree . 441
12.4.13 Variable mon.value loadavg . 441
12.4.14 Variable mon.av loadavg . 441
12.4.15 Variable mon.dev loadavg . 441
12.4.16 Variable mon.value netbiosns in . 441
12.4.17 Variable mon.av netbiosns in . 441
12.4.18 Variable mon.dev netbiosns in . 441
12.4.19 Variable mon.value netbiosns out . 441
12.4.20 Variable mon.av netbiosns out . 442
12.4.21 Variable mon.dev netbiosns out . 442
12.4.22 Variable mon.value netbiosdgm in . 442
12.4.23 Variable mon.av netbiosdgm in . 442
12.4.24 Variable mon.dev netbiosdgm in . 442
12.4.25 Variable mon.value netbiosdgm out . 442
12.4.26 Variable mon.av netbiosdgm out . 442
12.4.27 Variable mon.dev netbiosdgm out . 442
12.4.28 Variable mon.value netbiosssn in . 442
12.4.29 Variable mon.av netbiosssn in . 442
12.4.30 Variable mon.dev netbiosssn in . 442
12.4.31 Variable mon.value netbiosssn out . 443
12.4.32 Variable mon.av netbiosssn out . 443
12.4.33 Variable mon.dev netbiosssn out . 443
12.4.34 Variable mon.value irc in . 443
12.4.35 Variable mon.av irc in . 443
12.4.36 Variable mon.dev irc in . 443
12.4.37 Variable mon.value irc out . 443
12.4.38 Variable mon.av irc out . 443
12.4.39 Variable mon.dev irc out . 443
12.4.40 Variable mon.value cfengine in . 443
12.4.41 Variable mon.av cfengine in . 443
12.4.42 Variable mon.dev cfengine in . 444
12.4.43 Variable mon.value cfengine out . 444
12.4.44 Variable mon.av cfengine out . 444
12.4.45 Variable mon.dev cfengine out . 444
12.4.46 Variable mon.value nfsd in . 444
12.4.47 Variable mon.av nfsd in . 444
12.4.48 Variable mon.dev nfsd in . 444
12.4.49 Variable mon.value nfsd out . 444
12.4.50 Variable mon.av nfsd out . 444

xii Cfengine reference manual

12.4.51 Variable mon.dev nfsd out . 444
12.4.52 Variable mon.value smtp in . 444
12.4.53 Variable mon.av smtp in . 445
12.4.54 Variable mon.dev smtp in . 445
12.4.55 Variable mon.value smtp out . 445
12.4.56 Variable mon.av smtp out . 445
12.4.57 Variable mon.dev smtp out . 445
12.4.58 Variable mon.value www in . 445
12.4.59 Variable mon.av www in . 445
12.4.60 Variable mon.dev www in . 445
12.4.61 Variable mon.value www out . 445
12.4.62 Variable mon.av www out . 445
12.4.63 Variable mon.dev www out . 445
12.4.64 Variable mon.value ftp in . 446
12.4.65 Variable mon.av ftp in . 446
12.4.66 Variable mon.dev ftp in . 446
12.4.67 Variable mon.value ftp out . 446
12.4.68 Variable mon.av ftp out . 446
12.4.69 Variable mon.dev ftp out . 446
12.4.70 Variable mon.value ssh in . 446
12.4.71 Variable mon.av ssh in . 446
12.4.72 Variable mon.dev ssh in . 446
12.4.73 Variable mon.value ssh out . 446
12.4.74 Variable mon.av ssh out . 446
12.4.75 Variable mon.dev ssh out . 447
12.4.76 Variable mon.value wwws in . 447
12.4.77 Variable mon.av wwws in . 447
12.4.78 Variable mon.dev wwws in . 447
12.4.79 Variable mon.value wwws out . 447
12.4.80 Variable mon.av wwws out . 447
12.4.81 Variable mon.dev wwws out . 447
12.4.82 Variable mon.value icmp in . 447
12.4.83 Variable mon.av icmp in . 447
12.4.84 Variable mon.dev icmp in . 447
12.4.85 Variable mon.value icmp out . 447
12.4.86 Variable mon.av icmp out . 448
12.4.87 Variable mon.dev icmp out . 448
12.4.88 Variable mon.value udp in . 448
12.4.89 Variable mon.av udp in . 448
12.4.90 Variable mon.dev udp in . 448
12.4.91 Variable mon.value udp out . 448
12.4.92 Variable mon.av udp out . 448
12.4.93 Variable mon.dev udp out . 448
12.4.94 Variable mon.value dns in . 448
12.4.95 Variable mon.av dns in . 448
12.4.96 Variable mon.dev dns in . 448
12.4.97 Variable mon.value dns out . 448
12.4.98 Variable mon.av dns out . 449

xiii

12.4.99 Variable mon.dev dns out . 449
12.4.100 Variable mon.value tcpsyn in . 449
12.4.101 Variable mon.av tcpsyn in . 449
12.4.102 Variable mon.dev tcpsyn in . 449
12.4.103 Variable mon.value tcpsyn out . 449
12.4.104 Variable mon.av tcpsyn out . 449
12.4.105 Variable mon.dev tcpsyn out . 449
12.4.106 Variable mon.value tcpack in . 449
12.4.107 Variable mon.av tcpack in . 449
12.4.108 Variable mon.dev tcpack in . 449
12.4.109 Variable mon.value tcpack out . 449
12.4.110 Variable mon.av tcpack out . 449
12.4.111 Variable mon.dev tcpack out . 450
12.4.112 Variable mon.value tcpfin in . 450
12.4.113 Variable mon.av tcpfin in . 450
12.4.114 Variable mon.dev tcpfin in . 450
12.4.115 Variable mon.value tcpfin out . 450
12.4.116 Variable mon.av tcpfin out . 450
12.4.117 Variable mon.dev tcpfin out . 450
12.4.118 Variable mon.value tcpmisc in . 450
12.4.119 Variable mon.av tcpmisc in . 450
12.4.120 Variable mon.dev tcpmisc in . 450
12.4.121 Variable mon.value tcpmisc out . 450
12.4.122 Variable mon.av tcpmisc out . 450
12.4.123 Variable mon.dev tcpmisc out . 450
12.4.124 Variable mon.value webaccess . 450
12.4.125 Variable mon.av webaccess . 450
12.4.126 Variable mon.dev webaccess . 451
12.4.127 Variable mon.value weberrors . 451
12.4.128 Variable mon.av weberrors . 451
12.4.129 Variable mon.dev weberrors . 451
12.4.130 Variable mon.value syslog . 451
12.4.131 Variable mon.av syslog . 451
12.4.132 Variable mon.dev syslog . 451
12.4.133 Variable mon.value messages . 451
12.4.134 Variable mon.av messages . 451
12.4.135 Variable mon.dev messages . 451
12.4.136 Variable mon.value temp0 . 451
12.4.137 Variable mon.av temp0 . 451
12.4.138 Variable mon.dev temp0 . 452
12.4.139 Variable mon.value temp1 . 452
12.4.140 Variable mon.av temp1 . 452
12.4.141 Variable mon.dev temp1 . 452
12.4.142 Variable mon.value temp2 . 452
12.4.143 Variable mon.av temp2 . 452
12.4.144 Variable mon.dev temp2 . 452
12.4.145 Variable mon.value temp3 . 452
12.4.146 Variable mon.av temp3 . 452

xiv Cfengine reference manual

12.4.147 Variable mon.dev temp3 . 452
12.4.148 Variable mon.value cpu . 452
12.4.149 Variable mon.av cpu . 453
12.4.150 Variable mon.dev cpu . 453
12.4.151 Variable mon.value cpu0 . 453
12.4.152 Variable mon.av cpu0 . 453
12.4.153 Variable mon.dev cpu0 . 453
12.4.154 Variable mon.value cpu1 . 453
12.4.155 Variable mon.av cpu1 . 453
12.4.156 Variable mon.dev cpu1 . 453
12.4.157 Variable mon.value cpu2 . 453
12.4.158 Variable mon.av cpu2 . 453
12.4.159 Variable mon.dev cpu2 . 453
12.4.160 Variable mon.value cpu3 . 454
12.4.161 Variable mon.av cpu3 . 454
12.4.162 Variable mon.dev cpu3 . 454

12.5 Variable context sys . 454
12.5.1 Variable sys.arch . 454
12.5.2 Variable sys.cdate . 454
12.5.3 Variable sys.cf agent . 455
12.5.4 Variable sys.cf execd . 455
12.5.5 Variable sys.cf hub . 455
12.5.6 Variable sys.cf key . 455
12.5.7 Variable sys.cf know . 456
12.5.8 Variable sys.cf monitord . 456
12.5.9 Variable sys.cf promises . 456
12.5.10 Variable sys.cf report . 456
12.5.11 Variable sys.cf runagent . 457
12.5.12 Variable sys.cf serverd . 457
12.5.13 Variable sys.cf twin . 457
12.5.14 Variable sys.cf version . 457
12.5.15 Variable sys.class . 457
12.5.16 Variable sys.date . 458
12.5.17 Variable sys.domain . 458
12.5.18 Variable sys.expires . 458
12.5.19 Variable sys.exports . 458
12.5.20 Variable sys.fqhost . 458
12.5.21 Variable sys.fstab . 459
12.5.22 Variable sys.host . 459
12.5.23 Variable sys.interface . 459
12.5.24 Variable sys.ipv4 . 459
12.5.25 Variable sys.ipv4[interface name] . 459
12.5.26 Variable sys.ipv4 1[interface name] . 460
12.5.27 Variable sys.ipv4 2[interface name] . 460
12.5.28 Variable sys.ipv4 3[interface name] . 460
12.5.29 Variable sys.key digest . 460
12.5.30 Variable sys.long arch . 461
12.5.31 Variable sys.maildir . 461

xv

12.5.32 Variable sys.nova version . 461
12.5.33 Variable sys.os . 461
12.5.34 Variable sys.ostype . 461
12.5.35 Variable sys.policy hub . 462
12.5.36 Variable sys.release . 462
12.5.37 Variable sys.resolv . 462
12.5.38 Variable sys.uqhost . 462
12.5.39 Variable sys.windir . 462
12.5.40 Variable sys.winprogdir . 463
12.5.41 Variable sys.winprogdir86 . 463
12.5.42 Variable sys.winsysdir . 463
12.5.43 Variable sys.workdir . 463

12.6 Variable context this . 464

13 Logs and records . 467

13.1 Embedded Databases . 467
13.2 Text logs . 468
13.3 Reports in outputs . 469
13.4 Additional reports in commcerical cfengine versions 469
13.5 State information . 469

xvi Cfengine reference manual

Chapter 1: Cfengine 3.1.0 – Getting started 1

1 Cfengine 3.1.0 – Getting started

Cfengine is a suite of programs for integrated autonomic management of either individual or
networked computers. It has existed as as software suite since 1993 and this version published under
the GNU Public License (GPL v3) and a Commercial Open Source License (COSL). Cfengine is
Copyright by Cfengine AS, a company founded by Cfengine author Mark Burgess.

This document describes version 3 of Cfengine, which is a radical departure from earlier versions.
It is both simpler and more powerful. Cfengine 3 will exist in four versions, each of which adds to
the following

• Community Edition - a free and gratis core of the software (available now).

• Nova - a commercial enhanced version for basic enterprise needs (available now).

• Constellation - a commercial enhancement for larger enterprises (coming 2010).

• Galaxy - the ultimate commerical enhancement for global enterprises (coming 2011).

This document is valid for all versions of Cfengine. Whenever a feature is only available in a
specific version, that fact will be noted in the documentation for that feature (if there is no note,
then that feature is available in all versions).

Cfengine 3 has been changed to be both a more powerful tool and a much simpler tool. Cfengine
3’s language interface is not backwards compatible with the Cfengine 2 configuration language, but
it interoperates with Cfengine 2 so that it is "run-time compatible". This means that you can change
over to version 3 slowly, with low risk and at your own speed.

With Cfengine 3 you can install, configure and maintain computers using powerful hands-free
tools. You can also integrate knowledge management and diagnosis into the processes.

Cfengine differs from most management systems in being

• Open software (GPL or COSL).

• Lightweight and generic.

• Non-reliant on a working network to function correctly.

• Capable of making each and every host autonomous

1.1 Software components

Cfengine 3 consists of a number of components. The names of the programs are intentionally different
from those in Cfengine 2 to help disambiguate them (and some Cfengine 2 components have been
merged and/or eliminated). The starred components are new to Cfengine 3:

1.1.1 cf-agent

Active agent – responsible for maintaining promises about the state of your system (in Cfengine 2
the agent was called cfagent). You can run cf-agent manually, but if you want to have it run on
a regular basis, you should use Section 1.1.1 [cf-agent], page 1 (instead of using cron).

cf-agent keeps the promises made in Chapter 6 [common], page 133 and Chapter 7 [agent],
page 167 bundles, and is affected by Section 5.1 [common], page 57 and Section 5.2 [agent], page 65
control bodies.

2 Cfengine reference manual

1.1.2 cf-execd

Scheduler – responsible for running cf-agent on a regular (and user-configurable) basis (in Cfengine
2 the scheduler was called cfexecd).

EXECUTOR cf-execd keeps the promises made in Chapter 6 [common], page 133 bundles, and
is affected by Section 5.1 [common], page 57 and Section 5.6 [executor], page 107 control bodies.

1.1.3 cf-know*

Knowledge modelling agent – responsible for building and analysing a semantic knowledge network.
cf-know keeps the promises made in Chapter 6 [common], page 133 and Chapter 9 [knowledge],

page 337 bundles, and is affected by Section 5.1 [common], page 57 and Section 5.7 [knowledge],
page 111 control bodies.

1.1.4 cf-monitord

Passive monitoring agent – responsible for collecting information about the status of your system
(which can be reported upon or used to enforce promises or influence when promises are enforced).
In Cfengine 2 the passive monitoring agent was known as cfenvd.

cf-monitord keeps the promises made in Chapter 6 [common], page 133 and Chapter 10 [mon-
itor], page 345 bundles, and is affected by Section 5.1 [common], page 57 and Section 5.4 [monitor],
page 98 control bodies.

1.1.5 cf-promises

Promise validator – used to verify that the promises used by the other components of cfengine are
syntactically valid. cf-promises does not execute any promises, but is can syntax-check all of them.

1.1.6 cf-runagent

Remote run agent – used to execute cf-agent on a remote machine (in Cfengine 2 the remote
run agent was called cfrun). cf-runagent does not keep any promises, but instead is used to ask
another machine to do so.

1.1.7 cf-serverd

Server – used to distribute policy and/or data files to clients requesting them and used to respond
to requests from cf-runagent (in Cfengine 2 the remote run agent was called cfservd).

cf-serverd keeps the promises made in Chapter 6 [common], page 133 and Chapter 8 [server],
page 329 bundles, and is affected by Section 5.1 [common], page 57 and Section 5.3 [server], page 88
control bodies.

1.1.8 cf-report

Self-knowledge extractor – takes data stored in cfengine’s embedded databases and converts them
to human readable form

cf-report keeps the promises made in Chapter 6 [common], page 133 bundles, and is affected
by Section 5.1 [common], page 57 and Section 5.8 [reporter], page 121 control bodies.

1.1.9 cf-key

Key generation tool – run once on every host to create public/private key pairs for secure com-
munication (in Cfengine 2 the key generation tool was called cfkey). cf-key does not keep any
promises.

Chapter 1: Cfengine 3.1.0 – Getting started 3

1.1.10 cf-hub

A data aggregator used as part of the commercial product. This stub is not used in the community
edition of Cfengine.

1.2 Core concepts

Unlike previous versions of cfengine, which had no consistent model For its features, you can recognize
everything in Cfengine 3 from just a few concepts.

Promise A declaration about the state we desire to maintain (e.g., the permissions or contents
of a file, the availability or absence of a service, the (de)installation of a package).

Promise bundles
A collection of promises.

Promise bodies
A part of a promise which details and constrains its nature.

Data types An interpretation of a scalar value: string, integer or real number.

Variables An association of the form "LVALUE represents RVALUE", where rval may be a scalar
value or a list of scalar values.

Functions Built-in parameterized rvalues.

Classes Cfengine’s boolean classifiers that describe context.

If you have used cfengine before then the most visible part of cfengine 3 will be its new language
interface. Although it has been clear for a long time that the organically grown language used
in cfengine 1 and 2 developed many problems, it was not immediately clear exactly what would
be better. It has taken years of research to simplify the successful features of cfengine to a single
overarching model. To understand the new cfengine, it is best to set aside any preconceptions about
what cfengine is today. Cfengine 3 is a genuine "next generation" effort, which will be a springboard
into the future of system management.

1.3 A renewed cfengine

Cfengine 3 is a significant rewrite of underlying cfengine technology which preserves the core prin-
ciples and methodology of cfengine’s tried and tested approach. It comes with a new, improved
language, with a consistent syntax and powerful pattern expression features that display the in-
tent behind cfengine code more clearly. The main goal in changing the language is to simplify and
improve the robustness and functionality without sacrificing the basic freedoms and self-repairing
concepts.

Cfengine 3’s new language is a direct implementation of a model developed at Oslo University
College over the past four years, known colloquially as "Promise Theory". Promises were originally
introduced by Mark Burgess as a way to talk about cfengine’s model of autonomy and have since
become a powerful way of modelling cooperative systems – not just computers, but humans too.

“The biggest challenge of implementing cfengine in our organization
was not technical but political – getting everyone to agree.
Promise theory was a big help in understand this.”

Cfengine 3 is a generic implementation of the language of promises that allows all of the aspects
of configuration and change management to be unified under a single umbrella.

4 Cfengine reference manual

Why talk about promises instead of simply talking about changes? After all, the trend in business
and IT management today is to talk about Change Management (with capital letters), e.g. in the IT
Infrastructure Library (ITIL) terminology. This comes from a long history of process management
thinking. But we are not really interested in change – we are interested in avoiding it, i.e. being in
a state where we don’t need to make any changes. In other words we want to be able to promise
that the system is correct, verify this and only make changes if our promises are not kept. If you
want to think ITIL, think of this as a service that cfengine provides.

To put it another way, cfengine is not really a change management system, it is a maintenance
system. Maintenance is the process of making small changes or corrections to a model. A ‘model’ is
just another word for a template or a specification of how we want the system to work. Cfengine’s
model is based on the idea of promises, which means that it focuses on what is stable and lasting
about a system – not about what is changing.

This is an important philosophical shift. It means we are focused mainly on what is right and
not on what is wrong. By saying what "right" is (the ideal state of our system) we are focused on
the actual behaviour. If we focus too much on the changes, i.e. the differences between now and the
future, we might forget to verify that what we assume is working now in fact works.

Models that talk about change management tend to forget that after every change there is a
litany of incidents during which it is necessary to repair the system or return it to its intended state.
But if we know what we have promised, it is easy to verify whether the promise is kept. This means
that it is the promises about how the system should be that are most important, not the actual
changes that are made in order to keep them.

1.4 Installation

In order to install cfengine, you should first ensure that the following packages are installed.

OpenSSL Open source Secure Sockets Layer for encryption.
URL: http://www.openssl.org

BerkeleyDB (version 3.2 or later)
Light-weight flat-file database system.
URL: http://www.oracle.com/technology/products/berkeley-db/index.html

In addition...

It is recommended to make the Perl Compatible Regular Expression (PCRE) library
available as this is a significant improvement over the more standard POSIX libraries.
This documentation assumes the use of PCRE

On Windows machines, you need to install the basic Cygwin DLL from
http://www.cygwin.com in order to run cfengine.

Additional functionality becomes available if other libraries are present, e.g. OpenLDAP, client
libraries for MySQL and PostgreSQL, etc. It is possible to run cfengine without these, but related
functionality will be missing.

Unless you have purchased ready-to-run binaries, or are using a package distribution, you will
need to compile cfengine. For this you will also need a build environment tools: gcc, flex, bison.
The preferred method of installation is then

tar zxf cfengine-x.x.x.tar.gz

cd cfengine-x.x.x

./configure

http://www.openssl.org
http://www.oracle.com/technology/products/berkeley-db/index.html
http://www.cygwin.com

Chapter 1: Cfengine 3.1.0 – Getting started 5

make

make install

This results in binaries being installed in ‘/usr/local/sbin’. Since this is not necessarily a local
file system on all hosts, users are encouraged to keep local copies of the binaries on each host, inside
the cfengine trusted work directory.

1.5 Syntax, identifiers and names

The Cfengine 3 language has a few simple rules:

• Cfengine built-in words, and identifiers of your choosing (the names of variables, bundles, body
templates and classes) may only contain the usual alphanumeric and underscore characters
(‘a-zA-Z0-9_’).

• All other ‘literal’ data must be quoted.

• Declarations of promise bundles in the form:

bundle agent-type identifier

{

...

}

• Declarations of promise body-parts in the form:

body constraint_type template_identifier

{

...

}

matching and expanding on a reference inside a promise of the form ‘constraint_type =>

template_identifier’.

• Cfengine uses many ‘constraint expressions’ as part of the body of a promise. These take the
form: left-hand-side (cfengine word) ‘=>’ right-hand-side (user defined data). This can take
several forms:

cfengine_word => user_defined_template(parameters)

user_defined_template

builtin_function()

"quoted literal scalar"

{ list }

In each of these cases, the right hand side is a user choice.

1.6 The work directory

In order to achieve the desired simplifications, it was decided to reserve a private work area for the
cfengine tool-set.� �

In cfengine 1.x, the administrator could choose the locations of configuration files, locks, and
logging data independently. In cfengine 2.x, this diversity has been simplified to a single directory
which defaults to ‘/var/cfengine’ (similar to ‘/var/cron’), and in cfengine 3.x this is preserved.
 	

6 Cfengine reference manual

/var/cfengine

/var/cfengine/bin

/var/cfengine/inputs

/var/cfengine/outputs

The installation location ‘/usr/local/sbin’ is not necessarily a local file system, and cannot
therefore be trusted to a) be present, and b) be authentic on an arbitrary system.

Similarly, a trusted cache of the input files must now be maintained in the ‘inputs’ subdirectory.
When cfengine is invoked by the scheduler, it reads only from this directory. It is up to the user to
keep this cache updated, on each host. This simplifies and consolidates the cfengine resources in a
single place.

Unlike cfengine 2, cfengine 3 does not recognize the CFINPUTS environment variable.
The ‘outputs’ directory is now a record of spooled run-reports. These are often mailed to the

administrator by cf-execd, or can be copied to another central location and viewed in an alternative
browser.

1.7 Cfengine hard classes

Cfengine runs on every computer individually and each time it wakes up the underlying generic
agent platform discovers and classifies properties of the environment or context in which it runs.
This information is cached and may be used to make decisions about configuration1.

Classes fall into hard (discovered) and soft (defined) types. A single class can be one of several
things:

• The name of an operating system architecture e.g. ultrix, sun4, etc.

• The unqualified name of a particular host (e.g., www). If your system returns a fully qualified
domain name for your host (e.g., www.iu.hio.no), cfengine will also define a hard class for the
fully qualified name, as well as the partially-qualified component names iu.hio.no, hio.no,
and no.

• The name of a user-defined group of hosts.

• A day of the week (in the form Monday, Tuesday, Wednesday, ..).

• An hour of the day, in the current time zone (in the form Hr00, Hr01 ... Hr23).

• An hour of the day GMT (in the form GMT_Hr00, GMT_Hr01 ... GMT_Hr23). This is consistent
the world over, in case you need virtual simulteneity of change coordination.

• Minutes in the hour (in the form Min00, Min17 ... Min45).

• A five minute interval in the hour (in the form Min00_05, Min05_10 ... Min55_00).

• A fifteen minute (quarter-hour) interval (in the form Q1, Q2, Q3, Q4).

• An expression of the current quarter hour (in the form Hr12_Q3).

• A day of the month (in the form Day1, Day2, ... Day31).

• A month (in the form January, February, ... December).

• A year (in the form Yr1997, Yr2004).

• A shift in Night,Morning,Afternoon,Evening, which fall into six hour blocks starting at 00:00
hours.

• A ‘lifecycle index’, which is the year number modulo 3 (in the form Lcycle_0, Lcycle_1,

Lcycle_2, used in long term resource memory).

1 There are no if-then-else statements in cfengine; all decisions are made with classes.

Chapter 1: Cfengine 3.1.0 – Getting started 7

• An arbitrary user-defined string (as specified in the -D command line option, or defined in a
classes promise or body, restart_class in a processes promise, etc).

• The IP address octets of any active interface (in the form ipv4_192_0_0_1, ipv4_192_0_0,
ipv4_192_0, ipv4_192).

• The names of the active interfaces (in the form net_iface_xl0, net_iface_vr0).

• System status and entropy information reported by cf-monitord.

• On Solaris-10 systems, the zone name (in the form zone_global, zone_foo, zone_baz).

To see all of the classes defined on a particular host, run
host# cf-promises -v

as a privileged user. Note that some of the classes are set only if a trusted link can be established
with cfenvd, i.e. if both are running with privilege, and the ‘/var/cfengine/state/env_data’ file
is secure. More information about classes can be found in connection with allclasses.

1.8 Global and local classes

Classes are defined in bundles. Bundles of type common yield classes that are global in scope, whereas
in all other bundle types classes are local. Classes are evaluated when the bundle is evaluated (and
the bundles are evaluated in the order specified in the bundlesequence). Consider the following
example.

body common control

{

bundlesequence => { "g","tryclasses_1", "tryclasses_2" };

}

#################################

bundle common g

{

classes:

"one" expression => "any";

}

#################################

bundle agent tryclasses_1

{

classes:

"two" expression => "any";

}

#################################

8 Cfengine reference manual

bundle agent tryclasses_2

{

classes:

"three" expression => "any";

reports:

one.three.!two::

"Success";

}

Here we see that class ‘one’ is global (because it is defined inside the common bundle), while classes
‘two’ and ‘three’ are local (to their respective bundles). The report result ‘Success’ is therefore true
because only ‘one’ and ‘three’ are in scope (and ‘two’ is not in scope) inside of the third bundle.

1.9 Filenames and paths

Filenames in Unix-like operating systems use the forward slash ‘/’ character for their directory
separator . All references to file locations must be absolute pathnames in cfengine, i.e. they must
begin with a complete specification of which directory they are in. For example:

/etc/passwd

/usr/local/masterfiles/distfile

The only place where it makes sense to refer to a file without a complete directory specification is
when searching through directories for different kinds of file, e.g. in pattern matching

leaf_name => { "tmp_.*", "output_file", "core" };

Here, one can write ‘core’ without a path, because one is looking for any file of that name in a
number of directories.

The Windows operating systems traditionally use a different filename convention. The following
are all valid absolute file names under Windows:

c:\winnt

"c:\spaced name"

c:/winnt

/var/cfengine/inputs

//fileserver/share2/dir

The ‘drive’ name “C:” in Windows refers to a partition or device. Unlike Unix, Windows does
not integrate these seamlessly into a single file-tree. This is not a valid absolute filename:

\var\cfengine\inputs

Paths beginning with a backslash are assumed to be win32 paths. They must begin with a drive
letter or double-slash server name.

Note in recent versions of Cygwin you can decide to use the /cygdrive to specify a path to
windows file E.g ‘/cygdrive/c/myfile’ means ‘c:\myfile’ or you can do it straight away in cfengine
as c:\myfile.

Chapter 1: Cfengine 3.1.0 – Getting started 9

1.10 Upgrading from cfengine 2

Cfengine 3 has a completely new syntax, designed to solve the issues brought up from 15 years of
experience with configuration management. Rather than clutter cfengine 3 with buggy backward-
compatability issues, it was decided to make no compromises with cfengine 3 and instead allow
cfengine 2 and cfengine 3 to coincide in a cooperative fashion for the foreseeable future. This means
that users can upgrade at their own pace, in the classic cfengine incremental fashion. We expect
that cfengine 2 installations will be around for years to come so this upgrade path seems the most
defensible.

The daemons and support services are fully interoperable between cfengine 2 and cfengine 3, so
it does not matter whether you run cfservd (cf2) together with cf-agent (cf3) or cf-serverd (cf3)
together with cfagent (cf2). You can change the servers at your own pace.

Cfengine 3’s cf-execd replaces cfengine 2’s cfexecd and it is designed to work optimally with
cf-agent (cf3). Running this daemon has no consequences for access control, only for scheduling
cf-agent. You can (indeed should) replace cfexecd with cf-execd immediately. You will want to
alter your ‘crontab’ file to run the new component instead of the old. The sample cfengine 3 input
files asks cf-agent to do this automatically, simply replacing the string.

The sample ‘inputs’ files supplied with cfengine 3 contain promises to integrate cfengine 2
as described. What can you do to upgrade? Here is a simple recipe that assumes you have a
standardized cfengine 2 setup, running cfexecd in ‘crontabs’ and possibly running cfservd and
cfenvd as daemons.

1. Install the cfengine 3 software on a host.

2. Go to the ‘inputs/’ directory in the source and copy these files to your master update repository,
i.e. where you will publish policies for distribution.

3. Remove any self-healing rules to reinstall cfengine 2, especially rules to add cfexecd or cfagent
to ‘crontabs’ etc. Cfengine 3 will handle this from now on and encapsulate old cfengine 2
scripts.

4. Move to this inputs directory: cd your-path/inputs.

5. Set the location of this master update directory in the ‘update.cf’ file to the location of the
master directory.

6. Set the email options for the executor in ‘promises.cf’.

7. Run cf-agent --bootstrap as the root or privileged user. This will install cfengine 3 in place
of cfengine 2, integrate your old cfengine 2 configuration, and warn you about any rules that
need to be removed from your old cfengine configuration.

8. You should now be running cfengine 3. You can now add new rules to the files in your own
time, or convert the old cfengine 2 rules and gradually comment them out of the cfengine 2
files.

9. Make sure there are no rules in your old cfengine 2 configuration to activate cfengine 2 com-
ponents, i.e. rules that will fight against cfengine 3. Then, when you are ready, convert
‘cfservd.conf’ into a server bundle e.g. in ‘promises.cf’ and remove all rules to run cfservd

and replace them with rules to run cf-serverd at your own pace.

1.11 Testing as a non-privilieged user

One of the practical advantages of cfengine is that you can test it without the need for root or
administrator privileges. This is recommended for all new users of cfengine 3.

10 Cfengine reference manual

Cfengine operates with the notion of a work-directory. The default work directory for the
root user is ‘/var/cfengine’ (except on Debian Linux and various derivatives which prefer
‘/var/lib/cfengine’). For any other user, the work directory lies in the user’s home directory,
named ‘~/.cfagent’. Cfengine prefers you to keep certain files here. You should not resist this
too strongly or you will make unnecessary trouble for yourself. The decision to have this ‘known
directory’ was made to simplify a lot of configuration.

To test cfengine as an ordinary user, do the following:

• Compile and make the software.

• Copy the binaries into the work directory:
host$ mkdir -p ~/.cfagent/inputs

host$ mkdir -p ~/.cfagent/bin

host$ cd src

host$ cp cf-* ~/.cfagent/bin

host$ cd ../inputs

host$ cp *.cf ~/.cfagent/inputs

You can test the software and play with configuration files by editing the basic get-started files
directly in the ‘~/.cfagent/inputs’ directory. For example, try the following:

host$ ~/.cfagent/bin/cf-promises

host$ ~/.cfagent/bin/cf-promises --verbose

This is always the way to start checking a configuration in cfengine 3. If a configuration does
not pass this check/test, you will not be allowed to use it, and ‘cf-agent’ will look for the file
‘failsafe.cf’.

Notice that the cfengine 3 binaries have slightly different names than the cfengine 2 binaries.
They all start with the ‘cf-’ prefix.

host$ ~/.cfagent/bin/cf-agent

1.12 The ‘bare necessities’ of a cfengine 3

Here is the simplest ‘Hello world’ program in cfengine 3:

body common control

{

bundlesequence => { "test" };

}

bundle agent test

{

reports:

Yr2009::

"Hello world";

}

If you try to process this using the cf-promises command, you will see something like this:
atlas$ ~/LapTop/Cfengine3/trunk/src/cf-promises -r -f ./unit_null_config.cf

Summarizing promises as text to ./unit_null_config.cf.txt

Summarizing promises as html to ./unit_null_config.cf.html

The ‘-r’ option produces a report. Examine the files produced:

Chapter 1: Cfengine 3.1.0 – Getting started 11

cat ./unit_null_config.cf.txt

firefox ./unit_null_config.cf.html

You will see a summary of how cfengine interprets the files, either in HTML or text. By de-
fault, the cfengine components also dump a debugging file, e.g. ‘promise_output_agent.html’,
‘promise_output_agent.txt’ with an expanded view.

1.13 Familiarizing yourself

To familiarize yourself with cfengine 3, type or paste in the following example text:

##

#

Simple test execution

#

##

body common control

{

bundlesequence => { "testbundle" };

}

##

bundle agent testbundle

{

vars:

"size" int => "46k";

"rand" int => randomint("33","$(size)");

commands:

"/bin/echo"

args => "Hello world - $(size)/$(rand)",

contain => standard,

classes => cdefine("followup","alert");

followup::

"/bin/ls"

contain => standard;

reports:

alert::

12 Cfengine reference manual

"What happened?";

}

##

body contain standard

{

exec_owner => "mark";

useshell => "true";

}

##

body classes cdefine(class,alert)

{

promise_repaired => { "$(class)" };

repair_failed => { "$(alert)" };

}

This example shows all of the main features of cfengine: bundles, bodies, control, variables, and
promises. To the casual eye it might look complex, but that is because it is explicit about all of the
details. Fortunately it is easy to hide many of these details to make the example simpler without
sacrificing any functionality.

The first thing to try with this example is to verify it – did we make any mistakes? Are there
any inconsistencies? To do this we use the new cfengine program cf-promises. Let’s assume that
you typed this into a file called ‘test.cf’ in the current directory.

cf-promises -f ./test.cf

If all is well, typing this command shows no output. Try now running the command with verbose
output.

cf-promises -f ./test.cf -v

Now you see a lot of information
Reference time set to Sat Aug 2 11:26:06 2008

cf3 Cfengine - 3.0.0

Free Software Foundation 1994-

Donated by Mark Burgess, Oslo University College, Norway

cf3 --

cf3 Host name is: atlas

cf3 Operating System Type is linux

cf3 Operating System Release is 2.6.22.18-0.2-default

cf3 Architecture = x86_64

cf3 Using internal soft-class linux for host linux

cf3 The time is now Sat Aug 2 11:26:06 2008

cf3 --

cf3 Additional hard class defined as: 64_bit

cf3 Additional hard class defined as: linux_2_6_22_18_0_2_default

cf3 Additional hard class defined as: linux_x86_64

cf3 Additional hard class defined as: linux_x86_64_2_6_22_18_0_2_default

Chapter 1: Cfengine 3.1.0 – Getting started 13

cf3 GNU autoconf class from compile time: compiled_on_linux_gnu

cf3 Interface 1: lo

cf3 Trying to locate my IPv6 address

cf3 Looking for environment from cfenvd...

cf3 Unable to detect environment from cfMonitord

Loading persistent classes

Loaded persistent memory

cf3 > Parsing file ./test.cf

Agent’s basic classified context

Defined Classes = (any Saturday Hr11 Min26 Min25_30 Q2 Hr11_Q2 Day2

August Yr2008 linux atlas 64_bit linux_2_6_22_18_0_2_default x86_64

linux_x86_64 linux_x86_64_2_6_22_18_0_2_default

linux_x86_64_2_6_22_18_0_2_default__1_SMP_2008_06_09_13_53_20__0200

compiled_on_linux_gnu net_iface_lo)

Negated Classes = ()

Installable classes = ()

cf3 Wrote expansion summary to promise_output_common.html

cf3 Inputs are valid

The last two lines of this are of interest. Each time a component of cfengine 3 parses a number
of promises, it summarizes the information in an HTML file called generically promise_output_

component-type.html. In this case the cf-promises command represents all possible promises, by
the type "common". You can view this output file in a suitable web browser to see exactly what
cfengine has understood by the configuration.

Now that you have verified it, you can execute it. To run this example you need to change the
username ‘mark’ to your own, or obtain root privileges to change to another user. The non-verbose
output of the script when run in the cfengine 3 directory looks something like this:

host$./cf-agent -f ../tests/units/unit_exec_in_sequence.cf

Q ".../bin/echo Hello": Hello world - 46k/219

-> Last 1 QUOTEed lines were generated by "/bin/echo Hello world - 46k/219"

Q ".../bin/ls": agent.c

Q ".../bin/ls": agentdiagnostic.c

Q ".../bin/ls": agentdiagnostic.o

Q ".../bin/ls": agent.o

Q ".../bin/ls": args.c

Q ".../bin/ls": args.lo

Q ".../bin/ls": args.o

...

Q ".../bin/ls": verify_reports.o

Q ".../bin/ls": verify_storage.c

Q ".../bin/ls": verify_storage.o

-> Last 288 QUOTEed lines were generated by "/bin/ls"

14 Cfengine reference manual

atlas$

1.14 Remote access troubleshooting

1.14.1 Server connection

When setting up cf-serverd, you might see the error message
Unspecified server refusal

This means that cf-serverd is unable or is unwilling to authenticate the connection from your
client machine. The message is generic: it is deliberately non-specific so that anyone attempting to
attack or exploit the service will not be given information which might be useful to them. There is
a simple checklist for curing this problem:

1. Make sure that the domain variable is set in the configuration files read by both client and server;
alternatively use skipidentify and skipverify to decouple DNS from the the authentication.

2. Make sure that you have granted access to your client in the server body

body server control

{

allowconnects => { "127.0.0.1" , "::1" ...etc };

allowallconnects => { "127.0.0.1" , "::1" ...etc };

trustkeysfrom => { "127.0.0.1" , "::1" ...etc };

}

3. Make sure you have created valid keys for the hosts using cf-key.

4. If you are using secure copy, make sure that you have created a key file and that you have
distributed and installed it to all participating hosts in your cluster.

Always remember that you can run cfengine in verbose or debugging modes to see how the authen-
tication takes place:
cf-agent -v

cf-serverd -v

cf-agent reports that access is denied regardless of the nature of the error, to avoid giving away
information which might be used by an attacker. To find out the real reason for a denial, use verbose
‘-v’ or even debugging mode ‘-d2’.

1.14.2 Key exchange

The key exchange model used by cfengine is based on that used by OpenSSH. It is a peer to
peer exchange model, not a central certificate authority model. This means that there are no
scalability bottlenecks (at least by design, though you might introduce your own if you go for an
overly centralized architecture).

The problem of key distribution is the conundrum of every public key infrastructure. Key
exchange is handled automatically by cfengine and all you need to do is to decide which keys to
trust.

When public keys are offered to a server, they could be accepted automatically on trust because
no one is available to make a decision about them. This would lead to a race to be the first to
submit a key claiming identity.

Even with DNS checks for correct name/IP address correlation (turned off with skipverify), it
might be possible to submit a false key to a server.

Chapter 1: Cfengine 3.1.0 – Getting started 15

The server cf-serverd blocks the acceptance of unknown keys by default. In order to accept
such a new key, the IP address of the presumed client must be listed in the trustkeysfrom stanza
of a server bundle (these bundles can be placed in any file). Once a key has been accepted, it will
never be replaced with a new key, thus no more trust is offered or required.

Once you have arranged for the right to connect to the server, you must decide which hosts will
have access to which files. This is done with access rules.

bundle server access_rules()

{

access:

"/path/file"

admit => { "127.0.0.1", "127.0.0.2", "127.0.0.3" },

deny => { "192\..*" };

}

On the client side, i.e. cf-runagent and cf-agent, there are three issues:

1. Choosing which server to connect to.

2. Trusting the identity of any previously unknown servers, i.e. trusting the server’s public key to
be its and no one else’s. (The issues here are the same as for the server.)

3. Choosing whether data transfers should be encrypted (with encrypt).

Because there are two clients for connecting to cf-serverd (cf-agent and cf-runagent), there
are also two ways of managing trust of server keys by a client. One is an automated option, setting
the option trustkey in a copy_from stanza, e.g.

body copy_from example

{

.. other settings ..

trustkey => "true";

}

Another way is to run cf-runagent in interactive mode. When you run cf-runagent, unknown
server keys are offered to you interactively (as with ssh) for you to accept or deny manually:

WARNING - You do not have a public key from host ubik.iu.hio.no = 128.39.74.25

Do you want to accept one on trust? (yes/no)

-->

1.14.3 Time windows (races)

Once public keys have been exchanged from client to server and from server to client, the issue of
trust is solved according to public key authentication schemes. You only need to worry about trust
when one side of a connection has never seen the other side before.

16 Cfengine reference manual

Often you will have a central server and many client satellites. Then the best way to transfer
all the keys is to set the trustkey flags on server and clients sides to coincide with a time at which
you know that cf-agent will be run, and when a spoofer is unlikely to be able to interfere.

This is a once-only task, and the chance of an attacker being able to spoof a key-transfer is small.
It would require skill and inside-information about the exchange procedure, which would tend to
imply that the trust model was already broken.

Another approach would be to run cf-runagent against all the hosts in the group from the
central server and accept the keys one by one, by hand, though there is little to be gained from this.

Trusting a host for key exchange is unavoidable. There is no clever way to avoid it. Even
transferring the files manually by diskette, and examining every serial number of the computers
you have, the host has to trust the information you are giving it. It is all based on assertion. You
can make it almost impossible for keys to be faked or attacked, but you cannot make it absolutely
impossible. Security is about managing reasonable levels of risk, not about magic.

All security is based on a moment of trust, that is granted by a user at some point in time – and
is assumed thereafter (once given, hard to rescind). Cryptographic key methods only remove the
need for a repeat of the trust decision. After the first exchange, trust is no longer needed, because
they keys allow identity to be actually verified.

Even if you leave the trust options switched on, you are not blindly trusting the hosts you know
about. The only potential insecurity lies in any new keys that you have not thought about. If you
use wildcards or IP prefixes in the trust rules, then other hosts might be able to spoof their way in
on trust because you have left open a hole for them to exploit. That is why it is recommended to
return the system to the default state of zero trust immediately after key transfer, by commenting
out the trust options.

It is possible, though somewhat laborious to transfer the keys out of band, by copying
‘/var/cfengine/ppkeys/localhost.pub’ to /var/cfengine/ppkeys/user-aaa.bbb.ccc.mmm

(assuming IPv4) on another host. e.g.

localhost.pub -> root-128.39.74.71.pub

This would be a silly way to transfer keys between nearby hosts that you control yourself, but if
transferring to long distance, remote hosts it might be an easier way to manage trust.

1.14.4 Other users than root

Cfengine normally runs as user "root" (except on Windows which does not normally have a root
user), i.e. a privileged administrator. If other users are to be granted access to the system, they
must also generate a key and go through the same process. In addition, the users must be added to
the server configuration file.

1.14.5 Encryption

Cfengine provides encryption for keeping file contents private during transfer. It is assumed that
users will use this judiciously. There is nothing to be gained by encrypting the transfer of public
files – overt use of encryption just contributes to global warming, burning unnecessary CPU cycles
without offering any security.

The main role for encryption in configuration management is for authentication. Cfengine always
uses encryption during authentication, so none of the encryption settings affect the security of
authentication.

Chapter 2: A simple crash course in concepts 17

2 A simple crash course in concepts

2.1 Rules are promises

Everything in cfengine 3 can be interpreted as a promise. Promises can be made about all kinds
of different subjects, from file attributes, to the execution of commands, to access control decisions
and knowledge relationships.

This simple but powerful idea allows a very practical uniformity in cfengine syntax. There is only
one grammatical form for statements in the language that you need to know and it looks generically
like this:

type:

classes::

"promiser" -> { "promisee1", "promisee2", ... }

attribute_1 => value_1,

attribute_2 => value_2,

...

attribute_n => value_n;

We speak of a promiser (the abstract object making the promise), the promisee is the abstract object
to whom the promise is made, and them there is a list of associations that we call the ‘body’ of the
promise, which together with the promiser-type tells us what it is all about.

Not all of these elements are necessary every time. Some promises contain a lot of implicit
behaviour. In other cases we might want to be much more explicit. For example, the simplest
promise looks like this:

commands:

"/bin/echo hello world";

This promise has default attributes for everything except the ‘promiser’, i.e. the command string
that promises to execute. A more complex promise contains many attributes:

files:

"/home/mark/tmp/test_plain" -> "system blue team",

comment => "This comment follows the rule for knowledge integration",

perms => users("@(usernames)"),

create => "true";

The list of promisees is not used by cfengine except for documentation, just as the comment
attribute (which can be added to any promise) has no actual function other than to provide more
information to the user in error tracing and auditing.

You see several kinds of object in this example. All literal strings (e.g. "true") in cfengine
3 must be quoted. This provides absolute consistency and makes type-checking easy and error-
correction powerful. All function-like objects (e.g. users("..")) are either builtin special functions
or parameterized templates which contain the ‘meat’ of the right hand side.

18 Cfengine reference manual

The words commands, and files are built-in promise types. Promise types generally belong
each to a particular component of cfengine, as the components are designed to keep different kinds
of promises. A few types, such as vars, classes and reports are common to all the different
component bundles. You will find a full list of the promise types that can be made by the different
components in the ‘bundles’ chapters that follow.

2.2 Best practice for writing promises

When writing promises, get into the habit of giving every promise a comment that explains its
intention.

Also, give related promises handles, or labels that can be used to refer to them by.

files:

"/var/cfengine/inputs"

handle => "update_policy",

comment => "Update the configuration from a master server",

perms => system("600"),

copy_from => mycopy("$(master_location)","$(policy_server)"),

depth_search => recurse("inf"),

file_select => input_files,

action => immediate;

If a promise affects another promise is some way, you can make the affected promise one of the
promisees, like this:

access:

"/master/cfengine/inputs" -> { "update_policy", "other_promisee" },

comment => "Grant access to policy to our clients",

handle => "serve_updates",

admit => { "217.77.34.*" };

Conversely, if a promise might depend on another in some (even indirect) way, document this
too.

files:

"/var/cfengine/inputs"

comment => "Update the configuration from a master server",

handle => "update_policy",

Chapter 2: A simple crash course in concepts 19

depends_on => "serve_updates",

perms => system("600"),

copy_from => mycopy("$(master_location)","$(policy_server)"),

depth_search => recurse("inf"),

file_select => input_files,

action => immediate;

Get into the habit of adding the cause-effect lines of influence. Enterprise editions of cfengine
will track the dependencies between these promises and map out impact analyses.

2.3 Containers

Cfengine allows you to group multiple promise statements into containers called bundles.

bundle agent identifier

{

commands:

"/bin/echo These commands are a silly way to use cfengine";

"/bin/ls -l";

"/bin/echo But they illustrate a point";

}

Bundles serve two purposes: they allow us to collect related promises under a single heading,
like a subroutine, and they allow us to mix configuration for different parts of cfengine in the same
file. The type of a bundle is the name of the component of cfengine for which it is intended.

For instance, we can make a self-contained example agent-server configuration by labelling the
bundles:

#

Not a complete example

#

bundle agent testbundle

{

files:

"/home/mark/tmp/testcopy"

comment => "Throwaway example...",

copy_from => mycopy("/home/mark/LapTop/words","127.0.0.1"),

perms => system,

depth_search => recurse("inf");

}

#

bundle server access_rules

20 Cfengine reference manual

{

access:

"/home/mark/LapTop"

admit => { "127.0.0.1" };

}

Another type of container in cfengine 3 is a ‘body’ part. Body parts exist to hide complex
parameter information in reusable containers. The right hand side of some attribute assignments
use body containers to reduce the amount of in-line information and preserve readability. You
cannot choose where to use bodies: either they are used or they are not used for a particular kind
of attribute. What you can choose, however, is the name and number of parameters for the body;
and you can make as many of them as you like: For example:

body copy_from mycopy(from,server)

{

source => "$(from)";

servers => { "$(server)" };

copy_backup => "true";

special_class::

purge => "true";

}

Notice also that classes can be used in bodies as well as parameters so that you can hide envi-
ronmental adaptations in these bodies also. The classes used here are effectively ANDed with the
classes under which the calling promise is defined.

2.4 When and where are promises made?

When you type a promise into a cfengine bundle, the promise will be read by every cf-agent that
reads the file, each time it is called into being. For some promises this is okay, but for others you
only want to verify the promise once in a while, e.g. once per day or once per hour. There are two
ways to say when and where a promise applies in cfengine:

Classes Classes are the double-colon decision syntax in cfengine. They determine in what
context a promise is made, i.e. when and where. Recall the basic syntax of a promise:

promise-type:

class-expression::

promiser -> promisee

attribute => body,

ifvarclass => other-class-expression;

The class expression may contain words like ‘Hr12’, meaning from 12:00 p.m - 13:00
p.m., or ‘Hr12&Min05_10’, meaning between 12:05 and 12:10. Classes may also have

Chapter 2: A simple crash course in concepts 21

spatial descriptors like ‘myhost’ or ‘solaris’, which decide which hosts in the names-
pace, or ‘ipv4_192_168_1_101’ which decides the location in IPv4 address space.

If the class expression is true, the promise can be considered made for the duration of
the current execution.

Cfengine 3 has a new class predicate ifvarclass which is ANDed with the normal
class expression, and which is evaluated together with the promise. It may contain
variables as long as the resulting expansion is a legal class expression.

Locks Locks determine how often a promise is verified.

Cfengine is controlled by a series of locks which prevent it from checking promises too often,
and which prevent it from spending too long trying to verify promises it already verified recently.
The locks work in such a way that you can start several cfengine processes simultaneously without
them interfering with each other. You can control two things about each kind of action in the action
sequence:

‘ifelapsed’
The minimum time (in minutes) which should have passed since the last time that
promise was verified. It will not be executed again until this amount of time has
elapsed. (Default time is 1 minute.)

‘expireafter’
The maximum amount (in minutes) of time cf-agent should wait for an old instantiation
to finish before killing it and starting again. (Default time is 120 minutes.)

You can set these values either globally (for all actions) or for each action separately. If you set
global and local values, the local values override the global ones. All times are written in units of
minutes. Global setting is in the control body:

body agent control

{

ifelapsed => "60"; # one hour

}

or locally in the transaction bodies:

body action example

{

ifelapsed => "90"; # 1.5 hours

}

These locks do not prevent the whole of cf-agent from running, only atomic promise checks.
Several different atoms can be run concurrently by different cf-agents. The locks ensure that atoms
will never be started by two cf-agents at the same time, or too soon after a verification, causing
contention and wasting CPU cycles.

22 Cfengine reference manual

2.5 Types in cfengine 3

A key difference in cfengine 3 compared to earlier versions is the presence of data types. Data types
are a mechanism for associating values and checking consistency in a language. Once again, there
is a simple pattern to types in cfengine.

The principle is very simple: types exist in order to match like a plug-socket relationship. In the
examples above, you can see two places where types are used to match templates:

• Matching bundles to components:

bundle TYPE name # matches TYPE to running agent

{

}

• Match bodies templates to lvalues in lvalues => rvalue constraints:

body TYPE name # matches TYPE => name in promise

{

}

Check these by identifying the words ‘agent’ and ‘copy_from’ in the examples above. Types are
there to make configuration more robust.

2.6 Datatypes in cfengine 3

Cfengine variables have two meta-types: scalars and lists. A scalar is a single value, a list is a
collection of scalars. Each scalar may have one of three types: string, int or real. Typing is
dynamic, so these are interchangable in many instances. However arguments to special functions
check legal type for consistency.

Integer constants may use suffixes to represent large numbers.

• ’k’ = value times 1000.

• ’K’ = value times 1024.

• ’m’ = value times 1000^2

• ’M’ = value times 1024^2

• ’g’ = value times 1000^3

• ’G’ = value times 1024^3

• ’%’ meaning percent, in limited contexts

• ’inf’ = a constant representing an unlimited value.

2.7 Variable expansion in cfengine 3

Cfengine 3 has some simple rules for variable expansion. These make a couple of restrictions that en-
force discipline of clarity and allow automatic dependency tracking in enterprise versions of cfengine.

2.7.1 Scalar variable expansion

Scalar variables are written ‘$(name)’ and they represent a single value at a time.

• Scalars that are written without a context, e.g. ‘$(myvar)’ are local to the current bundle.

• Scalars are globally available everywhere provided one uses the context to verify them e.g.
‘$(context.myvar)’ may be written to access the variable ‘myvar’ in bundle ‘context’.

Chapter 2: A simple crash course in concepts 23

2.7.2 List variable substitution and expansion

• Scalar references to local list variables imply iteration, e.g. suppose we have local list variable
‘@(list)’, then the scalar ‘$(list)’ implies an iteration over every value of the list.

• Lists can be passed around in their entirety in any context where a list is expected as ‘@(list)’.,
e.g.

vars:

"longlist" slist => { @(shortlist), "plus", "plus" };

"shortlist" slist => { "you", "me" };

• Only local lists can be expanded directly. Thus ‘$(list)’ can be expanded but not
‘$(context.list)’. See below for the explanation.

During list expansion, only local lists can be expanded, thus global list references have to be
mapped into a local context if you want to use them for iteration. Instead of doing this in some
arbitrary way, with possibility of name collisions, cfengine asks you to make this explicit. There are
two possible approaches.

The first uses parameterization to map a global list into a local context.

#

Show access of external lists.

#

- to pass lists globally, use a parameter to dereference them

#

body common control

{

bundlesequence => { hardening(@(va.tmpdirs)) };

}

###

bundle common va

{

vars:

"tmpdirs" slist => { "/tmp", "/var/tmp", "/usr/tmp" };

}

##

bundle agent hardening(x)

{

24 Cfengine reference manual

classes:

"ok" expression => "any";

vars:

"other" slist => { "/tmp", "/var/tmp" };

reports:

ok::

"Do $(x)";

"Other: $(other)";

}

This alternative uses a direct ‘short-circuit’ approach to map the global list into the local context.

#

Show access of external lists.

#

body common control

{

bundlesequence => { hardening };

}

###

bundle common va

{

vars:

"tmpdirs" slist => { "/tmp", "/var/tmp", "/usr/tmp" };

}

##

bundle agent hardening

{

classes:

"ok" expression => "any";

vars:

Chapter 2: A simple crash course in concepts 25

"other" slist => { "/tmp", "/var/tmp" };

"x" slist => { @(va.tmpdirs) };

reports:

ok::

"Do $(x)";

"Other: $(other)";

}

2.7.3 Special list value cf_null

As of Cfengine core version 3.1.0, the value ‘cf_null’ may be used as a NULL value within lists.
This value is ignored in list variable expansion.

vars:

"empty_list" slist => { "cf_null" };

2.7.4 Arrays in cfengine 3

Array variables are written with ‘[’ and ‘]’ brackets, e.g.

bundle agent example

{

vars:

"component" slist => { "cf-monitord", "cf-serverd", "cf-execd" };

"array[cf-monitord]" string => "The monitor";

"array[cf-serverd]" string => "The server";

"array[cf-execd]" string => "The executor, not executioner";

commands:

"/bin/echo $(component) is"

args => "$(array[$(component)])";

}

Arrays are associative and may be of type scalar or list. Enumerated arrays are simply treated as
a special case of associative arrays, since there are no numerical loops in cfengine. Special functions
exist to extract lists of keys from array variables for iteration purposes.

Thus one could have written the example above in the form of the following example:

26 Cfengine reference manual

bundle agent array

{

vars:

"v[index_1]" string => "value_1";

"v[index_2]" string => "value_2";

"parameter_name" slist => getindices("v");

reports:

Yr2008::

"Found index: $(parameter_name)";

}

2.8 Normal ordering

Cfengine takes a pragmatic point of view to ordering. When promising ‘scalar’ attributes and prop-
erties, ordering is irrelevant and need not be considered. More complex patterned data structures
require ordering to be preserved, e.g. editing in files. Cfengine solves this in a two-part strategy:

• Cfengine maintains a default order of promise-types. This is based on a simple logic of what
needs to come first, e.g. it makes no sense to create something and then delete it, but it could
make sense to delete and then create (an equilibrium). This is called normal ordering and is
described below.

• You can override normal ordering in exceptional circumstances by making a promise in a class
context and defining that class based on the outcome of another promise.

2.8.1 Agent normal ordering

1. Cfengine tries to keep variable and class promises before starting to consider any other kind
of promise. In this way, global variable and classes can be set, as well as creating classes

promises, upon which later agent-bundle vars promises may depend. Place these at the start
of your configuration (see next item).

2. If you set variables based on classes that are determined by variables, in a complex dependency
chain, then you introduce an order dependence to the resolution that might be non-unique.
Since Cfengine starts trying to converge values as soon as possible, it is best to define variables
in bundles before using them, i.e. as early as possible in your configuration. In general it is
wise to avoid class-variable dependency as much as possible.

3. Cfengine executes agent promise bundles in the strict order defined by the bundlesequence

(possibly overridden by the -b or --bundlesequence command line option).

4. Within a bundle, the promise types are executed in a round-robin fashion according to so-

Chapter 2: A simple crash course in concepts 27

called ‘normal ordering’ (essentially deletion first, followed by creation). The actual sequence
continues for up to three iterations of the following, converging towards a final state:

vars

classes

outputs

interfaces

processes

storage

packages

commands

methods

files

databases

services

environments

reports

Within edit_line bundles in files promises (See ‘File editing in cfengine 3’ for important
details), the normal ordering is:

vars

classes

delete_lines

field_edits

insert_lines

replace_patterns

reports

5. The order of promises within one of the above types follows their top-down ordering within the
bundle itself

6. The order may be overridden by making a promise depend on a class that is set by another
promise.

2.8.2 Server normal ordering

As with the agent, common bundles are executed before any server bundles; following this all server
bundles are executed (the bundlesequence is only used for cf-agent). Within a server bundle, the
promise types are unamgibuous. Variables and classes are resolved in the same way as the agent.
On connection, access control must be handled first, then a role request might be made once access
has been granted. Thus ordering is fully constrained by process with no additional freedoms.

Within a server bundle, the normal ordering is:
vars

classes

access

roles

2.8.3 Monitor normal ordering

As with the agent, common bundles are executed before any monitor bundles; following this all
monitor bundles are executed (the bundlesequence is only used for cf-agent). Variables and
classes are resolved in the same way as the agent.

28 Cfengine reference manual

Within a monitor bundle, the normal ordering is:
vars

classes

measurements

reports

2.8.4 Knowledge normal ordering

As with the agent, common bundles are executed before any knowledge bundles; following this all
knowledge bundles are executed (the bundlesequence is only used for cf-agent). Variables and
classes are resolved in the same way as the agent.

Within a knowledge bundle, the normal ordering is:
vars

classes

topics

occurrences

inferences

reports

2.9 Loops and lists in cfengine 3

There are no explicit loops in cfengine, instead there are lists. To make a loop, you simply refer to
a list as a scalar and cfengine will assume a loop over all items in the list.

For example, in the examples below the list component has three elements. The list as a whole
may be referred to as @(component), in order to pass the whole list to a promise where a list is
expected. However, if we write $(component), i.e. the scalar variable, then cfengine assumes that
it should substitute each scalar from the list in turn, and thus iterate over the list elements using a
loop.

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"component" slist => { "cf-monitord", "cf-serverd", "cf-execd" };

"new_list" slist => { "cf-know", @(component) };

processes:

Chapter 2: A simple crash course in concepts 29

"$(component)" restart_class => canonify("start_$(component)");

commands:

"/bin/echo /var/cfengine/bin/$(component)"

ifvarclass => canonify("start_$(component)");

}

If a variable is repeated, its value is tied throughout the expression; so the output of:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"component" slist => { "cf-monitord", "cf-serverd", "cf-execd" };

"array[cf-monitord]" string => "The monitor";

"array[cf-serverd]" string => "The server";

"array[cf-execd]" string => "The executor, not executioner";

commands:

"/bin/echo $(component) is"

args => "$(array[$(component)])";

}

is as follows:

Q ".../bin/echo cf-mo": cf-monitord is The monitor

-> Last 1 QUOTEed lines were generated by "/bin/echo cf-monitord is The monitor"

Q ".../bin/echo cf-se": cf-serverd is The server

-> Last 1 QUOTEed lines were generated by "/bin/echo cf-serverd is The server"

Q ".../bin/echo cf-ex": cf-execd is The executor, not executioner

-> Last 1 QUOTEed lines were generated by "/bin/echo cf-execd is The executor, not executioner"

30 Cfengine reference manual

2.10 Pattern matching and referencing

One of the strengths of cfengine 3 is the ability to recognize and exploit patterns. All string patterns
in cfengine 3 are matched using regular expressions. The preferred regular expression library is
the Perl Compatible Regular Expression library. This is more powerful and more reliable than the
default POSIX regular expression code and all users should make the PCRE library available during
compilation if possible.

Cfengine has the ability to extract back-references from pattern matches. This makes sense
in two cases. Back references are fragments of a string that match parenethetic expressions. For
instance, suppose we have the string:

Mary had a little lamb ...

and apply the regular expression

"Mary ([^l]+)little (.*)"

The pattern matches the entire string, and it contains two parenthesized subexpressions, which
respectively match the fragments ‘has a ’ and ‘lamb ...’. The regular expression libraries assign three
matches to this result, labelled 0, 1 and 2.

The zeroth value is the entire string matched by the total expression. The first value is the
fragment matched by the first parenthesis, and so on.

Each time cfengine matches a string, these values are assigned to a special variable context
$(match.n). The fragments can be referred to in the remainder of the promise. There are two
places where this makes sense. One is in pattern replacement during file editing, and the other is in
searching for files.

Consider the examples below:

bundle agent testbundle

{

files:

This might be a dangerous pattern - see explanation in the next section

on "Runaway change warning"

"/home/mark/tmp/cf([23])?_(.*)"

edit_line => myedit("second backref: $(match.2)");

}

There are other filenames that could match this pattern, but if, for example, there were to exist
a file ‘/home/mark/tmp/cf3_test’, then we would have:

‘$(match.0)’
equal to ‘/home/mark/tmp/cf3 test’

‘$(match.1)’
equal to ‘3’

Chapter 2: A simple crash course in concepts 31

‘$(match.2)’
equal to ‘test’

Note that because the pattern allows for an optional ’2’ or ’3’ to follow the letters ’cf’, it is
possible that $(match.1) would contain the empty string. For example, if there was a file named
‘/home/mark/tmp/cf_widgets’, then we would have

‘$(match.0)’
equal to ‘/home/mark/tmp/cf widgets’

‘$(match.1)’
equal to ‘’

‘$(match.2)’
equal to ‘widgets’

Now look at the edit bundle. This takes a parameter (which is the back-reference from the
filename match), but it also uses back references to replace shell comment lines with C comment
lines (the same approach is used to hash-comment lines in files). The back-reference variables
$(match.n) refer to the most recent pattern match, and so in the ‘C_comment’ body, they do not
refer to the filename components, but instead to the hash-commented line in the ‘replace_patterns’
promise.

bundle edit_line myedit(parameter)

{

vars:

"edit_variable" string => "private edit variable is $(parameter)";

insert_lines:

"$(edit_variable)";

replace_patterns:

replace shell comments with C comments

"#(.*)"

replace_with => C_comment,

select_region => MySection("New section");

}

##

Bodies

##

body replace_with C_comment

32 Cfengine reference manual

{

replace_value => "/* $(match.1) */"; # backreference from replace_patterns

occurrences => "all"; # first, last, or all

}

##

body select_region MySection(x)

{

select_start => "\[$(x)\]";

select_end => "\[.*\]";

}

Try this example on the file

[First section]

one

two

three

[New section]

four

#five

six

[final]

seven

eleven

The resulting file is edited like this:

[First section]

one

two

three

[New section]

four

/* cf3 */

six

[final]

Chapter 2: A simple crash course in concepts 33

seven

eleven

private edit variable is second backref: test

2.10.1 Runaway change warning

Be careful when using patterns to search for files that are altered by cfengine if you are not us-
ing a file repository. Each time cfengine makes a change it saves an old file into a copy like
‘cf3_test.cf-before-edit’. These new files then get matched by the same expression above –
because it ends in the generic.*), or does not specify a tail for the expression. Thus cfengine will
happily edit backups of the edit file too, and generate a recursive process, resulting in something
like the following:

cf3_test cf3_test.cf-before-edit

cf3_test~ cf3_test~.cf-before-edit.cf-before-edit

cf3_test~.cf-before-edit cf3_test~.cf-before-edit.cf-before-edit.cf-before-edit

Always try to be as specific as possible when specifying patterns. A lazy approach will often
come back to haunt you.

2.10.2 Commenting lines

The following example shows how you would hash-comment lines in a file using cfengine 3.
##

#

HashCommentLines implemented in cfengine 3

#

##

body common control

{

version => "1.2.3";

bundlesequence => { "testbundle" };

}

##

bundle agent testbundle

{

files:

"/home/mark/tmp/comment_test"

create => "true",

edit_line => comment_lines_matching;

}

##

34 Cfengine reference manual

bundle edit_line comment_lines_matching

{

vars:

"regexes" slist => { "one.*", "two.*", "four.*" };

replace_patterns:

"^($(regexes))$"

replace_with => comment("# ");

}

##

Bodies

##

body replace_with comment(c)

{

replace_value => "$(c) $(match.1)";

occurrences => "all";

}

2.10.3 Regular expressions in paths

When applying regular expressions in paths, the path will first be split at the path separators, and
each element matched independently. For example, this makes it possible to write expressions like
"/home/.*/file" to match a single file inside a lot of directories — the .* does not eat the whole
string.

Note that whenever regular expressions are used in paths, the / is always used as the path
separator, even on Windows. However, on Windows, if the pathname is interpreted literally (no
regular expressions), then the backslash is also recognized as the path separator. This is because
the backslash has a special (and potentially ambiguous) meaning in regular expressions (a \d means
the same as [0-9], but on Windows it could also be a path separator and a directory named d).

The pathtype attribute allows you to force a specific behavior when interpreting pathnames. By
default, Cfengine looks at your pathname and makes an educated guess as to whether your pathname
contains a regular expression. The values "literal" and "regex" explicitly force Cfengine to
interpret the pathname either one way or another.

(see the pathtype attribute).

body common control

{

bundlesequence => { "wintest" };

}

Chapter 2: A simple crash course in concepts 35

##

bundle agent wintest

{

files:

"c:/tmp/file/f.*" # "best guess" interpretation

delete => nodir;

"c:\tmp\file"

delete => nodir,

pathtype => "literal";# force literal string interpretation

"C:/windows/tmp/f\d"

delete => nodir,

pathtype => "regex"; # force regular expression interpretation

}

##

body delete nodir

{

rmdirs => "false";

}

Note that the path ‘/tmp/gar.*’ will only match filenames like ‘/tmp/gar’, ‘/tmp/garbage’ and
‘/tmp/garden’. It will not match filename like ‘/tmp/gar/baz’ (because even though the ‘.*’ in a
regular expression means "zero or more of any character", Cfengine restricts that to mean "zero or
more of any character in a path component"). Correspondingly, Cfengine also restricts where you
can use the ‘/’ character (you can’t use it in a character class like ‘[^/]’ or in a parenthesized or
repeated regular expression component.

This means that regular expressions which include "optional directory components" won’t work.
You can’t have a files promise to tidy the directory ‘(/usr)?/tmp’. Instead, you need to be more
verbose and specify ‘/usr/tmp|/tmp’, or even better, think declaratively and create an slist that
contains both the strings ‘/tmp’ and ‘/usr/tmp’, and then allow Cfengine to iterate over the list!

This also means that the path ‘/tmp/.*/something’ will match files like ‘/tmp/abc/something’
or ‘/tmp/xyzzy/something’. However, even though the pattern ‘.*’ means "zero or more of any
character (except ‘/’)", Cfengine matches files bounded by directory separators. So even though
the pathname ‘/tmp//something’ is technically the same as the pathname ‘/tmp/something’, the
regular expression ‘/tmp/.*/something’ will not match on the degenerate case of ‘/tmp//something’
(or ‘/tmp/something’).

36 Cfengine reference manual

2.10.4 Anchored vs. unanchored regular expressions

Cfengine uses the full power of regular expressions, but there are two “flavors” of regex. Because
they behave somewhat differently (while still utilizing the same syntax), it is important to know
which one is used for a particular component of Cfengine:

• An “anchored” regular expression will only successfully match an entire string, from start to
end. An anchored regular expression behaves as if it starts with ‘^’ and ends with ‘$’, whether
you specify them yourself or not. Furthermore, an anchored regular expression cannot have
these automatic anchors removed.

• An “unanchored” regular expression may successfully match anywhere in a string. An unan-
chored regex may use anchors (such as ‘^’, ‘$’, ‘\A’, ‘\Z’, ‘\b’, etc.) to restrict where in the
string it may match. That is, an unanchored regular expression may be easily converted into a
partially- or fully-anchored regex.

For example, the comment parameter in readstringarray is an unanchored regex (See Sec-
tion 11.59 [Function readstringarray], page 410). If you specify the regular expression as "#.*",
then on any line which contains a pound sign, everything from there until the end of the line will be
removed as a comment. However, if you specify the regular expression as "^#.*" (note the ‘^’ anchor
at the start of the regex), then only lines which start with a ‘#’ will be removed as a comment! If
you want to ignore C-style comment in a multi-line string, then you have to a bit more clever, and
use this regex: "(?s)/*.*?*/"

Conversely, delete_lines promises use anchored regular expressions to delete lines. If our
promise uses "bob:\d* as a line-matching regex, then only the second line of this file will be deleted
(because only the second line starts with ‘bob:’ and is then followed exclusively by digits, all the
way to the end of the string).
bobs:your:uncle

bob:111770

thingamabob:1234

robert:bob:xyz

i:am:not:bob

If Cfengine expects an unanchored regular expression, then finding every line that contains the
letters ‘bob’ is easy. You just use the regex "bob". But if Cfengine expects an anchored regular
expression, then you must use ".*bob.*".

If you want to find every line that has a field which is exactly ‘bob’ with no characters be-
fore or after, then it is only a little more complicated if Cfengine expects an unanchored regex:
"(^|:)bob(:|$)". But if Cfengine expects an anchored regular expression, then it starts getting
ugly, and you’d need to use "bob:.*|.*:bob:.*|.*:bob".

2.10.5 Special topics on Regular Expressions

Regular expressions are a complicated subject, and really are beyond the scope of this document.
However, it is worth mentioning a couple of special topics that you might want to know of when
using regular expressions.

The first is how to not get a backreference. If you want to have a parenthesized expression that
does not generate a back reference, there is a special PCRE syntax to use. Instead of using ()

to bracket the piece of a regular expression, use (?:) instead. For example, this will match the
filenames ‘foolish’, ‘foolishly’, ‘bearish’, ‘bearishly’, ‘garish’, and ‘garishly’ in the ‘/tmp’
directory. The variable $match.0 will contain the full filename, and $match.1 will either contain

Chapter 2: A simple crash course in concepts 37

the string ‘ly’ or the empty string. But the (?:expression) which matches foo, bear, or gar does
not create a back-reference:
files:

"/tmp/(?:foo|bear|gar)ish(ly)?"

Another thing you might want to do is ignore capitalization. Cfengine is case-sensitive (in
all things), so the files promise ‘/tmp/foolish’ will not match the files ‘/tmp/Foolish’ or
‘/tmp/fOoLish’, etc. There are two ways to acheive case-insensitivity. The first is to use character
classes:
files:

"/tmp/[Ff][Oo][Oo][Ll][Ii][Ss][Hh]"

While this is certainly correct, it can also lead to unreadability. The PCRE patterns in Cfengine
have another way of introducing case-insensitvity into a pattern:
files:

"/tmp/(?i:foolish)"

The (?i:) brackets impose case-insensitive matching on the text that it surrounds, without
creating a sub-expression. You could also write the regular expression like this (but be aware that
the two expressions are different, and work slightly differently, so check the documentation for the
specifics):
files:

"/tmp/(?i)foolish"

The /s, /m, and /x switches from PCRE are also available, but use them with great care!

2.11 Distributed discovery

Cfengine’s philosophy and modus operandi is to make machines as self-reliant as possible. This is
the path to scalability. Sometimes we want machines to be able to detect one another and sample
each others’ behaviour. This can be accomplished using probes and server functions.

For example, testing whether services are up and running can be a useful probe even from a local
host. Cfengine has in-built functions for generically probing the environment; these are designed to
encourage decentralized monitoring.

body common control

{

bundlesequence => { "test" };

}

###

bundle agent test

{

vars:

38 Cfengine reference manual

"hosts" slist => { "server1.example.org", "server2", "server3" };

"up_servers" int => selectservers("@(hosts)","80","","","100","alive_servers");

classes:

"someone_alive" expression => isgreaterthan("$(up_servers)","0");

"i_am_a_server" expression => regarray("up_servers","$(host)|$(fqhost)");

reports:

someone_alive::

"Number of active servers $(up_servers)" action => always;

"First server $(alive_servers[0]) fails over to $(alive_servers[1])";

}

2.12 Developer structures

Developers may note that the internal data-types follow a simple set of internal linked lists, as in
the diagram below.

Chapter 3: How to run cfengine 3 examples 39

3 How to run cfengine 3 examples

The cfengine ‘tests’ directory contains a multitude of examples of cfengine 3 code. These instruc-
tions assume that you have all of your configuration in a single test file, such as the example in the
distribution directory ‘tests/units’.

1. Test the file as a non-privileged user first, if you can.

2. Always verify syntax first with cf-promises. This requires no privileges. An cf-agent will
not execute a configuration that has not passed this test.

host$ cf-promises -f ./inputfile.cf

3. Run the examples like this, e.g.

host$ src/cf-promises -f ./tests/units/unit_server_copy_localhost.cf

host$ src/cf-serverd -f ./tests/units/unit_server_copy_localhost.cf

host$ src/cf-agent -f ./tests/units/unit_server_copy_localhost.cf

Running cf-agent in verbose mode provides detailed information about the state of the systems
promises.

Outcome of version 1.2.3: Promises observed to be kept 99%,

Promises repaired 1%, Promises not repaired 0%

The log-file ‘WORKDIR/promise.log’ contains the summary of these reports with timestamps.
This is the simplest kind of high level audit record of the system.

40 Cfengine reference manual

Chapter 4: A complete configuration 41

4 A complete configuration

To illustrate a complete configuration for agents and daemons, consider the following example code,
supplied in the ‘inputs/’ directory of the distribution. Comments indicate the thinking behind this
starting point.

4.1 ‘promises.cf’

This file is the first file that cf-agent with no arguments will try to look for. It should contain all
of the basic configuration settings, including a list of other files to include. In normal operation, it
must have a bundlesequence.

This file can stay fixed, except for extending the bundlesequence. The bundlesequence acts
like the ‘genetic makeup’ of the configuration. In a large configuration, you might want to have
a different bundlesequence for different classes of host, so that you can build a complete system
like a check-list from different combinations of building blocks. You can construct different lists by
composing them from other lists, or you can use methods promises as an alternative for composing
bundles for different classes.
###

#

promises.cf

#

###

body common control

{

List the ‘genes’ for this system..

bundlesequence => {

"update",

"garbage_collection",

"main",

"cfengine"

};

inputs => {

"update.cf",

"site.cf",

"library.cf"

};

}

###

Now set defaults for all components’ hard-promises

###

42 Cfengine reference manual

body agent control

{

if default runtime is 5 mins, we need more for long jobs

ifelapsed => "15";

}

###

body monitor control

{

forgetrate => "0.7";

histograms => "true";

}

###########si###

body executor control

{

splaytime => "1";

mailto => "cfengine_mail@example.org";

smtpserver => "localhost";

mailmaxlines => "30";

Instead of a separate update script, now do this

exec_command => "$(sys.workdir)/bin/cf-agent -f failsafe.cf && $(sys.workdir)/bin/cf-agent";

}

###

body reporter control

{

reports => { "performance", "last_seen", "monitor_history" };

build_directory => "/tmp/nerves";

report_output => "html";

}

###

body runagent control

{

hosts => {

"127.0.0.1"

, "myhost.example.com:5308", ...

};

Chapter 4: A complete configuration 43

}

###

body server control

{

allowconnects => { "127.0.0.1" , "::1" };

allowallconnects => { "127.0.0.1" , "::1" };

trustkeysfrom => { "127.0.0.1" , "::1" };

Make updates and runs happen in one

cfruncommand =>

"$(sys.workdir)/bin/cf-agent -f failsafe.cf && $(sys.workdir)/bin/cf-agent";

allowusers => { "root" };

}

4.2 ‘site.cf’

Use this file to add your site-specific configuration. Common bundles can be used to define global
variables. Otherwise, unqualified variables are local to the bundle in which they are defined –
however they can be access by writing $(bundle_name.variable_name).

###

#

site.cf

#

###

bundle common g

{

vars:

SuSE::

"crontab" string => "/var/spool/cron/tabs/root";

!SuSE::

"crontab" string => "/var/spool/cron/crontabs/root";

}

44 Cfengine reference manual

The cfengine bundle below detects whether cfengine 2 is already running on the host or not, and
if so attempts to kill off old daemon processes and encapsulate the agent. It also looks for rules in
the old cfengine configuration that would potentially spoil cfengine 3’s control of the system: the last
thing we want is for cfengine 2 and cfengine 3 to fight each other for control of the system. Cfengine
3 tries to edit an existing crontab entry to replace any references to cfexecd with cf-execd; if none
are found it will add a 5 minute run schedule. You should never put cf-agentor cf-agent directly
inside cron without the cf-execd wrapper.

###

Start with cfengine itself

###

bundle agent cfengine

{

classes:

"integrate_cfengine2"

and => {

fileexists("$(sys.workdir)/inputs/cfagent.conf"),

fileexists("$(sys.workdir)/bin/cfagent")

};

vars:

"cf2bits" slist => { "cfenvd", "cfservd", "cfexecd" };

commands:

integrate_cfengine2::

"$(sys.workdir)/bin/cfagent"

action => longjob;

files:

Warn about rules relating to cfengine 2 in inputs - could conflict

"$(sys.workdir)/inputs/.*"

comment => "Check if there are still promises about cfengine 2 that need removing",

edit_line => DeleteLinesMatching(".*$(cf2bits).*"),

file_select => OldCf2Files,

action => WarnOnly;

Chapter 4: A complete configuration 45

Check cf-execd and schedule is in crontab

"$(g.crontab)"

edit_line => upgrade_cfexecd,

classes => define("exec_fix");

processes:

exec_fix::

"cron" signals => { "hup" };

}

###

General site issues can be in bundles like this one

###

bundle agent main

{

vars:

"component" slist => { "cf-monitord", "cf-serverd" };

-

files:

"$(sys.resolv)" # test on "/tmp/resolv.conf" #

create => "true",

edit_line => resolver,

edit_defaults => def;

Uncomment this to perform a change-detection scan

"/usr"

changes => lay_trip_wire,

depth_search => recurse("inf"),

action => measure;

processes:

"cfenvd" signals => { "term" };

46 Cfengine reference manual

Uncomment this when you are ready to upgrade the server

#

"cfservd" signals => { "term" };

#

Now make sure the new parts are running, cf-serverd will fail if

the old server is still running

"$(component)" restart_class => canonify("start_$(component)");

-

commands:

"$(sys.workdir)/bin/$(component)"

ifvarclass => canonify("start_$(component)");

}

This section takes a backup of a user home directory. This is especially useful for a single laptop
or personal workstation that does not have a regular external backup. If a user deletes a file by
accident, this shadow backup might contain the file even while travelling offline.

###

Backup

###

bundle agent backup

{

files:

"/home/backup"

copy_from => cp("/home/mark"),

depth_search => recurse("inf"),

file_select => exclude_files,

action => longjob;

}

###

Garbage collection issues

###

bundle agent garbage_collection

Chapter 4: A complete configuration 47

{

files:

"$(sys.workdir)/outputs"

delete => tidy,

file_select => days_old("3"),

depth_search => recurse("inf");

}

###

body file_select OldCf2Files

{

leaf_name => {

"promises\.cf",

"site\.cf",

"library\.cf",

"failsafe\.cf",

".*\.txt",

".*\.html",

".*~",

"#.*"

};

file_result => "!leaf_name";

}

###

body action measure

{

measurement_class => "Detect Changes in /usr";

ifelapsed => "240"; # 4 hours

expireafter => "240"; # 4 hours

}

Some basic anomaly detection: we respond with simple warnings if resource anomalies are de-
tected.

###

Anomaly monitoring

###

bundle agent anomalies

48 Cfengine reference manual

{

reports:

rootprocs_high_dev2::

"RootProc anomaly high 2 dev on $(mon.host) at $(mon.env_time)

measured value $(mon.value_rootprocs) av $(mon.av_rootprocs)

pm $(mon.dev_rootprocs)"

showstate => { "rootprocs" };

entropy_www_in_high&anomaly_hosts.www_in_high_anomaly::

"HIGH ENTROPY Incoming www anomaly high anomaly dev!!

on $(mon.host) at $(mon.env_time)

- measured value $(mon.value_www_in)

av $(mon.av_www_in) pm $(mon.dev_www_in)"

showstate => { "incoming.www" };

entropy_www_in_low.anomaly_hosts.www_in_high_anomaly::

"LOW ENTROPY Incoming www anomaly high anomaly dev!!

on $(mon.host) at $(mon.env_time)

- measured value $(svalue_www_in)

av $(av_www_in) pm $(dev_www_in)"

showstate => { "incoming.www" };

entropy_tcpsyn_in_low.anomaly_hosts.tcpsyn_in_high_dev2::

"Anomalous number of new TCP connections on $(mon.host)

at $(mon.env_time)

- measured value $(mon.value_tcpsyn_in)

av $(mon.av_tcpsyn_in) pm $(mon.dev_tcpsyn_in)"

showstate => { "incoming.tcpsyn" };

entropy_dns_in_low.anomaly_hosts.dns_in_high_anomaly::

"Anomalous (3dev) incoming DNS packets on $(mon.host)

at $(mon.env_time) - measured value $(mon.value_dns_in)

av $(av_dns_in) pm $(mon.dev_dns_in)"

showstate => { "incoming.dns" };

entropy_dns_in_low.anomaly_hosts.udp_in_high_dev2::

Chapter 4: A complete configuration 49

"Anomalous (2dev) incoming (non-DNS) UDP traffic

on $(mon.host) at $(mon.env_time) - measured value

$(mon.value_udp_in) av $(mon.av_udp_in) pm $(mon.dev_udp_in)"

showstate => { "incoming.udp" };

anomaly_hosts.icmp_in_high_anomaly.!entropy_icmp_in_high::

"Anomalous low entropy (3dev) incoming ICMP traffic

on $(mon.host) at $(mon.env_time) - measured value $(mon.value_icmp_in)

av $(mon.av_icmp_in) pm $(mon.dev_icmp_in)"

showstate => { "incoming.icmp" };

}

Server access rules are a touchy business. In an enterprise setting you generally want every host
to allow a monitoring host to be able to download data, and a backup host to be able to access
important data on every host. On a laptop or personal workstation, there might not be any reason
to run a server for external use; however you might configure it as below to allow localhost access
for testing.

###

Server configuration

###

bundle server access_rules()

{

access:

"/home/mark/test_area"

admit => { "127.0.0.1" };

Rule for cf-runagent

"/home/mark/.cfagent/bin/cf-agent"

admit => { "127.0.0.1" };

New in cf3 - RBAC with cf-runagent

roles:

".*" authorize => { "mark" };

}

50 Cfengine reference manual

4.3 ‘update.cf’

This file should rarely if ever change. Should you ever change it (or when you upgrade Cfengine),
take special care to ensure the old and the new Cfengine can parse and execute this file successfully.
If not, you risk losing control of your system (that is, if Cfengine cannot successfully execute this
set of promises, it has no mechanism for distributing new policy files).

By default, the policy defined in ‘update.cf’ is executed from two sets of promise bodies. The
“usual” one (defined in the bundlesequence in ‘promises.cf’) and another in the backup/failsafe
bundlesequence (defined in ‘failsafe.cf’).
###

#

update.cf

#

###

bundle agent update

{

vars:

"master_location" string => "/your/master/cfengine-inputs";

files:

Update the configuration

"/var/cfengine/inputs"

perms => system("600"),

copy_from => mycopy("$(master_location)","localhost"),

depth_search => recurse("inf"),

action => immediate;

Update the software cache

"/var/cfengine/bin"

perms => system("700"),

copy_from => mycopy("/usr/local/sbin","localhost"),

depth_search => recurse("inf"),

action => immediate;

}

##

body perms system(p)

Chapter 4: A complete configuration 51

{

mode => "$(p)";

}

##

body file_select cf3_files

{

leaf_name => { "cf-.*" };

file_result => "leaf_name";

}

###

body copy_from mycopy(from,server)

{

source => "$(from)";

compare => "digest";

}

###

body action immediate

{

ifelapsed => "1";

}

4.4 ‘failsafe.cf’

This file should probably never change. The only job of ‘failsafe.cf’ is to execute the update

bundle in a “standalone” context should there be a syntax error somewhere in the main set of
promises. In this way, if a client machine’s policies are ever corrupted after downloading erroneous
policy from a server, that client will have a failsafe method for downloading a corrected policy once
it becomes available on the server. Note that by “corrupted” and “erroneous” we typically mean
“broken via administrator error” - mistakes happen, and the ‘failsafe.cf’ file is Cfengine’s way of
being prepared for that eventuality.

If you ever change ‘failsafe.cf’ (or when you upgrade Cfengine), make sure the old and the
new Cfengine can successfully parse and execute this file. If not, you risk losing control of your
system (that is, if Cfengine cannot successfully execute this policy file, it has no failsafe/fallback
mechanism for distributing new policy files).
###

#

Failsafe file

52 Cfengine reference manual

#

###

body common control

{

bundlesequence => { "update" };

inputs => { "update.cf" };

}

##

body depth_search recurse(d)

{

depth => "$(d)";

}

4.5 What should a failsafe and update file contain?

The ‘failsafe.cf’ file is to make sure that your system can upgrade gracefully to new versions even
when mistakes are made.

As a general rule:

• Upgrade the software first, then add new features to the configuration.

• Never use advanced features in the failsafe or update file.

• Avoid using library code (including any bodies from ‘cfengine_stdlib.cf’). Copy/paste any
bodies you need using a unique name that does not collide with a name in library (we recommend
simply adding the prefix “u_”). This may mean that you create duplicate functionality, but
that is okay in this case to ensure a 100% functioning standalone update process). The promises
which manage the update process should not have any dependencies on any other files.

A cfengine configuration will fail-over to the failsafe.cf configuration if it is unable to read or parse
the contents successfully. That means that any syntax errors you introduce (or any new features
you utilize in a configuration) will cause a fail-over, because the parser will not be able to interpret
the policy. If the failover is due to the use of new features, they will not parse until the software
itself has been updated (so we recommend that you always update Cfengine before updating policy
to use new features). If you accidentally cause a bad (i.e., unparseable) policy to be distributed to
client machines, the failsafe.cf policy on those machines will run (and will eventually download
a working policy, once you fix it on the policy host).

4.6 Recovery from errors in the configuration

The ‘failsafe.cf’ file should be able to download the latest master configuration from source
always.

###

Chapter 4: A complete configuration 53

#

failsafe.cf

#

###

body common control

{

bundlesequence => { "update" };

}

###

bundle agent update

{

files:

"/var/cfengine/inputs"

perms => system,

copy_from => mycopy("/home/mark/cfengine-inputs","localhost"),

file_select => cf3_files,

depth_search => recurse("inf");

"/var/cfengine/bin"

perms => system,

copy_from => mycopy("/usr/local/sbin","localhost"),

file_select => cf3_files,

depth_search => recurse("inf");

}

###

body perms system

{

mode => "0700";

}

###

body depth_search recurse(d)

{

depth => "$(d)";

54 Cfengine reference manual

}

##

body file_select cf3_files

{

leaf_name => { "cf-.*" };

file_result => "leaf_name";

}

###

body copy_from mycopy(from,server)

{

source => "$(from)";

servers => { "$(server)" , "failover.domain.tld" };

#copy_backup => "true";

#trustkey => "true";

encrypt => "true";

}

If the copy_backup option is true, cfengine will keep a single previous version of the file before copy,
if the value is ‘timestamp’ cfengine keeps time-stamped versions either in the location of the file, or
in the file repository if one is defined. The trustkey option should normally be commented out so
that public keys are only exchanged under controlled conditions.

4.7 Recovery from errors in the software

The update should optionally include an update of software so that a single failover from a config-
uration that is ‘too new’ for the software will still correct itself once the new software is available.

###

#

update.cf

#

###

bundle agent update

{

files:

"/var/cfengine/inputs"

Chapter 4: A complete configuration 55

perms => system("600"),

copy_from => mycopy("/home/mark/cfengine-inputs","localhost"),

depth_search => recurse("inf");

"/var/cfengine/bin"

perms => system("700"),

copy_from => mycopy("/usr/local/sbin","localhost"),

file_select => cf3_files,

depth_search => recurse("inf");

}

##

body perms system(p)

{

mode => "$(p)";

}

##

body file_select cf3_files

{

leaf_name => { "cf-.*" };

file_result => "leaf_name";

}

###

body copy_from mycopy(from,server)

{

source => "$(from)";

compare => "digest";

}

56 Cfengine reference manual

Chapter 5: Control promises 57

5 Control promises

While promises to configure your system are entirley user-defined, the details of the operational
behaviour of the cfengine software is of course hard-coded. You can still configure the details of
this behaviour using the control promise bodies. Control behaviour is defined in bodies because the
actual promises are fixed and you only change their details within sensible limits.

Note that in cfengine’s previous versions, the control part of the configuration contained a
mixture of internal control parameters and user definitions. There is now a cleaner separation in
cfengine 3. User defined behaviour requires a promise, and must therefore be defined in a bundle.

Below is a list of the control parameters for the different components (Agents and Daemons1) of
the cfengine software.

5.1 common control promises

� �
body common control

{

inputs => {

"update.cf",

"library.cf"

};

bundlesequence => {

update("policy_host.domain.tld"),

"main",

"cfengine2"

};

output_prefix => "cfengine>";

version => "1.2.3";

}
 	
The common control body refers to those promises that are hard-coded into all the components

of cfengine, and therefore affect the behaviour of all the components.

5.1.1 bundlesequence

Type: slist

Allowed input range: .*

Synopsis: List of promise bundles to verify in order

1 There is no Da Vinci code in cfengine

58 Cfengine reference manual

Example:

body common control

{

bundlesequence => {

update("policy_host.domain.tld"),

"main",

"cfengine2"

};

}

Notes:

The bundlesequence determines which of the compiled bundles will be executed and in what
order they will be executed. The list refers to the names of bundles (which might be parameterized
function-like objects).

The order in which you execute bundles can affect the outcome of your promises. In general you
should always define variables before you use them.

The bundlesequence is like a genetic makeup of a machine. The bundles act like characteristics
of the systems. If you want different systems to have different bundlesequences, distinguish them
with classes:
webservers::

bundlesequence => { "main", "web" };

others::

bundlesequence => { "main", "otherstuff" };

If you want to add a basic common sequence to all sequences, then use global variable lists to
do this:
body common control

{

webservers::

bundlesequence => { @(g.bs), "web" };

others::

bundlesequence => { @(g.bs), "otherstuff" };

}

bundle common g

Chapter 5: Control promises 59

{

vars:

"bs" slist => { "main", "basic_stuff" };

}

Default value:

There is no default value for bundlesequence, and the absence of a bundlesequence will cause
a compilation error. A bundlesequence may also be specified using the -b or --bundlesequence

command line option.

5.1.2 ignore_missing_bundles

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: If any bundles in the bundlesequence do not exist, ignore and continue
Example:

ignore_missing_bundles => "true";

Notes:

This authorizes the bundlesequence to contain possibly existent pluggable modules. It defaults
to false, whereupon undefined bundles cause a fatal error in parsing, and a transition to failsafe
mode.

5.1.3 ignore_missing_inputs

Type: (menu option)
Allowed input range:

true

false

yes

no

on

60 Cfengine reference manual

off

Default value: false
Synopsis: If any input files do not exist, ignore and continue
Example:

ignore_missing_inputs => "true";

Notes:

The inputs lists determines which files are parsed by cfengine. Normally stringent security checks
are made on input files to prevent abuse of the system by unauthorized users. Sometimes however,
it is appropriate to consider the automatic plug-in of modules that might or might not exist. This
option permits cfengine to list possible files that might not exist and continue ‘best effort’ with those
that do exist. The default of all Booleans is false, so the normal behaviour is to signal an error if
an input is not found.

5.1.4 inputs

Type: slist
Allowed input range: .*
Synopsis: List of additional filenames to parse for promises
Example:

body common control

{

inputs => {

"update.cf",

"library.cf"

};

}

Notes:

The filenames specified are all assumed to be in the same directory as the file which references them
(this is usually $(sys.workdir)/inputs, but may be overridden by the -f or --file command line
option.
Default value:

There is no default value. If no filenames are specified, no other filenames will be included in the
compilation process.

Chapter 5: Control promises 61

5.1.5 version

Type: string

Allowed input range: (arbitrary string)

Synopsis: Scalar version string for this configuration

Example:

body common control

{

version => "1.2.3";

}

Notes:

The version string is used in error messages and reports.

This string should not contain the colon ‘:’ character, as this has a special meaning in the context
of knowledge management. This restriction might be lifted later.

5.1.6 lastseenexpireafter

Type: int

Allowed input range: 0,99999999999

Default value: One week

Synopsis: Number of minutes after which last-seen entries are purged

Example:

body common control

{

lastseenexpireafter => "72";

}

Notes:

Default time is one week.

5.1.7 output_prefix

Type: string

Allowed input range: (arbitrary string)

Synopsis: The string prefix for standard output

62 Cfengine reference manual

Example:

body common control

{

output_prefix => "my_cf3";

}

Notes:

On native Windows versions of Cfengine (Nova and above), this string is also prefixed messages
in the event log.

5.1.8 domain

Type: string
Allowed input range: .*
Synopsis: Specify the domain name for this host
Example:

body common control

{

domain => "example.org";

}

Notes:

There is no standard, universal or reliable way of determining the DNS domain name of a host,
so it can be set explicitly to simplify discovery and name-lookup.

5.1.9 require_comments

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false

Chapter 5: Control promises 63

Synopsis: Warn about promises that do not have comment documentation
Example:

body common control

{

common::

require_comments => "true";

}

Notes:

This may be used as a policy Quality Assurance measure, to remind policy makers to properly
document their promises. When true, cf-promises will report loudly on promises that do not have
comments.

5.1.10 host_licenses_paid

Type: int
Allowed input range: 0,99999999999
Default value: 0
Synopsis: The number of licenses that you promise to have paid for by setting this value (legally
binding for commercial license)
Example:

body common control

{

host_licenses_paid => "1000";

}

Notes:

Licensees of the commercial Cfengine releases have to make a promise in acceptance of contract
terms by setting this value to the number of licenses they have paid for. This is tallied with the
number of licenses granted. This declaration should be placed in all separate configuration files, e.g.
‘failsafe.cf’, ‘promises.cf’.

5.1.11 syslog_host

Type: string
Allowed input range: [a-zA-Z0-9_$.:-]+
Synopsis: The name or address of a host to which syslog messages should be sent directly by UDP

64 Cfengine reference manual

Example:

body common control

{

syslog_host => "syslog.example.org";

syslog_port => "514";

}

Notes:

The hostname or IP address of a local syslog service to which all Cfengine’s components may
promise to send data. This feature is provided in Cfengine Nova and above.

5.1.12 syslog_port

Type: int
Allowed input range: 0,99999999999
Default value: 514
Synopsis: The port number of a UDP syslog service
Example:

body common control

{

syslog_host => "syslog.example.org";

syslog_port => "514";

}

Notes:

The UDP port of a local syslog service to which all Cfengine’s components may promise to send
data. This feature is provided in Cfengine Nova and above.

5.1.13 fips_mode

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: Activate full FIPS mode restrictions

Chapter 5: Control promises 65

Example:

body common control

{

fips_mode => "true";

}

Notes:

Appears as of Nova 2.0. If Cfengine commercial editions this value may be set to avoid the use of
old deprecated algorithms that are no longer FIPS 140-2 compliant. If not set, there is some degree
of compatibility with older versions and algorithms. During an upgrade, setting this parameter can
cause a lot of recomputation of checksums etc. Government bodies starting with Nova 2.0 or higher
should set this to ‘true’ from the start.

5.2 agent control promises

� �
body agent control

{

123_456_789::

domain => "mydomain.com";

123_456_789_111::

auditing => "true";

any::

fullencryption => "true";

}
 	
Settings describing the details of the fixed behavioural promises made by cf-agent. For example:

5.2.1 abortclasses

Type: slist

Allowed input range: .*

Synopsis: A list of classes which if defined lead to termination of cf-agent

66 Cfengine reference manual

Example:

body agent control

{

abortclasses => { "danger.*", "should_not_continue" };

}

Notes:

A list of class regular expressions that cf-agent will watch out for. If any matching class
becomes defined, it will cause the current execution of cf-agent to be aborted. This may be used
for validation, for example. To handle class expressions, simply create an alias for the expression
with a single name.

5.2.2 abortbundleclasses

Type: slist
Allowed input range: .*
Synopsis: A list of classes which if defined lead to termination of current bundle
Example:

This example shows how to use the feature to validate input to a method bundle.

body common control

{

bundlesequence => { "testbundle" };

version => "1.2.3";

}

###

body agent control

{

abortbundleclasses => { "invalid.*" };

}

###

bundle agent testbundle

{

Chapter 5: Control promises 67

vars:

"userlist" slist => { "xyz", "mark", "jeang", "jonhenrik", "thomas", "eben" };

methods:

"any" usebundle => subtest("$(userlist)");

}

###

bundle agent subtest(user)

{

classes:

"invalid" not => regcmp("[a-z]{4}","$(user)");

reports:

!invalid::

"User name $(user) is valid at exactly 4 letters";

abortbundleclasses will prevent this from being evaluated

invalid::

"User name $(user) is invalid";

}

Notes:

A list of regular expressions for classes, or class expressions that cf-agent will watch out for. If
any of these classes becomes defined, it will cause the current bundle to be aborted. This may be
used for validation, for example.

5.2.3 addclasses

Type: slist

Allowed input range: .*

Synopsis: A list of classes to be defined always in the current context

Example:

68 Cfengine reference manual

Add classes adds global, literal classes. The only predicates available during the control section
are hard-classes.

any::

addclasses => { "My_Organization" }

solaris::

addclasses => { "some_solaris_alive", "running_on_sunshine" };

Notes:

Another place to make global aliases for system hardclasses. Classes here are added unqeuivocally
to the system. If classes are used to predicate definition, then they must be defined in terms of global
hard classes.

5.2.4 agentaccess

Type: slist
Allowed input range: .*
Synopsis: A list of user names allowed to execute cf-agent
Example:

agentaccess => { "mark", "root", "sudo" };

Notes:

A list of user names that will be allowed to attempt execution of the current configuration. This
is mainly a sanity check rather than a security measure.

5.2.5 agentfacility

Type: (menu option)
Allowed input range:

LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

LOG_LOCAL3

Chapter 5: Control promises 69

LOG_LOCAL4

LOG_LOCAL5

LOG_LOCAL6

LOG_LOCAL7

Default value: LOG USER
Synopsis: The syslog facility for cf-agent
Example:

agentfacility => "LOG_USER";

Notes:

Sets the agent’s syslog facility level. See the manual pages for syslog. This is ignored on Windows,
as Cfengine Nova creates event logs.

5.2.6 auditing

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false flag to activate the cf-agent audit log
Example:

body agent control

{

auditing => "true";

}

Notes:

If this is set, cfengine will perform auditing on promises in the current configuration. This means
that all details surrounding the verification of the current promise will be recorded in the audit
database. The database may be inspected with cf-report, or cfshow in cfengine 2.

70 Cfengine reference manual

5.2.7 binarypaddingchar

Type: string
Allowed input range: (arbitrary string)
Default value: space (ASC=32)
Synopsis: Character used to pad unequal replacements in binary editing
Example:

body agent control

{

binarypaddingchar => "#";

}

Notes:

When editing binary files, it can be dangerous to replace a text string with one that is longer
or shorter as byte references and jumps would be destroyed. Cfengine will therefore not allow
replacements that are larger in size than the original, but shorter strings can be padded out to the
same length.
Default value:

The binarypaddingchar defaults to the empty string (i.e., no padding)

5.2.8 bindtointerface

Type: string
Allowed input range: .*
Synopsis: Use this interface for outgoing connections
Example:

bindtointerface => "192.168.1.1";

Notes:

On multi-homed hosts, the server and client can bind to a specific interface for server traffic.
The IP address of the interface must be given as the argument, not the device name.

5.2.9 hashupdates

Type: (menu option)
Allowed input range:

Chapter 5: Control promises 71

true

false

yes

no

on

off

Default value: false
Synopsis: true/false whether stored hashes are updated when change is detected in source
Example:

body agent control

{

hashupdates => "true";

}

Notes:

If ‘true’ the stored reference value is updated as soon as a warning message has been given. As
most changes are benign (package updates etc) this is a common setting.

5.2.10 childlibpath

Type: string
Allowed input range: .*
Synopsis: LD LIBRARY PATH for child processes
Example:

body agent control

{

childlibpath => "/usr/lcoal/lib:/usr/local/gnu/lib";

}

Notes:

This string may be used to set the internal LD_LIBRARY_PATH environment of the agent.

5.2.11 checksum_alert_time

Type: int
Allowed input range: 0,60
Default value: 10 mins
Synopsis: The persistence time for the checksum alert class

72 Cfengine reference manual

Example:

body agent control

{

checksum_alert_time => "30";

}

Notes:

When checksum changes trigger an alert, this is registered as a persistent class. This value
determines the longevity of that class.

5.2.12 defaultcopytype

Type: (menu option)
Allowed input range:

mtime

atime

ctime

digest

hash

binary

Default value: ctime or mtime differ
Synopsis: (null)
Example:

body agent control

{

#...

defaultcopytype => "digest";

}

Notes:

Sets the global default policy for comparing source and image in copy transactions.

5.2.13 dryrun

Type: (menu option)
Allowed input range:

true

Chapter 5: Control promises 73

false

yes

no

on

off

Default value: false
Synopsis: All talk and no action mode
Example:

body agent control

{

dryrun => "true";

}

Notes:

If set in the configuration, cfengine makes no changes to a system, only reports what it needs to
do.

5.2.14 editbinaryfilesize

Type: int
Allowed input range: 0,99999999999
Default value: 100000
Synopsis: Integer limit on maximum binary file size to be edited
Example:

body agent control

{

edibinaryfilesize => "10M";

}

Notes:

The global setting for the file-editing safety-net for binary files (this value may be overridden
on a per-promise basis with max_file_size, See Section 7.4.9 [edit defaults in files], page 226.
The default value for editbinaryfilesize is 100k. Note the use of special units is allowed, See
Section 2.6 [Datatypes in cfengine 3], page 22, for a list of permissible suffixes.

When setting limits, the limit on editing binary files should generally be set higher than for text
files.

74 Cfengine reference manual

5.2.15 editfilesize

Type: int
Allowed input range: 0,99999999999
Default value: 10000
Synopsis: Integer limit on maximum text file size to be edited
Example:

body agent control

{

editfilesize => "120k";

}

Notes:

The global setting for the file-editing safety-net (this value may be overridden on a per-promise
basis with max_file_size, See Section 7.4.9 [edit defaults in files], page 226. The default value
for editfilesize is 100k. Note the use of special units is allowed, See Section 2.6 [Datatypes in
cfengine 3], page 22, for a list of permissible suffixes.

5.2.16 environment

Type: slist
Allowed input range: [A-Za-z0-9_]+=.*
Synopsis: List of environment variables to be inherited by children
Example:

body common control

{

bundlesequence => { "one" };

}

body agent control

{

environment => { "A=123", "B=456", "PGK_PATH=/tmp"};

}

bundle agent one

{

commands:

"/usr/bin/env";

Chapter 5: Control promises 75

}

Notes:

This may be used to set the runtime environment of the agent process. The values of environment
variables are inherited by child commands. Some interactive programs insist on values being set,
e.g.

Required by apt-cache, debian

environment => { "LANG=C"};

5.2.17 exclamation

Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Default value: true

Synopsis: true/false print exclamation marks during security warnings

Example:

body agent control

{

exclamation => "false";

}

Notes:

This affects only the output format of warnings.

5.2.18 expireafter

Type: int

Allowed input range: 0,99999999999

Default value: 1 min

Synopsis: Global default for time before on-going promise repairs are interrupted

76 Cfengine reference manual

Example:

body action example

{

ifelapsed => "120"; # 2 hours

expireafter => "240"; # 4 hours

}

Notes:

The locking time after which cfengine will attempt to kill and restart its attempt to keep a
promise.

5.2.19 files_single_copy

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of filenames to be watched for multiple-source conflicts
Example:

body agent control

{

single_copy => { "/etc/.*", "/special/file" };

}

Notes:

This list of regular expressions will ensure that files matching the patterns of the list are never
copied from more than one source during a single run of cf-agent. This may be considered a
protection against accidential overlap of copies from diverse remote sources, or as a first-come-first-
served disambiguation tool for lazy-evaluation of overlapping file-copy promises.

5.2.20 files_auto_define

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of filenames to define classes if copied
Example:

body agent control

{

Chapter 5: Control promises 77

files_auto_define => { "/etc/syslog\.c.*", "/etc/passwd" };

}

Notes:

Classes are automatically defined by the files that are copied. The file is named according to
the prefixed ‘canonization’ of the file name. Canonization means that non-identifier characters are
converted into underscores. Thus ‘/etc/passwd’ would canonize to ‘_etc_passwd’. The prefix
‘auto_’ is added to clarify the origin of the class. Thus in the example the copying of ‘/etc/passwd’
would lead to the class ‘auto__etc_passwd’ being defined automatically.

5.2.21 hostnamekeys

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false label ppkeys by hostname not IP address
Example:

body server control

{

hostnamekeys => "true";

}

Notes:

Client side choice to base key associations on host names rather than IP address. This is useful
for hosts with dynamic addresses.

This feature has been deprecated since 3.1.0. Host identification is now handled transparently.

5.2.22 ifelapsed

Type: int
Allowed input range: 0,99999999999
Default value: 1
Synopsis: Global default for time that must elapse before promise will be rechecked

78 Cfengine reference manual

Example:

#local

body action example

{

ifelapsed => "120"; # 2 hours

expireafter => "240"; # 4 hours

}

global

body agent control

{

ifelapsed => "180"; # 3 hours

}

Notes:

This overrides the global settings. Promises which take a long time to verify should usually
be protected with a long value for this parameter. This serves as a resource ‘spam’ protection.
A cfengine check could easily run every 5 minutes provided resource intensive operations are not
performed on every run. Using time classes like Hr12 etc., is one part of this strategy; using
ifelapsed is another which is not tied to a specific time.

5.2.23 inform

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false set inform level default
Example:

body agent control

{

Chapter 5: Control promises 79

inform => "true";

}

Notes:

Equivalent to (and when present, overrides) the command line option ‘-I’. Sets the default
output level ‘permanently’ within the class context indicated.

Every promiser makes an implicit default promise to use output settings declared using outputs

promises.

5.2.24 intermittency

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false store detailed recordings of last observed time for all client-server connections
for reliability assessment (false)
Example:

reports:

"Comment"

intermittency => "0.5";

Notes:

Report on cfengine peers in the neighbourhood watch whose observed irregularity of connection
exceeds 0.5 scaled entropy units, meaning that they show an erratic pattern of connection.

5.2.25 max_children

Type: int
Allowed input range: 0,99999999999
Default value: 1 concurrent agent promise
Synopsis: Maximum number of background tasks that should be allowed concurrently

80 Cfengine reference manual

Example:

body runagent control

{

max_children => "10";

}

or

body agent control

{

max_children => "10";

}

Notes:

For the run-agent this represents the maximum number of forked background processes allowed
when parallelizing connections to servers. For the agent it represents the number of background jobs
allowed concurrently. Background jobs often lead to contention of the disk resources slowing down
tasks considerably; there is thus a law of diminishing returns.

5.2.26 maxconnections

Type: int
Allowed input range: 0,99999999999
Default value: 30 remote queries
Synopsis: Maximum number of outgoing connections to cf-serverd
Example:

client side

body agent control

{

maxconnections => "1000";

}

server side

body server control

{

maxconnections => "1000";

}

Chapter 5: Control promises 81

Notes:

Watch out for kernel limitations for maximum numbers of open file descriptors which can limit
this.

5.2.27 mountfilesystems

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false mount any filesystems promised
Example:

body agent control

{

mountfilesystems => "true";

}

Notes:

Issues the generic command to mount file systems defined in the file system table.

5.2.28 nonalphanumfiles

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false warn about filenames with no alphanumeric content

82 Cfengine reference manual

Example:

body agent control

{

nonalphanumericfiles => "true";

}

Notes:

This test is applied in all recursive/depth searches.

5.2.29 repchar

Type: string
Allowed input range: .
Default value:

Synopsis: The character used to canonize pathnames in the file repository
Example:

body agent control

{

repchar => "_";

}

Notes:

5.2.30 default_repository

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Default value: in situ
Synopsis: Path to the default file repository
Example:

body agent control

{

default_repository => "/var/cfengine/repository";

}

Chapter 5: Control promises 83

Notes:

If defined the default repository is the location where versions of files altered by cfengine are
stored. This should be understood in relation to the policy for ‘backup’ in copying, editing etc. If
the backups are time-stamped, this becomes effective a version control repository.

5.2.31 secureinput

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false check whether input files are writable by unauthorized users
Example:

body agent control

{

secureinput => "true";

}

Notes:

If this is set, the agent will not accept an input file that is not owned by a privileged user.

5.2.32 sensiblecount

Type: int
Allowed input range: 0,99999999999
Default value: 2 files
Synopsis: Minimum number of files a mounted filesystem is expected to have
Example:

body agent control

{

84 Cfengine reference manual

sensiblecount => "20";

}

Notes:

5.2.33 sensiblesize

Type: int
Allowed input range: 0,99999999999
Default value: 1000 bytes
Synopsis: Minimum number of bytes a mounted filesystem is expected to have
Example:

body agent control

{

sensiblesize => "20K";

}

Notes:

5.2.34 skipidentify

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: Do not send IP/name during server connection because address resolution is broken
Example:

body agent control

{

skipidentify => "true";

}

Chapter 5: Control promises 85

Notes:

Hosts that are not registered in DNS cannot supply reasonable credentials for a secondary con-
firmation of their identity to a cfengine server. This causes the agent to ignore its missing DNS
credentials.

5.2.35 suspiciousnames

Type: slist
Allowed input range: List of names to warn about if found during any file search

Synopsis: (null)
Example:

body agent control

{

suspiciousnames => { ".mo", "lrk3", "rootkit" };

}

Notes:

If cfengine sees these names during recursive (depth) file searches it will warn about them.

5.2.36 syslog

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false switches on output to syslog at the inform level
Example:

body agent example

{

syslog => "true";

86 Cfengine reference manual

}

Notes:

5.2.37 track_value

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false switches on tracking of promise valuation
Example:

body agent control

{

track_value => "true";

}

Notes:

If this is true, cfengine generates a log in ‘WORKDIR/state/cf_value.log’ of the estmated ‘busi-
ness value’ of the system automation as a running log, value_kept, etc. The format of the file
is
date,sum value kept,sum value repaired,sum value notkept

5.2.38 timezone

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of allowed timezones this machine must comply with
Example:

body agent control

{

Chapter 5: Control promises 87

timezone => { "MET", "CET", "GMT+1" };

}

Notes:

5.2.39 default_timeout

Type: int
Allowed input range: 0,99999999999
Default value: 10 seconds
Synopsis: Maximum time a network connection should attempt to connect
Example:

body agent control

{

default_timeout => "10";

}

Notes:

The time is in seconds. It is not a guaranteed number, since it depends on system behaviour.
under Linux, the kernel version plays a role, since not all system calls seem to respect the signals.

5.2.40 verbose

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false switches on verbose standard output
Example:

body agent control

{

88 Cfengine reference manual

verbose => "true";

}

Notes:

Equivalent to (and when present, overrides) the command line option ‘-v’. Sets the default
output level ‘permanently’ for this promise.

Every promiser makes an implicit default promise to use output settings declared using outputs

promises.

5.3 server control promises

� �
body server control

{

allowconnects => { "127.0.0.1" , "::1" , ".*\.example\.org" };

allowallconnects => { "127.0.0.1" , "::1" , ".*\.example\.org" };

Uncomment me under controlled circumstances

#trustkeysfrom => { "127.0.0.1" , "::1" , ".*\.example\.org" };

}
 	
Settings describing the details of the fixed behavioural promises made by cf-serverd. Server

controls are mainly about determining access policy for the connection protocol: i.e. access to the
server itself. Access to specific files must be granted in addition.

5.3.1 cfruncommand

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: Path to the cf-agent command or cf-execd wrapper for remote execution
Example:

body server control

{

cfruncommand => "/var/cfengine/bin/cf-agent";

}

Chapter 5: Control promises 89

Notes:

It is normal for this to point to the location of cf-agent but it could also point to the cf-execd,
or even another program at your own risk.

5.3.2 maxconnections

Type: int
Allowed input range: 0,99999999999
Default value: 30 remote queries
Synopsis: Maximum number of connections that will be accepted by cf-serverd
Example:

client side

body agent control

{

maxconnections => "1000";

}

server side

body server control

{

maxconnections => "1000";

}

Notes:

Watch out for kernel limitations for maximum numbers of open file descriptors which can limit
this.

5.3.3 denybadclocks

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

90 Cfengine reference manual

Default value: true
Synopsis: true/false accept connections from hosts with clocks that are out of sync
Example:

body server control

{

#..

denybadclocks => "true";

}

Notes:

A possible form of attack on the fileserver is to request files based on time by setting the clocks
incorrectly. This option prevents connections from clients whose clocks are drifting too far from
the server clock (where "too far" is currently defined as "more than an hour off"). This serves as
a warning about clock asynchronization and also a protection against Denial of Service attempts
based on clock corruption.

5.3.4 allowconnects

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of IPs or hostnames that may connect to the server port
Example:

allowconnects => {

"127.0.0.1",

"::1",

"200\.1\.10\..*",

"host\.domain\.tld",

"host[0-9]+\.domain\.com"

};

Notes:

If a client’s identity matches an entry in this list it is granted to permission to send data to the
server port. Clients who are not in this list may not connect or send data to the server.

See also the warning about regular expressions in allowallconnects.

5.3.5 denyconnects

Type: slist

Chapter 5: Control promises 91

Allowed input range: (arbitrary string)
Synopsis: List of IPs or hostnames that may NOT connect to the server port
Example:

body server control

{

denyconnects => { "badhost\.domain\.evil", "host3\.domain\.com" };

}

Notes:

Hosts or IP addresses that are explicitly denied access. This should only be used in special
circumstances. One should never grant generic access to everything and then deny special cases.
Since the default server behaviour is to grant no access to anything, this list is unnecessary unless
you have already granted access to some set of hosts using a generic pattern, to which you intend
to make an exception.

See also the warning about regular expressions in allowallconnects.

5.3.6 allowallconnects

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of IPs or hostnames that may have more than one connection to the server port
Example:

allowallconnects => {

"127.0.0.1",

"::1",

"200\.1\.10\..*",

"host\.domain\.tld",

"host[0-9]+\.domain\.com"

};

Notes:

This list of regular expressions matches hosts that are allowed to connect an umlimited number
of times up to the maximum connection limit. Without this, a host may only connect once (which is
a very strong constraint, as the host must wait for the TCP FIN WAIT to expire before reconnection
can be attempted).

In cfengine 2 this corresponds to AllowMultipleConnectionsFrom.
Note that 127.0.0.1 is a regular expression (i.e., “127 any character 0 any character 0 any

character 1”), but this will only match the IP address 127.0.0.1. Take care with IP addresses and

92 Cfengine reference manual

domain names, as the hostname regular expression www.domain.com will potentially match more
than one hostname (e.g., wwwxdomain.com, in addition to the desired hostname www.domain.com).

5.3.7 trustkeysfrom

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs from whom we accept public keys on trust

Example:

body server control

{

trustkeysfrom => { "10\.0\.1\.1", "192\.168\..*"};

}

Notes:

If connecting clients’ public keys have not already been trusted, this allows us to say ‘yes’ to
accepting the keys on trust. Normally this should be an empty list except in controlled circumstances.

See also the warning about regular expressions in allowallconnects.

5.3.8 allowusers

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of usernames who may execute requests from this server

Example:

allowusers => { "cfengine", "root" };

Notes:

The usernames listed in this list are those asserted as public key identities during client-server
connections. These may or may not correspond to system identities on the server-side system.

5.3.9 dynamicaddresses

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames for which the IP/name binding is expected to change

Chapter 5: Control promises 93

Example:

body server control

{

dynamicaddresses => { "dhcp_.*" };

}

Notes:

The addresses or hostnames here are expected to have non-permanent address-name bindings,
we must therefor work harder to determine whether hosts credentials are trusted by looking for
existing public keys in files that do not match the current hostname or IP.

This feature has been deprecated since 3.1.0. This is now handled transparently.

5.3.10 skipverify

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of IPs or hostnames for which we expect no DNS binding and cannot verify
Example:

body server control

{

skipverify => { "special_host.*", "192.168\..*" };

}

Notes:

Server side decision to ignore requirements of DNS identity confirmation.
See also the warning about regular expressions in allowallconnects.

5.3.11 logallconnections

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

94 Cfengine reference manual

Default value: false
Synopsis: true/false causes the server to log all new connections to syslog
Example:

body server control

{

logallconnections => "true";

}

Notes:

If set, the server will record connection attempts in syslog.

5.3.12 logencryptedtransfers

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false log all successful transfers required to be encrypted
Example:

body server control

{

logencryptedtransfers => "true";

}

Notes:

If true the server will log all transfers of files which the server requires to encrypted in order to
grant access (see ifencrypted) to syslog. These files are deemed to be particularly sensitive.

5.3.13 hostnamekeys

Type: (menu option)

Chapter 5: Control promises 95

Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false store keys using hostname lookup instead of IP addresses
Example:

body server control

{

hostnamekeys => "true";

}

Notes:

Client side choice to base key associations on host names rather than IP address. This is useful
for hosts with dynamic addresses.

This feature has been deprecated since 3.1.0. Host identification is now handled transparently.

5.3.14 auditing

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false activate auditing of server connections
Example:

body agent control

{

auditing => "true";

96 Cfengine reference manual

}

Notes:

If this is set, cfengine will perform auditing on promises in the current configuration. This means
that all details surrounding the verification of the current promise will be recorded in the audit
database. The database may be inspected with cf-report, or cfshow in cfengine 2.

5.3.15 bindtointerface

Type: string
Allowed input range: (arbitrary string)
Synopsis: IP of the interface to which the server should bind on multi-homed hosts
Example:

bindtointerface => "192.168.1.1";

Notes:

On multi-homed hosts, the server and client can bind to a specific interface for server traffic.
The IP address of the interface must be given as the argument, not the device name.

5.3.16 serverfacility

Type: (menu option)
Allowed input range:

LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

LOG_LOCAL3

LOG_LOCAL4

LOG_LOCAL5

LOG_LOCAL6

LOG_LOCAL7

Default value: LOG USER
Synopsis: Menu option for syslog facility level
Example:

Chapter 5: Control promises 97

body server control

{

serverfacility => "LOG_USER";

}

Notes:

See syslog notes.

5.3.17 port

Type: int
Allowed input range: 1024,99999
Default value: 5308
Synopsis: Default port for cfengine server
Example:

body runagent control

{

port => "5308";

}

body server control

{

specialhost::

port => "5308";

!specialhost::

port => "5308";

}

Notes:

The standard or registered port number is tcp/5308. Cfengine does not presently use its registered
udp port with the same number, but this could change in the future.

Changing the standard port number is not recommended practice. You should not do it without
a good reason.

5.3.18 keycacheTTL

Type: int
Allowed input range: 0,99999999999
Default value: 24
Synopsis: Maximum number of hours to hold public keys in the cache

98 Cfengine reference manual

Example:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

body server control

{

keycacheTTL => "24";

}

Notes:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

5.4 monitor control promises

� �
body monitor control()

{

#version => "1.2.3.4";

threshold => "0.3";

forgetrate => "0.7";

histograms => "true";

tcpdump => "false";

tcpdumpcommand => "/usr/sbin/tcpdump -i eth1 -n -t -v";

}
 	
Settings describing the details of the fixed behavioural promises made by cf-monitord. The

system defaults will be sufficient for most users. This configurability potential, however, will be a
key to developing the integrated monitoring capabilities of cfengine.

5.4.1 forgetrate

Type: real
Allowed input range: 0,1
Default value: 0.6
Synopsis: Decimal fraction [0,1] weighting of new values over old in 2d-average computation
Example:

Chapter 5: Control promises 99

body monitor control

{

threshold => "0.3";

forgetrate => "0.7";

histograms => "true";

}

Notes:

Configurable settings for the machine-learning algorithm that tracks system behaviour. This is
only for expert users. This parameter effectively determines (together with the monitoring rate)
how quickly cfengine forgets its previous history.

5.4.2 monitorfacility

Type: (menu option)
Allowed input range:

LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

LOG_LOCAL3

LOG_LOCAL4

LOG_LOCAL5

LOG_LOCAL6

LOG_LOCAL7

Default value: LOG USER
Synopsis: Menu option for syslog facility
Example:

body monitor control

{

monitorfacility => "LOG_USER";

}

Notes:

See notes for syslog.

5.4.3 histograms

Type: (menu option)

100 Cfengine reference manual

Allowed input range:

true

false

yes

no

on

off

Default value: true
Synopsis: true/false store signal histogram data
Example:

body monitor control

{

histograms => "true";

}

Notes:

This is like the ‘-H’ option to cfenvd in cfengine 2. It causes cfengine to learn the conformally
transformed distributions of fluctuations about the mean.

5.4.4 tcpdump

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false use tcpdump if found
Example:

body monitor control

{

tcpdump => "true";

}

Chapter 5: Control promises 101

Notes:

Interface with TCP stream if possible.

5.4.5 tcpdumpcommand

Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Path to the tcpdump command on this system

Example:

body monitor control

{

tcpdumpcommand => "/usr/sbin/tcpdump -i eth1";

}

Notes:

If this is defined, the monitor will try to interface with the TCP stream and monitor generic
package categories for anomalies.

5.5 runagent control promises

� �
body runagent control

{

default port is 5308

hosts => { "127.0.0.1:5308", "eternity.iu.hio.no:80", "slogans.iu.hio.no" };

#output_to_file => "true";

}
 	
Settings describing the details of the fixed behavioural promises made by cf-runagent. The

most important parameter here is the list of hosts that the agent will poll for connections. This is
easily read in from a file list, however when doing so always have a stable input source that does
not depend on the network (including a database or directory service) in any way: introducing such
dependencies makes configuration brittle.

102 Cfengine reference manual

5.5.1 hosts

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of host or IP addresses to attempt connection with
Example:

body runagent control

{

network1::

hosts => { "host1.example.org", "host2", "host3" };

network2::

hosts => { "host1.example.com", "host2", "host3" };

}

Notes:

The complete list of contactable hosts. The values may be either numerical IP addresses or DNS
names, optionally suffixed by a ‘:’ and a port number. If no port number is given, the default
cfengine port 5308 is assumed.

5.5.2 port

Type: int
Allowed input range: 1024,99999
Default value: 5308
Synopsis: Default port for cfengine server
Example:

body runagent control

{

port => "5308";

}

body server control

{

specialhost::

port => "5308";

!specialhost::

port => "5308";

Chapter 5: Control promises 103

}

Notes:

The standard or registered port number is tcp/5308. Cfengine does not presently use its registered
udp port with the same number, but this could change in the future.

Changing the standard port number is not recommended practice. You should not do it without
a good reason.

5.5.3 force_ipv4

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false force use of ipv4 in connection
Example:

body copy_from example

{

force_ipv4 => "true";

}

Notes:

IPv6 should be harmless to most users unless you have a partially or misconfigured setup.

5.5.4 trustkey

Type: (menu option)
Allowed input range:

true

false

yes

no

on

104 Cfengine reference manual

off

Default value: false
Synopsis: true/false automatically accept all keys on trust from servers
Example:

body copy_from example

{

trustkey => "true";

}

Notes:

If the server’s public key has not already been trusted, this allows us to accept the key in
automated key-exchange.

Note that, as a simple security precaution, trustkey should normally be set to ‘false’, to avoid
key exchange with a server one is not one hundred percent sure about, though the risks for a client
are rather low. On the server-side however, trust is often granted to many clients or to a whole
network in which possibly unauthorized parties might be able to obtain an IP address, thus the
trust issue is most important on the server side.

As soon as a public key has been exchanged, the trust option has no effect. A machine that has
been trusted remains trusted until its key is manually revoked by a system administrator. Keys are
stored in ‘WORKDIR/ppkeys’.

5.5.5 encrypt

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false encrypt connections with servers
Example:

body copy_from example

{

servers => { "remote-host.example.org" };

Chapter 5: Control promises 105

encrypt => "true";

}

Notes:

Client connections are encrypted with using a Blowfish randomly generated session key. The
intial connection is encrypted using the public/private keys for the client and server hosts.

5.5.6 background_children

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false parallelize connections to servers
Example:

body runagent control

{

background_children => "true";

}

Notes:

Causes the runagent to attempt parallelized connections to the servers.

5.5.7 max_children

Type: int
Allowed input range: 0,99999999999
Default value: 1 concurrent agent promise
Synopsis: Maximum number of simultaneous connections to attempt
Example:

body runagent control

106 Cfengine reference manual

{

max_children => "10";

}

or

body agent control

{

max_children => "10";

}

Notes:

For the run-agent this represents the maximum number of forked background processes allowed
when parallelizing connections to servers. For the agent it represents the number of background jobs
allowed concurrently. Background jobs often lead to contention of the disk resources slowing down
tasks considerably; there is thus a law of diminishing returns.

5.5.8 output_to_file

Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Default value: false

Synopsis: true/false whether to send collected output to file(s)

Example:

body runagent control

{

output_to_file => "true";

}

Notes:

Filenames are chosen automatically and placed in the ‘WORKDIR/outputs/hostname_runagent.out’.

Chapter 5: Control promises 107

5.5.9 timeout

Type: int
Allowed input range: 1,9999
Synopsis: Connection timeout, sec
Example:

body agent control

{

timeout => "10";

}

Notes:

Timeout in seconds.

5.6 executor control promises

� �
body executor control

{

splaytime => "5";

mailto => "cfengine@example.org";

mailfrom => "cfengine@$(host).example.org";

smtpserver => "localhost";

schedule => { "Min00_05", "Min30_35" }

}
 	
These body settings determine the behaviour of cf-execd, including scheduling times and out-

put capture to ‘WORKDIR/outputs’ and relay via email. Note that the splaytime and schedule

parameters are now coded here rather than (as previously) in the agent.

5.6.1 splaytime

Type: int
Allowed input range: 0,99999999999
Default value: 0
Synopsis: Time in minutes to splay this host based on its name hash
Example:

108 Cfengine reference manual

body executor control

{

splaytime => "2";

}

Notes:

Whenever any class listed in the schedule attribute is present, cf-execd can schedule an exe-
cution of cf-agent. The actual execution will be delayed an integer number of seconds between
0-splaytime minutes. The specific amount of delay for “this” host is based on a hash of the host-
name. Thus a collection of hosts will all execute at different times, and surges in network traffic can
be avoided.
A rough rule of thumb for scaling of small updates is set the splay time by:

splaytime = 1 + Number of clients / 50
Default value:

The default value is 0 minutes.
See also: The splayclass() function for a task-specific means for setting splay times.

5.6.2 mailfrom

Type: string
Allowed input range: .*.*
Synopsis: Email-address cfengine mail appears to come from
Example:

body executor control

{

mailfrom => "MrCfengine@example.org";

}

Notes:

5.6.3 mailto

Type: string
Allowed input range: .*.*
Synopsis: Email-address cfengine mail is sent to
Example:

Chapter 5: Control promises 109

body executor control

{

mailto => "cfengine_alias@example.org";

}

Notes:

The address to whom email is sent if an smtp host is configured.

5.6.4 smtpserver

Type: string

Allowed input range: .*

Synopsis: Name or IP of a willing smtp server for sending email

Example:

body executor control

{

smtpserver => "smtp.example.org";

}

Notes:

This should point to a standard port 25 server without encyption. If you are running secured or
encrypted email then you should run a mail relay on localhost and point this to localhost.

5.6.5 mailmaxlines

Type: int

Allowed input range: 0,1000

Default value: 30

Synopsis: Maximum number of lines of output to send by email

Example:

body executor control

{

mailmaxlines => "100";

}

110 Cfengine reference manual

Notes:

This limit prevents anomalously large outputs from clogging up a system administrator’s mail-
box. The output is truncated in the email report, but the complete original transcript is stored
in ‘WORKDIR/outputs/*’ where it can be viewed on demand. A reference to the appropriate file is
given.

5.6.6 schedule

Type: slist
Allowed input range: (arbitrary string)
Synopsis: The class schedule used by cf-execd for activating cf-agent
Example:

body executor control

{

schedule => { "Min00", "(Evening|Night).Min15_20", "Min30", "(Evening|Night).Min45_50" };

}

Notes:

The list should contain class expressions comprised of classes which are visible to the cf-execd

daemon. In principle, any defined class expression will cause the daemon to wake up and schedule the
execution of the cf-agent. In practice, the classes listed in the list are usually date- and time-based.

The actual execution of cf-agent may be delayed by splaytime, and may be deferred by promise
caching and the value of ifelapsed. Note also that the effectiveness of the splayclass function
may be affected by changing the schedule.
Default value:

schedule => { "Min00", "Min05", "Min10", "Min15", "Min20", "Min25",

"Min30", "Min35", "Min40", "Min45", "Min50", "Min55" };

5.6.7 executorfacility

Type: (menu option)
Allowed input range:

LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

Chapter 5: Control promises 111

LOG_LOCAL3

LOG_LOCAL4

LOG_LOCAL5

LOG_LOCAL6

LOG_LOCAL7

Default value: LOG USER

Synopsis: Menu option for syslog facility level

Example:

body executor control

{

executorfacility => "LOG_USER";

}

Notes:

See the syslog manual pages.

5.6.8 exec_command

Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: The full path and command to the executable run by default (overriding builtin)

Example:

exec_command => "$(sys.workdir)/bin/cf-agent -f failsafe.cf && $(sys.workdir)/bin/cf-agent";

Notes:

The command is run in a shell encapsulation so pipes and shell symbols may be used if desired.
Unlike, cfengine 2, cfengine 3 does not automatically run a separate update sequence before its
normal run. This can be handled using the approach in the example above.

5.7 knowledge control promises

112 Cfengine reference manual

� �
body knowledge control

{

build_directory => ".";

sql_database => "my_knowledge";

sql_owner => "db_user";

sql_passwd => ""; # No passwd

sql_type => "mysql";

query_output => "html";

style_sheet => "http://www.example.org/css/style.css";

html_banner =>

"

Item 1

Item 2

";

}
 	
Settings describing the details of the fixed behavioural promises made by cf-know. These param-

eters control the way in which knowledge data are stored and retrieved from a relational database
and the output format of the queries.

5.7.1 build_directory

Type: string
Allowed input range: .*
Default value: Current working directory
Synopsis: The directory in which to generate output files
Example:

body knowledge control

{

#..

build_directory => "/tmp/builddir";

}

body reporter control

{

#..

build_directory => "/tmp/builddir";

}

Chapter 5: Control promises 113

Notes:

The directory where all auto-generated textual output is placed by cf-know. This includes
manual generation, ontology and topic map data.

5.7.2 document_root

Type: string
Allowed input range: .*
Synopsis: The directory in which the web root resides
Example:

body knowledge control

{

document_root => "/srv/www/htdocs";

}

Notes:

The local file path of the system’s web document root.

5.7.3 generate_manual

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false generate texinfo manual page skeleton for this version
Example:

body knowledge control

{

generate_manual => "true";

114 Cfengine reference manual

}

Notes:

Auto-creates a manual based on the self-documented code. As the promise syntax is extended
the manual self-heals. The resulting manual is generated in Texinfo format, from which all other
formats can be generated.

5.7.4 graph_directory

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: Path to directory where rendered .png files will be created
Example:

body knowledge control

{

graph_directory => "/tmp/output";

}

Notes:

A separate location where the potentially large number of ‘.png’ visualizations of a knowledge
representation are pre-compiled. This feature only works if the necessary graphics libraries are
present.

5.7.5 graph_output

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false generate png visualization of topic map if possible (requires lib)
Example:

body knowledge control

Chapter 5: Control promises 115

{

fix/override -g option

graph_output => "true";

}

Notes:

Equivalent to the use of the ‘-g’ option for cf-know.

5.7.6 html_banner

Type: string
Allowed input range: (arbitrary string)
Synopsis: HTML code for a banner to be added to rendered in html after the header
Example:

body knowledge control

{

html_banner => "";

}

body reporter control

{

html_banner => "";

}

Notes:

This content is cited when generating HTML output from the knowledge agent.

5.7.7 html_footer

Type: string
Allowed input range: (arbitrary string)
Synopsis: HTML code for a page footer to be added to rendered in html before the end body tag
Example:

body reporter control

{

html_footer => "

<div id=\"footer\">Bottom of the page</div>

116 Cfengine reference manual

";

}

body knowledge control

{

html_footer => "

<div id=\"footer\">Bottom of the page</div>

";

}

Notes:

This allows us to cite HTML code for formatting reports generated by the reporting and knowl-
edge agents.

5.7.8 id_prefix

Type: string
Allowed input range: .*
Synopsis: The LTM identifier prefix used to label topic maps (used for disambiguation in merging)
Example:

body knowledge control

{

id_prefix => "unique_prefix";

}

Notes:

Use to disambiguate indentifiers for a successful merging of topic maps, especially in Linear Topic
Map (LTM) format using third party tools such as Ontopia’s Omnigator.

5.7.9 manual_source_directory

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: Path to directory where raw text about manual topics is found (defaults to build directory)
Example:

body knowledge control

{

Chapter 5: Control promises 117

manual_source => "/path/cfengine_manual_commentary";

}

Notes:

This is used in the self-healing documentation. The directory points to a location where the
Texinfo sources for per-section commentary is maintained.

5.7.10 query_engine

Type: string
Allowed input range: (arbitrary string)
Synopsis: Name of a dynamic web-page used to accept and drive queries in a browser
Example:

body knowledge control

{

query_engine => "http://www.example.org/script.php";

}

body reporter control

{

query_engine => "http://www.example.org/script.pl";

}

Notes:

When displaying topic maps in HTML format, cf-know will render each topic as a link to this
URL with the new topic as an argument. Thus it is possible to make a dynamic web query by
embedding cfengine in the web page as system call and passing the argument to it.

5.7.11 query_output

Type: (menu option)
Allowed input range:

html

text

Synopsis: Menu option for generated output format
Example:

118 Cfengine reference manual

body knowledge control

{

query_output => "html";

}

Notes:

5.7.12 sql_type

Type: (menu option)
Allowed input range:

mysql

postgres

Synopsis: Menu option for supported database type
Example:

body knowledge control

{

sql_type => "mysql";

}

Notes:

5.7.13 sql_database

Type: string
Allowed input range: (arbitrary string)
Synopsis: Name of database used for the topic map
Example:

body knowledge control

{

sql_database => "cfengine_knowledge_db";

}

Notes:

Chapter 5: Control promises 119

The name of an SQL database for caching knowledge.

5.7.14 sql_owner

Type: string

Allowed input range: (arbitrary string)

Synopsis: User id of sql database user

Example:

body knowledge control

{

sql_owner => "db_owner";

}

Notes:

Part of the credentials for opening the database. This depends on the type of database.

5.7.15 sql_passwd

Type: string

Allowed input range: (arbitrary string)

Synopsis: Embedded password for accessing sql database

Example:

body knowledge control

{

sql_passwd => "";

}

Notes:

Part of the credentials for connecting to the database server. This is system dependent. If the
server host is localhost a password might not be required.

5.7.16 sql_server

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name or IP of database server (or localhost)

120 Cfengine reference manual

Example:

body knowledge control

{

sql_server => "localhost";

}

Notes:

The host name of IP address of the server. The default is to look on the localhost.

5.7.17 sql_connection_db

Type: string
Allowed input range: (arbitrary string)
Synopsis: The name of an existing database to connect to in order to create/manage other databases
Example:

body knowledge control

{

sql_connection_db => "mysql";

}

Notes:

In order to create a database on a database server (all of which practice voluntary cooperation),
one has to be able to connect to the server, however, without an existing database this is not allowed.
Thus, database servers provide a default database that can be connected to in order to thereafter
create new databases. These are called postgres and mysql for their respective database servers.

For the knowledge agent, this setting is made in the control body, for database verification
promises, it is made in the database_server body.

5.7.18 style_sheet

Type: string
Allowed input range: (arbitrary string)
Synopsis: Name of a style-sheet to be used in rendering html output (added to headers)
Example:

Chapter 5: Control promises 121

body knowledge control

{

style_sheet => "http://www.example.org/css/sheet.css";

}

body reporter control

{

style_sheet => "http://www.example.org/css/sheet.css";

}

Notes:

For formatting the HTML generated output of cf-know.

5.7.19 view_projections

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: Perform view-projection analytics in graph generation
Example:

body knowledge control

{

view_projections => "true";

}

Notes:

If this is set to true, Cfengine Nova computes additional graphical representations in its knowledge
map, representing causal dependencies between Cfengine promises.

5.8 reporter control promises

122 Cfengine reference manual

body reporter control

{

reports => { "performance", "last_seen", "monitor_history" };

build_directory => "/tmp/nerves";

report_output => "html";

}

Determines a list of reports to write into the build directory. The format may be in text, html
or xml format. The reporter agent cf-report replaces both cfshow and cfenvgraph. It no longer
produces output to the console.

Some reports are only available in enterprise level versions of cfengine.

5.8.1 aggregation_point

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: The root directory of the data cache for CMDB aggregation
Example:

body reporter control

{

aggregation_point => "/srv/www/htdocs/reports";

}

Notes:

This feature is only used in enterprise level versions of cfengine. It specifies the directory where
reports from multiple hosts are to be aggregated in sub-directories. This should be somewhere under
the document root of the web server for the cfengine knowledge base in order to make the reports
browsable.

5.8.2 auto_scaling

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Chapter 5: Control promises 123

Default value: true

Synopsis: true/false whether to auto-scale graph output to optimize use of space

Example:

body reporter control

{

auto_scaling => "true";

}

Notes:

Automatic scaling is the default.

5.8.3 build_directory

Type: string

Allowed input range: .*

Default value: Current working directory

Synopsis: The directory in which to generate output files

Example:

body knowledge control

{

#..

build_directory => "/tmp/builddir";

}

body reporter control

{

#..

build_directory => "/tmp/builddir";

}

Notes:

The directory where all auto-generated textual output is placed by cf-know. This includes
manual generation, ontology and topic map data.

124 Cfengine reference manual

5.8.4 csv2xml

Type: slist
Allowed input range: (arbitrary string)
Synopsis: A list of csv formatted files in the build directory to convert to simple xml
Example:

body reporter control

{

csv2xml => { "myreport.csv", "custom_report.csv" };

}

Notes:

CSV files are easy to generate in cfengine from individual promise logging functions. XML is not
easily generated due to its hierarchical structure. This function allows cf-report to convert a CSV
file into pidgin XML for convenience. The schema has the general form:

<output>

<line> <one>...</one> <two>...</two> ... </line>

<line> <one>...</one> <two>...</two> ... </line>

</output>

5.8.5 error_bars

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: true
Synopsis: true/false whether to generate error bars on graph output
Example:

body reporter control

{

error_bars => "true";

Chapter 5: Control promises 125

}

Notes:

The default is to produce error bars. Without error bars from cfengine’s machine learning data
there is no way to assess the significance of an observation about the system, i.e. whether it is
normal or anomalous.

5.8.6 html_banner

Type: string
Allowed input range: (arbitrary string)
Synopsis: HTML code for a banner to be added to rendered in html after the header
Example:

body knowledge control

{

html_banner => "";

}

body reporter control

{

html_banner => "";

}

Notes:

This content is cited when generating HTML output from the knowledge agent.

5.8.7 html_embed

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Synopsis: If true, no header and footer tags will be added to html output
Example:

126 Cfengine reference manual

body reporter control

{

html_embed => "true";

}

Notes:

Embedded HTML means something that could be put into a frame or table, without html or
body tags, headers footers etc.

5.8.8 html_footer

Type: string

Allowed input range: (arbitrary string)

Synopsis: HTML code for a page footer to be added to rendered in html before the end body tag

Example:

body reporter control

{

html_footer => "

<div id=\"footer\">Bottom of the page</div>

";

}

body knowledge control

{

html_footer => "

<div id=\"footer\">Bottom of the page</div>

";

}

Notes:

This allows us to cite HTML code for formatting reports generated by the reporting and knowl-
edge agents.

5.8.9 query_engine

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of a dynamic web-page used to accept and drive queries in a browser

Chapter 5: Control promises 127

Example:

body knowledge control

{

query_engine => "http://www.example.org/script.php";

}

body reporter control

{

query_engine => "http://www.example.org/script.pl";

}

Notes:

When displaying topic maps in HTML format, cf-know will render each topic as a link to this
URL with the new topic as an argument. Thus it is possible to make a dynamic web query by
embedding cfengine in the web page as system call and passing the argument to it.

5.8.10 reports

Type: (option list)

Allowed input range:

all

audit

performance

all_locks

active_locks

hashes

classes

last_seen

monitor_now

monitor_history

monitor_summary

compliance

setuid

file_changes

installed_software

software_patches

value

variables

Default value: none

Synopsis: A list of reports that may be generated

128 Cfengine reference manual

Example:

body reporter control

{

reports => { "performance", "classes" };

}

Notes:

A list of report types that can be generated by this agent. The listed items from compliance

onward are available only Enterprise editions of cfengine.
The keyword ‘all’ can be used to get all reports except the audit and locking reports. The latter

are large and unwieldy and need specific confirmation.

5.8.11 report_output

Type: (menu option)
Allowed input range:

csv

html

text

xml

Default value: none
Synopsis: Menu option for generated output format. Applies only to text reports, graph data remain
in xydy format.
Example:

body reporter control

{

report_output => "html";

}

Notes:

Sets the output format of embedded database reports.

5.8.12 style_sheet

Type: string
Allowed input range: (arbitrary string)

Chapter 5: Control promises 129

Synopsis: Name of a style-sheet to be used in rendering html output (added to headers)

Example:

body knowledge control

{

style_sheet => "http://www.example.org/css/sheet.css";

}

body reporter control

{

style_sheet => "http://www.example.org/css/sheet.css";

}

Notes:

For formatting the HTML generated output of cf-know.

5.8.13 time_stamps

Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Default value: false

Synopsis: true/false whether to generate timestamps in the output directory name

Example:

body reporter control

{

time_stamps => "true";

}

Notes:

130 Cfengine reference manual

This option is only necessary with the default build directory. This can be used to keep snapshots
of the system but it will result in a lot of storage be consumed. For most purposes cfengine is
programmed to forget the past at a predictable rate and there is no need to override this.

5.9 hub control promises

body hub control

{

export_zenoss => "true";

}

5.9.1 export_zenoss

Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Make data available for Zenoss integration in docroot/reports/summary.z

Example:

body hub control

{

am_policy_hub::

export_zenoss => "true";

}

Notes:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

For integration with the Zenoss monitoring software.

Chapter 5: Control promises 131

5.9.2 hub_schedule

Type: slist
Allowed input range: (arbitrary string)
Synopsis: The class schedule used by cf-hub for report collation
Example:

body hub control

{

hub_schedule => { "Min00", "Min30", "(Evening|Night).Min45_50" };

}

Notes:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

132 Cfengine reference manual

Chapter 6: Bundles of common 133

6 Bundles of common

� �
bundle common globals

{

vars:

"global_var" string => "value";

classes:

"global_class" expression => "value";

}
 	
Common bundles may only contain the promise types that are common to all bodies. Their main

function is to define cross-component global definitions. Common bundles are observed by every
agent, whereas the agent specific bundle types are ignored by components other than the intended
recipient.

6.1 vars promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are vars, classes, and reports promises. The
specific promise attributes are listed below.

6.1.1 string

Type: string

Allowed input range: (arbitrary string)

Synopsis: A scalar string

Example:

vars:

"xxx" string => "Some literal string...";

"yyy" string => readfile("/home/mark/tmp/testfile" , "33");

134 Cfengine reference manual

Notes:

In cfengine previously lists were represented (as in the shell) using separted scalars, e.g. like the
PATH variable. This design feature turned out to be an error of judgement which has resulted in
much trouble. This is no longer supported in cfengine 3. By keeping lists an independent type many
limitations have been removed.

6.1.2 int

Type: int
Allowed input range: -99999999999,9999999999
Synopsis: A scalar integer
Example:

vars:

"scalar" int => "16k";

"ran" int => randomint(4,88);

"dim_array" int => readstringarray("array_name","/etc/passwd","#[^\n]*",":",10,4000);

Notes:

Int variables are strings that are expected to be used as integer numbers. The typing in cfengine is
dynamic, so the variable types are interchangable, but when you declare a variable to be type int,
Cfengine verifies that the value you assign to it looks like an integer (e.g., ‘3’, ‘-17’, ‘16K’, etc).

Integer values may use suffices ‘k’, ‘K’, ‘m’, ‘M’, etc., but must only have an integer numeric part
(so ‘1.5M’ is not allowed).

‘k’ The value multipled by 1000.

‘K’ The value multipled by 1024.

‘m’ The value multipled by 1000 * 1000.

‘M’ The value multipled by 1024 * 1024.

‘g’ The value multipled by 1000 * 1000 * 1000.

‘G’ The value multipled by 1024 * 1024 * 1024.

‘%’ A percentage between 1 and 100 - mainly for use in a storage context.

The value ‘inf’ may also be used to represent an unlimited positive value.

6.1.3 real

Type: real
Allowed input range: -9.99999E100,9.99999E100

Chapter 6: Bundles of common 135

Synopsis: A scalar real number

Example:

vars:

"scalar" real => "0.5";

Notes:

Real variables are strings that are expected to be used as real numbers. The typing in cfengine is
dynamic, so the variable types are interchangable, but when you declare a variable to be type real,
Cfengine verifies that the value you assign to it looks like a real number (e.g., ‘3’, ‘3.1415’, ‘.17’,
‘6.02e23’, ‘-9.21e-17’, etc).

Real numbers are not used in many places in cfengine, but they are useful for representing
probabilties and performance data.

6.1.4 slist

Type: slist

Allowed input range: (arbitrary string)

Synopsis: A list of scalar strings

Example:

vars:

"xxx" slist => { "literal1", "literal2" };

"yyy" slist => {

readstringlist(

"/home/mark/tmp/testlist",

"#[a-zA-Z0-9]*",

"[^a-zA-Z0-9]",

15,

4000

)

};

"zzz" slist => { readstringlist("/home/mark/tmp/testlist2","#[^\n]*",",",5,4000) };

Notes:

Some functions return slists (see Section 11.1 [Introduction to functions], page 355), and an slist

136 Cfengine reference manual

may contain the values copied from another slist, rlist, or ilist (see Section 2.7.2 [List variable
substitution and expansion], page 23, see Section 6.1.7 [policy in vars], page 137).

6.1.5 ilist

Type: ilist
Allowed input range: -99999999999,9999999999
Synopsis: A list of integers
Example:

vars:

"variable_id"

ilist => { "10", "11", "12" };

Notes:

Integer lists are lists of strings that are expected to be treated as integers. The typing in cfengine
is dynamic, so the variable types are interchangable, but when you declare a variable to be type
ilist, Cfengine verifies that each value you assign to it looks like an integer (e.g., ‘3’, ‘-17’, ‘16K’,
etc).

Some functions return ilists (see Section 11.1 [Introduction to functions], page 355), and an
ilist may contain the values copied from another slist, rlist, or ilist (see Section 2.7.2 [List
variable substitution and expansion], page 23, see Section 6.1.7 [policy in vars], page 137).

6.1.6 rlist

Type: rlist
Allowed input range: -9.99999E100,9.99999E100
Synopsis: A list of real numbers
Example:

vars:

"varid" rlist => { "0.1", "0.2", "0.3" };

Notes:

Real lists are lists of strings that are expected to be used as real numbers. The typing in cfengine
is dynamic, so the variable types are interchangable, but when you declare a variable to be type
rlist, Cfengine verifies that each value you assign to it looks like a real number (e.g., ‘3’, ‘3.1415’,
‘.17’, ‘6.02e23’, ‘-9.21e-17’, etc).

Chapter 6: Bundles of common 137

Some functions return rlists (see Section 11.1 [Introduction to functions], page 355), and an
rlist may contain the values copied from another slist, rlist, or ilist (see Section 2.7.2 [List
variable substitution and expansion], page 23, see Section 6.1.7 [policy in vars], page 137).

6.1.7 policy

Type: (menu option)
Allowed input range:

free

overridable

constant

ifdefined

Synopsis: The policy for (dis)allowing (re)definition of variables
Example:

vars:

"varid" string => "value...",

policy => "constant";

Notes:

Variables can either be allowed to change their value dynamically (be redefined) or they can be
constant. The use of private variable spaces in cfengine 3 makes it unlikely that variable redefinition
would be necessary in cfengine 3.

The value constant indicates that the variable value may not be changed. The values free and
overridable are synonymous, and indicated the the variable’s value may be changed.

The value ifdefined applies only to lists and implies that unexpanded or undefined lists are
dropped. The default behaviour is otherwise to retain this value as an indicator of the failure to
quench the variable reference, e.g.

"one" slist => { "1", "2", "3" };

"list" slist => { "@(one)", @(two) },

policy => "ifdefined";

would result in ‘@(list)’ being the same as ‘@(one)’, and the reference to ‘@(two)’ would disappear.
This is useful for combining lists, ‘inheritance-style’ where one can extend a base with special cases
if they are defined.
Default value:

138 Cfengine reference manual

policy => constant

6.2 classes promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are vars, classes, and reports promises. The
specific promise attributes are listed below.

6.2.1 or

Type: clist
Allowed input range: [a-zA-Z0-9_!&@$|.()]+
Synopsis: Combine class sources with inclusive OR
Example:

classes:

"compound_test"

or => { classmatch("linux_x86_64_2_6_22.*"), "suse_10_3" };

Notes:

A useful construction for writing expressions that contain special functions. The class in the
LHS will be defined if any one (or more) of the class expressions in the RHS are true.

6.2.2 and

Type: clist
Allowed input range: [a-zA-Z0-9_!&@$|.()]+
Synopsis: Combine class sources with AND
Example:

classes:

"compound_class" and => { classmatch("host[0-9].*"), "Monday", "Hr02" };

Notes:

Chapter 6: Bundles of common 139

If an expression contains a mixture of different object types that need to be ANDed together,
this list form is more convenient than providing an expression. If all of the class expressions listed
in the RHS match, then the class on the LHS is defined.

6.2.3 xor

Type: clist
Allowed input range: [a-zA-Z0-9_!&@$|.()]+
Synopsis: Combine class sources with XOR
Example:

classes:

"another_global" xor => { "any", "linux", "solaris"};

Notes:

If exactly one of the class expressions in the RHS matches, then the class on the LHS is defined.

6.2.4 dist

Type: rlist
Allowed input range: -9.99999E100,9.99999E100
Synopsis: Generate a probabilistic class distribution (strategy in cfengine 2)
Example:

classes:

"my_dist"

dist => { "10", "20", "40", "50" };

Notes:

Assign one generic class (always) and one additional class, randomly weighted on a probability
distribution. The sum of 10+20+40+50 = 120 in the example above, so in generating a distribution,
cfengine picks a number between 1-120. This will generate the following classes:

my_dist (always)

my_dist_10 (10/120 of the time)

my_dist_20 (20/120 of the time)

my_dist_40 (40/120 of the time)

my_dist_50 (50/120 of the time)

This was previous called a ‘strategy’ in cfengine 2.

140 Cfengine reference manual

6.2.5 expression

Type: class
Allowed input range: [a-zA-Z0-9_!&@$|.()]+
Synopsis: Evaluate string expression of classes in normal form
Example:

classes:

"class_name" expression => "solaris|(linux.specialclass)";

"has_toor" expression => userexists("toor");

Notes:

A way of aliasing class combinations.

6.2.6 not

Type: class
Allowed input range: [a-zA-Z0-9_!&@$|.()]+
Synopsis: Evaluate the negation of string expression in normal form
Example:

classes:

"others" not => "linux|solaris";

"no_toor" not => userexists("toor");

Notes:

This negates the effect of the promiser-pattern regular expression. The class in the LHS will only
be defined if the class expression in the RHS is false.

6.3 reports promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are vars, classes, and reports promises. The
specific promise attributes are listed below.

Chapter 6: Bundles of common 141

6.3.1 friend_pattern

Type: string
Allowed input range: (arbitrary string)
Synopsis: Regular expression to keep selected hosts from the friends report list
Example:

reports:

linux::

"Friend status report"

lastseen => "0"

friend_pattern => "host1|host2|.*\.domain\.tld";

Notes:

This regular expression should match hosts we want to exclude from friend reports.

6.3.2 intermittency

Type: real
Allowed input range: 0,1
Default value: false
Synopsis: Real number threshold [0,1] of intermittency about current peers, report above
Example:

reports:

"Comment"

intermittency => "0.5";

Notes:

Report on cfengine peers in the neighbourhood watch whose observed irregularity of connection
exceeds 0.5 scaled entropy units, meaning that they show an erratic pattern of connection.

6.3.3 lastseen

Type: int

142 Cfengine reference manual

Allowed input range: 0,99999999999
Synopsis: Integer time threshold in hours since current peers were last seen, report absence
Example:

In control:

body agent control

{

lastseen => "false";

}

See also in reports:

reports:

"Comment"

lastseen => "10";

Notes:

In reports: after this time (hours) has passed, cfengine will begin to warn about the host being
overdue. After the lastseenexpireafter expiry time, hosts will be purged from this host’s database
(default is a week).

In control: determines whether cfengine will records last seen intermittency profiles (reliability
diagnostics) in ‘WORKDIR/lastseen’. This generates a separate file for each each host that connects
to the current host. For central hubs this can result is a huge number of files.

6.3.4 printfile (compound body)

Type: (ext body)

‘file_to_print’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Path name to the file that is to be sent to standard output

Example:

body printfile example

{

file_to_print => "/etc/motd";

number_of_lines => "10";

Chapter 6: Bundles of common 143

}

Notes:

Include part of a file in a report.

‘number_of_lines’
Type: int

Allowed input range: 0,99999999999

Synopsis: Integer maximum number of lines to print from selected file

Example:

body printfile example

{

number_of_lines => "10";

}

Notes:

6.3.5 report_to_file

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: The path and filename to which output should be appended
Example:

bundle agent test

{

reports:

linux::

"$(sys.date),This is a report from $(sys.host)"

report_to_file => "/tmp/test_log";

}

Notes:

144 Cfengine reference manual

Append the output of the report to the named file instead of standard output. If the file cannot
be opened for writing then the report defaults to the standard output.

6.3.6 showstate

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of services about which status reports should be reported to standard output
Example:

reports:

"Comment"

showstate => {"www_in", "ssh_out", "otherprocs" };

Notes:

The basic list of services is:

‘users’ Users logged in

‘rootprocs’
Privileged system processes

‘otherprocs’
Non-privileged process

‘diskfree’ Free disk on / partition

‘loadavg’ % kernel load utilization

‘netbiosns_in’
netbios name lookups (in)

‘netbiosns_out’
netbios name lookups (out)

‘netbiosdgm_in’
netbios name datagrams (in)

‘netbiosdgm_out’
netbios name datagrams (out)

‘netbiosssn_in’
netbios name sessions (in)

‘netbiosssn_out’
netbios name sessions (out)

‘irc_in’ IRC connections (in)

Chapter 6: Bundles of common 145

‘irc_out’ IRC connections (out)

‘cfengine_in’
cfengine connections (in)

‘cfengine_out’
cfengine connections (out)

‘nfsd_in’ nfs connections (in)

‘nfsd_out’ nfs connections (out)

‘smtp_in’ smtp connections (in)

‘smtp_out’ smtp connections (out)

‘www_in’ www connections (in)

‘www_out’ www connections (out)

‘ftp_in’ ftp connections (in)

‘ftp_out’ ftp connections (out)

‘ssh_in’ ssh connections (in)

‘ssh_out’ ssh connections (out)

‘wwws_in’ wwws connections (in)

‘wwws_out’ wwws connections (out)

‘icmp_in’ ICMP packets (in)

‘icmp_out’ ICMP packets (out)

‘udp_in’ UDP dgrams (in)

‘udp_out’ UDP dgrams (out)

‘dns_in’ DNS requests (in)

‘dns_out’ DNS requests (out)

‘tcpsyn_in’
TCP sessions (in)

‘tcpsyn_out’
TCP sessions (out)

‘tcpack_in’
TCP acks (in)

‘tcpack_out’
TCP acks (out)

‘tcpfin_in’
TCP finish (in)

‘tcpfin_out’
TCP finish (out)

146 Cfengine reference manual

‘tcpmisc_in’
TCP misc (in)

‘tcpmisc_out’
TCP misc (out)

‘webaccess’
Webserver hits

‘weberrors’
Webserver errors

‘syslog’ New log entries (Syslog)

‘messages’ New log entries (messages)

‘temp0’ CPU Temperature 0

‘temp1’ CPU Temperature 1

‘temp2’ CPU Temperature 2

‘temp3’ CPU Temperature 3

‘cpu’ %CPU utilization (all)

‘cpu0’ %CPU utilization 0

‘cpu1’ %CPU utilization 1

‘cpu2’ %CPU utilization 2

‘cpu3’ %CPU utilization 3

6.4 * promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are vars, classes, and reports promises. The
specific promise attributes are listed below.

6.4.1 action (compound body)

Type: (ext body)

‘action_policy’
Type: (menu option)

Allowed input range:

fix

warn

nop

Synopsis: Whether to repair or report about non-kept promises

Chapter 6: Bundles of common 147

Example:

The following example shows a simple use of transaction control, causing the promise
to be verified as a separate background process.

body action background

{

action_policy => "warn";

}

Notes:

The action settings allow general transaction control to be implemented on promise
verification. Action bodies place limits on how often to verify the promise and what
classes to raise in the case that the promise can or cannot be kept.

Note that actions can be added to sub-bundles like methods and editing bundles, and
that promises within these do not inherit action settings at higher levels. Thus, in the
following example there are two levels of action setting:

##

#

Warn if line matched

#

##

body common control

{

bundlesequence => { "testbundle" };

}

##

bundle agent testbundle

{

files:

"/var/cfengine/inputs/.*"

edit_line => DeleteLinesMatching(".*cfenvd.*"),

action => WarnOnly;

}

148 Cfengine reference manual

##

bundle edit_line DeleteLinesMatching(regex)

{

delete_lines:

"$(regex)" action => WarnOnly;

}

##

body action WarnOnly

{

action_policy => "warn";

}

The action setting for the files promise means that file edits will not be committed
to disk, only warned about. This is a master-level promise that overrides anything
that happens during the editing. The action setting for the edit bundle means that
the internal memory modelling of the file will only warn about changes rather than
committing them to the memory model. This makes little difference to the end result,
but it means that cfengine will report

Need to delete line - ... - but only a warning was promised

Instead of
Deleting the prpomised line ...

Need to save file - but only a warning was promised

In either case, no changes will be made to the disk, but the messages given by cf-agent

will differ.

‘ifelapsed’
Type: int

Allowed input range: 0,99999999999

Synopsis: Number of minutes before next allowed assessment of promise

Default value: 1

Example:

#local

body action example

{

ifelapsed => "120"; # 2 hours

expireafter => "240"; # 4 hours

}

Chapter 6: Bundles of common 149

global

body agent control

{

ifelapsed => "180"; # 3 hours

}

Notes:

This overrides the global settings. Promises which take a long time to verify should
usually be protected with a long value for this parameter. This serves as a resource
‘spam’ protection. A cfengine check could easily run every 5 minutes provided resource
intensive operations are not performed on every run. Using time classes like Hr12 etc.,
is one part of this strategy; using ifelapsed is another which is not tied to a specific
time.

‘expireafter’
Type: int

Allowed input range: 0,99999999999

Synopsis: Number of minutes before a repair action is interrupted and retried

Default value: 1 min

Example:

body action example

{

ifelapsed => "120"; # 2 hours

expireafter => "240"; # 4 hours

}

Notes:

The locking time after which cfengine will attempt to kill and restart its attempt to
keep a promise.

‘log_string’
Type: string

Allowed input range: (arbitrary string)

Synopsis: A message to be written to the log when a promise verification leads to a
repair

Example:

150 Cfengine reference manual

promise-type:

"promiser"

attr => "value",

action => log_me("checked $(this.promiser) in promise $(this.handle)");

..

body action log_me(s)

{

log_string => "$(s)";

}

Notes:

The log_string works together with log_repair, log_kept etc, to define a string for
logging to one of the named files depending on promise outcome, or to standard output
of the log file is stipulared as ‘stdout’. Log strings on standard output are denoted by
an ‘L:’ prefix.

Note that log_string does not interact with log_level, which is about regular system
output messages.

Hint: the promise handle ‘$(this.handle)’ can be a useful referent in a log message,
indicating the origin of the message. In Cfengine Nova and above, every promise has
a default handle (which is based o the filename and line number - specifying your own
handle will probably be more mnemonic)..

‘log_level’
Type: (menu option)

Allowed input range:

inform

verbose

error

log

Synopsis: The reporting level sent to syslog

Example:

body action example

{

log_level => "inform";

}

Chapter 6: Bundles of common 151

Notes:

Use this as an alternative to auditing to use the syslog mechanism to centralize or
manage messaging from cfengine. A backup of these messages will still be kept in
‘WORKDIR/outputs’ if you are using cf-execd.

On native Windows version of Cfengine (Nova or above), using ‘verbose’ will include
a message when the promise is kept or repaired in the event log.

‘log_kept’ Type: string

Allowed input range: stdout|udp_syslog|("?[a-zA-Z]:\\.*)|(/.*)

Synopsis: This should be filename of a file to which log string will be saved, if undefined
it goes to the system logger

Example:

body action logme(x)

{

log_kept => "/tmp/private_keptlog.log";

log_failed => "/tmp/private_faillog.log";

log_repaired => "/tmp/private_replog.log";

log_string => "$(sys.date) $(x) promise status";

}

Notes:

If this option is specified together with log_string, the current promise will log
promise-kept status using the log string to this named file. If these log names are ab-
sent, the default logging destination for the log string is syslog, but only for non-kept
promises. Only the log_string is affected by this setting. Other messages destined
for logging are sent to syslog.

It is intended that named file logs should be different for the three cases: promise kept,
promise not kept and promise repaired.

This string should be the full path to a text file which will contain the log, of one of
the following special values:

‘stdout’ Send the log message to the standard output, prefixed with an ‘L:’ to
indicate a log message.

‘udp_syslog’
Attempt to connect to the syslog_server defined in ‘body common

control’ and log the message there, assuming the server is configured to
receive the request.

‘log_priority’
Type: (menu option)

152 Cfengine reference manual

Allowed input range:

emergency

alert

critical

error

warning

notice

info

debug

Synopsis: The priority level of the log message, as interpreted by a syslog server

Example:

body action low_priority

{

log_priority => "info";

}

Notes:

This determines the importance of messages from Cfengine.

‘log_repaired’
Type: string

Allowed input range: stdout|udp_syslog|("?[a-zA-Z]:\\.*)|(/.*)

Synopsis: This should be filename of a file to which log string will be saved, if undefined
it goes to the system logger

Example:

bundle agent test

{

vars:

"software" slist => { "/root/xyz", "/tmp/xyz" };

files:

"$(software)"

create => "true",

action => logme("$(software)");

Chapter 6: Bundles of common 153

}

body action logme(x)

{

log_kept => "/tmp/private_keptlog.log";

log_failed => "/tmp/private_faillog.log";

log_repaired => "/tmp/private_replog.log";

log_string => "$(sys.date) $(x) promise status";

}

body action immediate_syslog(x)

{

log_repaired => "udp_syslog"; # Nova and above

log_string => "cfengine repaired promise $(this.handle) - $(x)";

}

Notes:

This may be the name of a log to which the log_string is written if a promise is
repaired. It should be the full path to a text file which will contain the log, of one of
the following special values:

‘stdout’ Send the log message to the standard output, prefixed with an ‘L:’ to
indicate a log message.

‘udp_syslog’
Attempt to connect to the syslog_server defined in ‘body common

control’ and log the message there, assuming the server is configured to
receive the request.

‘log_failed’
Type: string

Allowed input range: stdout|udp_syslog|("?[a-zA-Z]:\\.*)|(/.*)

Synopsis: This should be filename of a file to which log string will be saved, if undefined
it goes to the system logger

Example:

bundle agent test

{

vars:

"software" slist => { "/root/xyz", "/tmp/xyz" };

files:

154 Cfengine reference manual

"$(software)"

create => "true",

action => logme("$(software)");

}

body action logme(x)

{

log_kept => "/tmp/private_keptlog.log";

log_failed => "/tmp/private_faillog.log";

log_repaired => "/tmp/private_replog.log";

log_string => "$(sys.date) $(x) promise status";

}

Notes:

If this option is specified together with log_string, the current promise will log
promise-kept status using the log string to this named file. If these log names are ab-
sent, the default logging destination for the log string is syslog, but only for non-kept
promises. Only the log_string is affected by this setting. Other messages destined
for logging are sent to syslog.

It is intended that named file logs should be different for the three cases: promise kept,
promise not kept and promise repaired. This string should be the full path to a text
file which will contain the log, of one of the following special values:

‘stdout’ Send the log message to the standard output, prefixed with an ‘L:’ to
indicate a log message.

‘udp_syslog’
Attempt to connect to the syslog_server defined in ‘body common

control’ and log the message there, assuming the server is configured to
receive the request.

‘value_kept’
Type: real

Allowed input range: (arbitrary string)

Synopsis: A real number value attributed to keeping this promise

Example:

body transaction mydef

{

value_kept => "4.5"; # this promise is worth 4.5 dollars per hour

Chapter 6: Bundles of common 155

value_repaired => "2.5"; # fixing this promise is worth 2.5 dollars per hour

value_notkept => "-10.0"; # not keeping this promise costs is 10 dollars per hour

ifelapsed => "60"; # one hour

}

Notes:

If nothing is specified, the default value is +1.0. However, nothing is logged unless the
agent control body switched on ‘track_value => "true"’.

‘value_repaired’
Type: real

Allowed input range: (arbitrary string)

Synopsis: A real number value attributed to reparing this promise

Example:

body transaction mydef

{

value_kept => "4.5"; # this promise is worth 4.5 dollars per hour

value_repaired => "2.5"; # fixing this promise is worth 2.5 dollars per hour

value_notkept => "-10.0"; # not keeping this promise costs is 10 dollars per hour

ifelapsed => "60"; # one hour

}

Notes:

If nothing is specified, the default value is 0.5. However, nothing is logged unless the
agent control body switched on ‘track_value => "true"’.

‘value_notkept’
Type: real

Allowed input range: (arbitrary string)

Synopsis: A real number value (possibly negative) attributed to not keeping this
promise

Example:

body transaction mydef

{

value_kept => "4.5"; # this promise is worth 4.5 dollars per hour

156 Cfengine reference manual

value_repaired => "2.5"; # fixing this promise is worth 2.5 dollars per hour

value_notkept => "-10.0"; # not keeping this promise costs is 10 dollars per hour

ifelapsed => "60"; # one hour

}

Notes:

If nothing is specified, the default value is -1.0. However, nothing is logged unless the
agent control body switched on ‘track_value => "true"’.

‘audit’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false switch for detailed audit records of this promise

Default value: false

Example:

body action example

{

...

audit => "true";

}

Notes:

If this is set, cfengine will perform auditing on this specific promise. This means that
all details surrounding the verification of the current promise will be recorded in the
audit database. The database may be inspected with cf-report, or cfshow in cfengine
2.

‘background’
Type: (menu option)

Allowed input range:

Chapter 6: Bundles of common 157

true

false

yes

no

on

off

Synopsis: true/false switch for parallelizing the promise repair

Default value: false

Example:

body action example

{

background => "true";

}

Notes:

If possible, perform the verification of the current promise in the background. This is
advantageous only if the verification might take a significant amount of time, e.g. in
remote copying of filesystem/disk scans.

On the windows version of Cfengine Nova, this can be useful if we don’t want to wait
for a particular command to finish execution before checking the next promise. This is
particular for the windows platform because there is no way that a program can start
itself in the background here (i.e. fork off a child process). However, file operations
can not be performed in the background on windows.

‘report_level’
Type: (menu option)

Allowed input range:

inform

verbose

error

log

Synopsis: The reporting level for standard output

Default value: (none)

Example:

body action example

{

158 Cfengine reference manual

report_level => "verbose";

}

Notes:

In cfengine 2 one would say ‘inform=true’ or ‘syslog=true’, etc. This replaces these
levels since they act as encapsulating super-sets.

‘measurement_class’
Type: string

Allowed input range: (arbitrary string)

Synopsis: If set performance will be measured and recorded under this identifier

Example:

body action measure

{

measurement_class => "$(this.promiser) long job scan of /usr";

}

Notes:

By setting this string you switch on performance measurement for the current promise,
and also give the measurement a name. The identifier forms a partial identity for
optional performance scanning of promises of the form:

ID:promise-type:promiser.

These can be seen identifying using cf-reports, e.g. in the generated file
‘performance.html’.

6.4.2 classes (compound body)

Type: (ext body)

‘promise_repaired’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be defined globally

Example:

body classes example

Chapter 6: Bundles of common 159

{

promise_repaired => { "change_happened" };

}

Notes:

If a promise is ‘repaired’ it means that a corrective action had to be taken to keep the
promise.

Important: complex promises, e.g. files promises that set multiple parameters on a
file simultaneously can report misleadingly. The classes for different parts of a promise
are not separable. Thus, if you promise to create and file and change its permis-
sions, when the file exists with incorrect permissions, cf-agent will report that the
‘promise_kept’ for the file existence, but ‘promise_repaired’ for the permissions. If
you need separate reports, you should code two separate promises rather than ‘over-
loading’ a single one.

‘repair_failed’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be defined globally

Example:

body classes example

{

repair_failed => { "unknown_error" };

}

Notes:

A promise could not be repaired because the corrective action failed for some reason.

‘repair_denied’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be defined globally

Example:

body classes example

{

160 Cfengine reference manual

repair_denied => { "permission_failure" };

}

Notes:

A promise could not be kept because access to a key resource was denied.

‘repair_timeout’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be defined globally

Example:

body classes example

{

repair_timeout => { "too_slow", "did_not_wait" };

}

Notes:

A promise maintenance repair timed-out waiting for some dependent resource.

‘promise_kept’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be defined globally

Example:

body classes example

{

promise_kept => { "success", "kaplah" };

}

Notes:

This class is set if no action was necessary by cf-agent because the promise concerned
was aready kept without further action required.

Chapter 6: Bundles of common 161

Important: complex promises, e.g. files promises that set multiple parameters on a
file simultaneously can report misleadingly. The classes for different parts of a promise
are not separable. Thus, if you promise to create and file and change its permis-
sions, when the file exists with incorrect permissions, cf-agent will report that the
‘promise_kept’ for the file existence, but ‘promise_repaired’ for the permissions. If
you need separate reports, you should code two separate promises rather than ‘over-
loading’ a single one.

‘cancel_kept’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be cancelled if the promise is kept

Example:

body classes example

{

cancel_kept => { "success", "kaplah" };

}

Notes:

If the promise was already kept and nothing was done, cancel (undefine) any of the
listed classes so that they are no longer defined.

History: This attribute was introduced in Cfengine version 3.0.4 (2010)

‘cancel_repaired’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be cancelled if the promise is repaired

Example:

body classes example

{

cancel_repaired => { "change_happened" };

}

Notes:

If the promise was repaired and changes were made to the system, cancel (undefine)
any of the listed classes so that they are no longer defined.

162 Cfengine reference manual

History: This attribute was introduced in Cfengine version 3.0.4 (2010)

‘cancel_notkept’
Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of classes to be cancelled if the promise is not kept for any reason

Example:

body classes example

{

cancel_notkept => { "failure" };

}

Notes:

If the promise was not kept but nothing could be done, cancel (undefine) any of the
listed classes so that they are no longer defined.

History: This attribute was introduced in Cfengine version 3.0.4 (2010)

‘persist_time’
Type: int

Allowed input range: 0,99999999999

Synopsis: A number of minutes the specified classes should remain active

Example:

body classes example

{

persist_time => "10";

}

Notes:

By default classes are ephemeral entities that disappear when cf-agent terminates.
By setting a persistence time, they can last even when the agent is not running.

‘timer_policy’
Type: (menu option)

Allowed input range:

Chapter 6: Bundles of common 163

absolute

reset

Synopsis: Whether a persistent class restarts its counter when rediscovered

Default value: reset

Example:

body classes example

{

timer_policy => "reset";

}

Notes:

The in most cases resetting a timer will give a more honest appraisal of which classes
are currently important, but if we want to activate a response of limited duration as a
rare event then an asbolute time limit is useful.

6.4.3 ifvarclass

Type: string
Allowed input range: (arbitrary string)
Synopsis: Extended classes ANDed with context
Example:

The generic example has the form:

promise-type:

"promiser"

ifvarclass => "$(program)_running|($(program)_notfound&Hr12)";

A specific example would be:

bundle agent example

{

commands:

any::

"/bin/echo This is linux"

164 Cfengine reference manual

ifvarclass => "linux";

"/bin/echo This is solaris"

ifvarclass => "solaris";

}

Notes:

This is an additional class expression that will be evaluated after the ‘class::’ classes have
selected promises. It is provided in order to enable a channel between variables and classes. The
result is thus the logical AND of the ordinary classes and the variable classes.

This function is provided so that one can form expressions that link variables and classes, e.g.
Check that all components are running

vars:

"component" slist => { "cf-monitord", "cf-serverd" };

processes:

"$(component)" restart_class => canonify("start_$(component)");

commands:

"/var/cfengine/bin/$(component)"

ifvarclass => canonify("start_$(component)");

Notice that the function canonify() is provided to convert a general variable input into a string
composed only of legal characters, using the same algorithm that cfengine uses.

6.4.4 handle

Type: string
Allowed input range: [a-zA-Z0-9_$()\[\].]+
Synopsis: A unique id-tag string for referring to this as a promisee elsewhere
Example:

access:

Chapter 6: Bundles of common 165

"/source"

handle => "update_rule",

admit => { "127.0.0.1" };

Notes:

A promise handle is like a ‘goto’ label. It allows you to refer to a promise as the promisee
of depends_on client of another promise. Handles are essential for mapping dependencies and
performing impact analyses. In Enterprise versions of Cfengine, promise handles can also be used
in outputs promises, See Section 7.12 [outputs in agent promises], page 281.

6.4.5 depends_on

Type: slist
Allowed input range: (arbitrary string)
Synopsis: A list of promise handles that this promise builds on or depends on somehow (for knowledge
management)
Example:

files:

"/home/mark/tmp/testcopy"

depends_on => { "server_promise_1" },

copy_from => mycopy("/source");

Notes:

This is a list of promise handles for whom this promise is a promisee. In other words, we
acknowledge that this promise will be affected by the list of promises whose handles are specified.

This option is only used only for documentation currently. In commercial versions of cfengine,
using this attribute leads to automatic documentation about policy relationships for the purpose of
Knowledge Management.

6.4.6 comment

Type: string
Allowed input range: (arbitrary string)
Synopsis: A comment about this promise’s real intention that follows through the program
Example:

166 Cfengine reference manual

comment => "This comment follows the data for reference ...",

Notes:

Comments written in code follow the program, they are not merely discarded. They appear in
reports and error messages.

Chapter 7: Bundles of agent 167

7 Bundles of agent

� �
bundle agent main(parameter)

{

vars:

"sys_files" slist => {

"/etc/passwd",

"/etc/services"

};

files:

"$(sys_files)" perms => p("root","0644"),

changes => trip_wire;

"/etc/shadow" perms => p("root","0600"),

changes => trip_wire;

"/usr" changes => trip_wire,

depth_search => recurse("inf");

"/tmp" delete => tidy,

file_select => days("2"),

depth_search => recurse("inf");

}
 	
Agent bundles contain user-defined promises for cf-agent. The types of promises and their

corresponding bodies are detailed below.

7.1 commands promises in ‘agent’

� �
commands:

"/path/to/command args"

args => "more args",

contain => contain_body,

module => true/false;
 	
Command containment allows you to make a ‘sandbox’ around a command, to run it as a non-

privileged user inside an isolated directory tree. Cfengine modules are commands that support a
simple protocol (see below) in order to set additional variables and classes on execution from user

168 Cfengine reference manual

defined code. Modules are intended for use as system probes rather than additional configuration
promises.

In cfengine 3 commands and processes have been separated cleanly. Restarting of processes must
be coded as a separate command. This stricter type separation will allow more careful conflict
analysis to be carried out.

Output from commands executed here is quoted inline, but prefixed with the letter ‘Q’ to distin-
guish it from other output, e.g. from reports (which is prefixed with the letter ‘R’).

Commands were called shellcommands in cfengine 2.
NOTE: a common mistake in using cfengine is to embed many shell commands instead of using

the built-in functionality. Use of cfengine internals is preferred as it assures convergence and proper
integrated checking. Extensive use of shell commands will make a cfengine execution very heavy-
weight like other management systems. To minimize the system cost of execution, always use cfengine
internals.

bundle agent example

{

commands:

"/bin/sleep 10"

action => background;

"/bin/sleep"

args => "20",

action => background;

}

NOTE: when referring to executables whose paths contain spaces, you should quote the entire
program string separately so that cfengine knows the name of the executable file. e.g.

commands:

windows::

"\"c:\Program Files\my name with space\" arg1 arg2";

linux::

"\"/usr/bin/funny command name\" -a -b -c";

7.1.1 args

Type: string

Chapter 7: Bundles of agent 169

Allowed input range: (arbitrary string)
Synopsis: Alternative string of arguments for the command (concatenated with promiser string)
Example:

commands:

"/bin/echo one"

args => "two three";

Notes:

Sometimes it is convenient to separate the arguments to a command from the command itself.
The final arguments are the concatenation with one space. So in the example above the command
would be

/bin/echo one two three

7.1.2 contain (compound body)

Type: (ext body)

‘useshell’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false embed the command in a shell environment (true)

Default value: false

Example:

body contain example

{

useshell => "true";

}

170 Cfengine reference manual

Notes:

The default is to not use a shell when executing commands. Use of a shell has both
resource and security consequences. A shell consumes an extra process and inherits
environment variables, reads commands from files and performs other actions beyond
the control of cfengine. If one does not need shell functionality such as piping through
multiple commands then it is best to manage without it. In the windows version of
Cfengine Nova, the command is run in the the “Command Prompt” if useshell is true.

‘umask’ Type: (menu option)

Allowed input range:

0

77

22

27

72

077

022

027

072

Synopsis: The umask value for the child process

Example:

body contain example

{

umask => "077";

}

Notes:

Sets the internal umask for the process. Default value for the mask is ‘077’. On
windows, umask is not supported and is thus ignored by windows versions of Cfengine.

‘exec_owner’
Type: string

Allowed input range: (arbitrary string)

Synopsis: The user name or id under which to run the process

Example:

Chapter 7: Bundles of agent 171

body contain example

{

exec_owner => "mysql_user";

}

Notes:

This is part of the restriction of privilege for child processes when running cf-agent

as the root user, or a user with privileges.

Windows requires the clear text password for the user account to run under. Keeping
this in Cfengine policies could be a security hazard. Therefore, this option is not yet
implemented on windows versions of Cfengine.

‘exec_group’
Type: string

Allowed input range: (arbitrary string)

Synopsis: The group name or id under which to run the process

Example:

body contain example

{

exec_group => "nogroup";

}

Notes:

This is part of the restriction of privilege for child processes when running cf-agent

as the root group, or a group with privileges. It is ignored on windows, as processes
do not have any groups associated with them.

‘exec_timeout’
Type: int

Allowed input range: 1,3600

Synopsis: Timeout in seconds for command completion

Example:

body contain example

{

172 Cfengine reference manual

exec_timeout => "30";

}

Notes:

Attempt to time-out after this number of seconds. This cannot be guaranteed as not
all commands are willing to be interrupted in case of failure.

‘chdir’ Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Directory for setting current/base directory for the process

Example:

body contain example

{

chdir => "/containment/directory";

}

Notes:

This command has the effect of placing the running command into a current working
directory equal to the parameter given, i.e. it works like the ‘cd’ shell command.

‘chroot’ Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Directory of root sandbox for process

Example:

body contain example

{

chroot => "/private/path";

}

Notes:

Chapter 7: Bundles of agent 173

Sets the path of the directory that will be experienced as the top-most root directory
for the process. In security parlance, this creates a ‘sandbox’ for the process. Windows
does not support this feature.

‘preview’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false preview command when running in dry-run mode (with -n)

Default value: false

Example:

body contain example

{

preview => "true";

}

Notes:

Previewing shell scripts during a dry-run is a potentially misleading activity. It should
only be used on scripts that make no changes to the system. It is cfengine best practice
to never write change-functionality into user-written scripts except as a last resort:
cfengine can apply its safety checks to user defined scripts.

‘no_output’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false discard all output from the command

Default value: false

174 Cfengine reference manual

Example:

body contain example

{

no_output => "true";

}

Notes:

This is equivalent to piping standard output and error to ‘/dev/null’.

7.1.3 module

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false whether to expect the cfengine module protocol
Example:

commands:

"/masterfiles/user_script"

module => "true";

Notes:

If true, the module protocol is supported for this script, i.e. it is treated as a user module. A
plug-in module may be written in any language, it can return any output you like, but lines which
begin with a ‘+’ sign are treated as classes to be defined (like ‘-D’), while lines which begin with a ‘-’
sign are treated as classes to be undefined (like ‘-N’). Lines starting with ‘=’ are variables/macros
to be defined. Any other lines of output are cited by cf-agent as being erroneous, so you should
normally make your module completely silent. Here is an example module written in perl.

Chapter 7: Bundles of agent 175

#!/usr/bin/perl

#

module:myplugin

#

lots of computation....

if (special-condition)

{

print "+specialclass";

}

If your module is “simple” and is best expressed as a shell command, then we suggest that you
expose the class being defined in the command being executed (making it easier to see what classes
are used when reading the promises file). For example, the promises could read as follows (the two
echo commands are to ensure that the shell always exits with a successful execution of a command):

bundle agent sendmail

{

commands:

This next module checks a specific failure mode of dcc, namely

more than 3 error states since the last time we ran cf-agent

is_mailhost::

"/bin/test ‘/usr/bin/tail -100 /var/log/maillog | /usr/bin/grep ’Milter (dcc): to error state’ | /usr/bin/wc -l‘ -gt 3 && echo ’+start_dccm’ || echo

’’"

contain => shell_command,

module => true;

start_dccm::

"/var/dcc/libexec/start-dccm"

contain => not_paranoid;

}

body contain shell_command

{

useshell => "yes";

}

body contain not_paranoid

{

useshell => "no";

exec_owner => "root";

umask => "22";

}

Modules inherit the environment variables from cfagent and accept arguments, just as a regular
command does.

#!/bin/sh

#

module:myplugin

176 Cfengine reference manual

#

/bin/echo $*

cf-agent defines the classes as an environment variable so that programs have access to these.
E.g. try the following module:

#!/usr/bin/perl

print "Decoding $ENV{CFALLCLASSES}\n";

@allclasses = split (":","$ENV{CFALLCLASSES}");

while ($c=shift(@allclasses))

{

$classes{$c} = 1;

print "$c is set\n";

}

Modules define variables in cf-agent by outputting strings of the form

=variablename=value

These variables end up in a context which has the same name as the module. When the
$(allclasses) variable becomes too large to manipulate conveniently, you can access the com-
plete list of currently defined classes in the file ‘/var/cfengine/state/allclasses’.

7.2 databases promises in ‘agent’

These features apply to Enterprise versions of cfengine only.

Cfengine Nova can interact with commonly used database servers to keep promises about the
structure and content of data within them.

There are two main cases of database management to address: small embedded databases and
large centralized databases.

Cfengine is a tool whose strength lies distributed management of computers. Databases are often
centralized entities that have single point of management, so a large monolithic database is more
easily managed with other tools. However, cfengine can still monitor changes and discrepancies, and
it can manage smaller embedded databases that are distributed in nature, whether they are SQL,
registry or future types.

So creating 100 new databases for test purposes is a task for cfengine, but adding a new item to
an important production database is not a task that we recommend using cfengine for.

There are three kinds of database supported by Nova:

LDAP - The Lightweight Directory Access Protocol
A hierarchical network database primarily for reading simple schema.

SQL - Structured Query Language
A number of relational databases (currently supported: MySQL, Postgres) for reading
and writing complex data.

Chapter 7: Bundles of agent 177

Registry - Microsoft Registry
An embedded database for interfacing with system values in Microsoft Windows.

In addition, cfengine uses a variety of embedded databases for its own internals.
Cfengine’s ability to make promises about databases depends on the good grace of the database

server. Embedded databases are directly part of the system and promises can be made directly.
However, databases running through a server process (either on the same host or on a different host)
are independent agents and cfengine cannot make promises on their behalf, unless they promise
(grant) permission for cfengine to make the changes. Thus the pre-requisite for making SQL database
promises is to grant a point of access on the server.� �
databases:

"database/subkey or table"

database_operation => "create/delete/drop",

database_type => "sql/ms_registry",

database_columns => {

"name,type,size",

"name,type",

},

database_server => body;

body database_server name

{

db_server_owner => "account name";

db_server_password => "password";

db_server_host => "hostname or omit for localhost";

db_server_type => "mysql/posgres";

db_server_connection_db => "database we can connect to";

}
 	

body common control

{

bundlesequence => { "databases" };

}

bundle agent databases

{

#commands:

"/usr/bin/createdb cf_topic_maps",

contain => as_user("mysql");

178 Cfengine reference manual

databases:

"cf_topic_maps/topics"

database_operation => "create",

database_type => "sql",

database_columns => {

"topic_name,varchar,256",

"topic_comment,varchar,1024",

"topic_id,varchar,256",

"topic_type,varchar,256",

"topic_extra,varchar,26"

},

database_server => myserver;

}

##

body database_server myserver

{

any::

db_server_owner => "postgres";

db_server_password => "";

db_server_host => "localhost";

db_server_type => "postgres";

db_server_connection_db => "postgres";

none::

db_server_owner => "root";

db_server_password => "";

db_server_host => "localhost";

db_server_type => "mysql";

db_server_connection_db => "mysql";

}

body contain as_user(x)

{

exec_owner => "$(x)";

}

The promiser in database promises is a concatenation of the database name and underlying
tables. This presents a simple hierarchical model that looks like a file-system. This is the normal

Chapter 7: Bundles of agent 179

structure within the Windows registry for instance. Entity-Relation databases do not normally
present tables in this way, but no harm is done in representing them as a hierarchy of depth 1.

7.2.1 database_server (compound body)

Type: (ext body)

‘db_server_owner’
Type: string

Allowed input range: (arbitrary string)

Synopsis: User name for database connection

Example:

db_server_owner => "mark";

Notes:

‘db_server_password’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Clear text password for database connection

Example:

db_server_password => "xyz.1234";

Notes:

‘db_server_host’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Hostname or address for connection to database, blank means localhost

Example:

db_server_host => "sqlserv.example.org";

180 Cfengine reference manual

Notes:

Hostname or IP address of the server.

‘db_server_type’
Type: (menu option)

Allowed input range:

postgres

mysql

Synopsis: The dialect of the database server

Default value: none

Example:

db_server_type => "postgres";

Notes:

‘db_server_connection_db’
Type: string

Allowed input range: (arbitrary string)

Synopsis: The name of an existing database to connect to in order to create/manage
other databases

Example:

body database_server myserver(x)

{

db_server_owner => "$(x)";

db_server_password => "";

db_server_host => "localhost";

db_server_type => "$(mysql)";

db_server_connection_db => "$(x)";

}

where ‘x’ is currently mysql or postgres.

Notes:

Chapter 7: Bundles of agent 181

In order to create a database on a database server (all of which practice voluntary
cooperation), one has to be able to connect to the server, however, without an existing
database this is not allowed. Thus, database servers provide a default database that
can be connected to in order to thereafter create new databases. These are called
postgres and mysql for their respective database servers.

For the knowledge agent, this setting is made in the control body, for database verifi-
cation promises, it is made in the database_server body.

7.2.2 database_type

Type: (menu option)

Allowed input range:

sql

ms_registry

Default value: none

Synopsis: The type of database that is to be manipulated

Example:

database_type => "@var{ms_registry}";

Notes:

7.2.3 database_operation

Type: (menu option)

Allowed input range:

create

delete

drop

cache

verify

restore

Synopsis: The nature of the promise - to be or not to be

Example:

database_operation => "create";

182 Cfengine reference manual

Notes:

7.2.4 database_columns

Type: slist
Allowed input range: .*
Synopsis: A list of column definitions to be promised by SQL databases
Example:

"cf_topic_maps/topics"

database_operation => "create",

database_type => "sql",

database_columns => {

"topic_name,varchar,256",

"topic_comment,varchar,1024",

"topic_id,varchar,256",

"topic_type,varchar,256",

"topic_extra,varchar,26"

},

database_server => myserver;

Notes:

Columns are a list of tuplets (Name,type,size). Array items are triplets, and fixed size data
elements are doublets.

7.2.5 database_rows

Type: slist
Allowed input range: .*,.*
Synopsis: An ordered list of row values to be promised by SQL databases
Example:

bundle agent databases

{

databases:

Chapter 7: Bundles of agent 183

windows::

Regsitry has (value,data) pairs in "keys" which are directories

"HKEY_LOCAL_MACHINE\SOFTWARE\Cfengine AS\Cfengine"

database_operation => "create",

database_rows => { "value1,REG_SZ,new value 1", "value2,REG_SZ,new val 2"} ,

database_type => "ms_registry";

}

Notes:

This constraint is used only in adding data to database columns. Rows are considered to be
instances of individual columns. In the case of the system registry on Windows, the rows represent
data on data-value pairs.

7.2.6 registry_exclude

Type: slist
Allowed input range: (arbitrary string)
Synopsis: A list of regular expressions to ignore in key/value verification
Example:

databases:

"HKEY_LOCAL_MACHINE\SOFTWARE"

database_operation => "cache",

registry_exclude => { ".*Windows.*CurrentVersion.*",

".*Touchpad.*",

".*Capabilities.FileAssociations.*",

".*Rfc1766.*" ,

".*Synaptics.SynTP.*",

".*SupportedDevices.*8086",

".*Microsoft.*ErrorThresholds"

},

database_type => "ms_registry";

Notes:

184 Cfengine reference manual

During recursive Windows registry scanning, this option allows us to ignore keys of values match-
ing a list of regular expressions. Some values in the registry are ephemeral and some should not be
considered. This provdes a convenient way of avoiding names. It is analogous to exclude_dirs for
files.

7.3 environments promises in ‘agent’

Environment promises are available in the Cfengine Nova Edition and above. Environment
promises describe enclosed computing environments that can host physical and virtual machines,
solaris zones, grids, clouds or other enclosures, including embedded systems. Cfengine will support
the convergent maintenance of such inner environments in a fixed location, with interfaces to an
external environment.

Cfengine currently seeks to add convergence properties to existing interfaces for automatic self-
healing of virtualized environments. The current implementation integrates with libvirt, supporting
host virtualization for Xen, KVM, VMWare, etc. Thus Cfengine, running on a virtual host, can
maintain the state and deployment of virtual guest machines defined within the libvirt framework.
Environment promises are not meant to manage what goes on within the virtual guests: for that
purpose, you should run Cfengine directly on the virtual machine, as if it were any other machine.

site1::

"unique_name1"

environment_resources => myresources("2GB","512MB"),

environment_interface => mymachine("hostname"),

environment_type => "xen",

environment_state => "running",

environment_host => "atlas";

"unique_name2"

environment_type => "xen_network",

environment_state => "create",

environment_host => "atlas";

Cfengine currently provides a convergent interface to libvirt.

7.3.1 environment_host

Type: string
Allowed input range: [a-zA-Z0-9_$.:-]+

Chapter 7: Bundles of agent 185

Synopsis: A host for the virtual environment uniquely indicating which physical node will execute
this machine
Example:

environments:

linux::

"host1"

comment => "Keep this vm suspended",

environment_resources => myresources,

environment_type => "kvm",

environment_state => "suspended",

environment_host => "ubuntu";

Notes:

History : this feature was introduced in Nova 2.0.0 (2010)

7.3.2 environment_interface (compound body)

Type: (ext body)

‘env_addresses’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: The IP addresses of the environment’s network interfaces

Example:

body environment_interface vnet(primary)

{

env_name => "$(this.promiser)";

env_addresses => { "$(primary)" };

host1::

env_network => "default_vnet1";

host2::

env_network => "default_vnet2";

186 Cfengine reference manual

}

Notes:

The IP addresses of the virtual machine can be overridden here at run time.

‘env_name’ Type: string

Allowed input range: (arbitrary string)

Synopsis: The hostname of the virtual environment

Example:

body environment_interface vnet(primary)

{

env_name => "$(this.promiser)";

env_addresses => { "$(primary)" };

host1::

env_network => "default_vnet1";

host2::

env_network => "default_vnet2";

}

Notes:

The ‘hostname’ of a virtual guest may or may not be the same as the identifier used
as ‘promiser’ by the virtualization manager.

‘env_network’
Type: string

Allowed input range: (arbitrary string)

Synopsis: The hostname of the virtual network

Example:

body environment_interface vnet(primary)

{

env_name => "$(this.promiser)";

env_addresses => { "$(primary)" };

host1::

env_network => "default_vnet1";

Chapter 7: Bundles of agent 187

host2::

env_network => "default_vnet2";

}

Notes:

7.3.3 environment_resources (compound body)

Type: (ext body)

‘env_cpus’ Type: int

Allowed input range: 0,99999999999

Synopsis: Number of virtual CPUs in the environment

Example:

body environment_resources my_environment

{

env_cpus => "2";

env_memory => "512"; # in KB

env_disk => "1024"; # in MB

}

Notes:

The maximum number of cores or processors in the physical environment will set a
natural limit on this value. If the number is already set in a specification file, this
value will attempt to override it at run time.

‘env_memory’
Type: int

Allowed input range: 0,99999999999

Synopsis: Amount of primary storage (RAM) in the virtual environment (KB)

Example:

body environment_resources my_environment

{

env_cpus => "2";

env_memory => "512"; # in KB

env_disk => "1024"; # in MB

188 Cfengine reference manual

}

Notes:

The maximum amount of memory in the physical environment will set a natural limit
on this value. If the number is already set in a specification file, this value will attempt
to override it at run time.

‘env_disk’ Type: int

Allowed input range: 0,99999999999

Synopsis: Amount of secondary storage (DISK) in the virtual environment (MB)

Example:

body environment_resources my_environment

{

env_cpus => "2";

env_memory => "512"; # in KB

env_disk => "1024"; # in MB

}

Notes:

This parameter is currently unsupported, for future extension.

‘env_baseline’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: The path to an image with which to baseline the virtual environment

Example:

env_baseline => "/path/to/image";

Notes:

This function is for future development.

‘env_spec_file’
Type: string

Chapter 7: Bundles of agent 189

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: The path to a file containing a technology specific set of promises for the
virtual instance

Example:

body environment_resources virt_xml

{

env_spec_file => "/srv/xen/centos5-libvirt-create.xml";

}

You may also quote the file as XML:

body environment_resources virt_xml(host)

{

env_spec_file =>

"<domain type=’xen’>

<name>$(host)</name>

<os>

<type>linux</type>

<kernel>/var/lib/xen/install/vmlinuz-ubuntu10.4-x86_64</kernel>

<initrd>/var/lib/xen/install/initrd-vmlinuz-ubuntu10.4-x86_64</initrd>

<cmdline> kickstart=http://example.com/myguest.ks </cmdline>

</os>

<memory>131072</memory>

<vcpu>1</vcpu>

<devices>

<disk type=’file’>

<source file=’/var/lib/xen/images/$(host).img’/>

<target dev=’sda1’/>

</disk>

<interface type=’bridge’>

<source bridge=’xenbr0’/>

<mac address=’aa:00:00:00:00:11’/>

<script path=’/etc/xen/scripts/vif-bridge’/>

</interface>

<graphics type=’vnc’ port=’-1’/>

<console tty=’/dev/pts/5’/>

</devices>

</domain>

";

}

190 Cfengine reference manual

Notes:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

7.3.4 environment_state

Type: (menu option)

Allowed input range:

create

delete

running

suspended

down

Synopsis: The desired dynamical state of the specified environment

Example:

environments:

linux::

"bishwa-kvm1"

comment => "Keep this vm suspended",

environment_resources => myresources,

environment_type => "kvm",

environment_state => "suspended",

environment_host => "ubuntu";

Notes:

The allowed states have the following convergent semantics.

‘create’ The guest machine is allocated, installed and left in a running state.

‘delete’ The guest machine is shut down and de-allocated but no files are removed.

‘running’ The guest machine is in a running state, if it previously exists.

‘suspended’
The guest exists in a suspended state or a shutdown state. If the guest is running, it
is suspended, else it is ignored.

‘down’ The guest machine is shut down, but not de-allocated.

Chapter 7: Bundles of agent 191

7.3.5 environment_type

Type: (menu option)
Allowed input range:

xen

kvm

esx

test

xen_net

kvm_net

esx_net

test_net

zone

ec2

eucalyptus

Synopsis: Virtual environment type
Example:

bundle agent my_vm_cloud

{

environments:

scope::

"vguest1"

environment_resources => my_environment_template,

environment_interface => vnet("eth0,192.168.1.100/24"),

environment_type => "test",

environment_state => "create",

environment_host => "atlas";

"vguest2"

environment_resources => my_environment_template,

environment_interface => vnet("eth0,192.168.1.101/24"),

environment_type => "test",

environment_state => "delete",

environment_host => "atlas";

}

Notes:

The currently supported types are those supported by libvirt. More will be added as time goes
on.

192 Cfengine reference manual

7.4 files promises in ‘agent’

Files promises are an umbrella concept for all attributes of files. Operations fall basically into
three categories: create, delete and edit.� �
files:

"/path/file_object"

perms => perms_body,

... ;
 	
Prior to version 3, file promises were scattered into many different types such as files, tidy,

copy, links, etc. File handling in cfengine 3 uses regular expressions everywhere for pattern match-
ing. The old ‘wildcard/globbing’ expressions ‘*’ and ‘?’ are deprecated, and everything is based
consistently on Perl Compatible Regular Expressions where these are available. If PCRE is not
available on the local system, POSIX extended regular expressions are used.

There is a natural ordering in file processing that obviates the need for the actionsequence. The
trick of using multiple actionsequence items with different classes, e.g.

actionsequence = (... files.one .. files.two)

can now be handled more elegantly using bundles. The natural ordering uses that fact that some
operations are mutually exclusive and that some operations do not make sense in reverse order. For
example, editing a file and then copying onto it would be nonsense. Similarly, you cannot both
remove a file and rename it.

File copying

One of the first things users of cfengine 2 will notice is that copying is now ‘backwards’. Instead
of the default object being source and the option being the destination, in cfengine 3 the destination
is paramount and the source is an option. This is because the model of voluntary cooperation tells
us that it is the object that is changed which is the agent making the promise. One cannot force
change onto a destination with cfengine, one can only invite change from a source.

Normal ordering of promise attributes

Cfengine 3 no longer has an ‘action sequence’. Ordering of operations has, in most cases, a
natural ordering which is assumed by the agent. For instance: ‘delete then create’ (normal ordering)
makes sense, but ‘create then delete’ does not. This sort of principle can be extended to deal with
all aspects of file promises.

Chapter 7: Bundles of agent 193

The diagram below shows the ordering. Notice that the same ordering applies regardless of file
type (plain-file or directory). Note also that file editing is done "atomically" (see ‘File editing in
cfengine 3’ for important details).

The pseudo-code for this logic is shown in the diagram and below:
for each file promise-object

{

if (depth_search)

do

DepthSearch (HandleLeaf)

else

(HandleLeaf)

done

}

HandleLeaf()

{

Does leaf-file exist?

NO: create

YES: rename,delete,touch,

do

for all servers in {localhost, @(servers)}

{

if (server-will-provide)

do

if (depth_search)

embedded source-depth-search (use file source)

break

else

194 Cfengine reference manual

(use file source)

break

done

done

}

done

Do all links (always local)

Check Permissions

Do edits

}

Depth searches (recursion) during searches

In cfengine 2 there was the concept of recursion during file searches. Recursion is now called
"depth-search". In addition, it was possible to specify wildcards in the base-path for this search.
Cfengine 3 replaces the ‘globbing’ symbols with standard regular expressions:

Cfengine 2 Cfengine 3

/one/*/two/thr*/four /one/.*/two/thr.*/four

Note that this now means when searching for “hidden” files (files with names starting with a ‘.’)
or files with specific extensions, you should take care to escape the dot (e.g., \.cshrc or .*\.txt

when you wish it to mean a literal character and not the “any character” interpretation provided
by regular expression interpretation. Note that when you do a recursive search, the files ‘’.’’ and
‘’..’’ are never included in the matched files, even if the regular expresion in the ‘leaf_name’
specifically allows them.

Note also the the filename ‘/dir/ect/ory/.’ is a special case used with the ‘create’ attribute to
indicate the directory named ‘/dir/ect/ory’ and not any of the files under it. If you really want to
specify a regular expression that matches any single-character filename, use ‘/dir/ect/ory/[\w\W]’
as your promise regular expression (you can’t use ‘/dir/ect/ory[^/]’, see below for an explanation.

When we talk about a depth search, it refers to a search for file objects which starts from the
one or more matched base-paths as shown in the example above.
Filenames and regular expressions

Cfengine allows regular expressions within filenames, but only after first doing some sanity check-
ing to prevent some readily avoidable problems. The biggest rule you need to know about filenames
and regular expressions is that all regular expressions in filenames are bounded by directory sepa-
rators, and that each component expression is anchored between the directory separators See Sec-
tion 2.10.4 [Anchored vs. unanchored regular expressions], page 36. In other words, Cfengine
splits up any file paths into its component parts, and then it evaluates any regular expressions at a
component-level.

What this means is that the path ‘/tmp/gar.*’ will only match filenames like ‘/tmp/gar’,
‘/tmp/garbage’ and ‘/tmp/garden’. It will not match filename like ‘/tmp/gar/baz’ (because even
though the ‘.*’ in a regular expression means "zero or more of any character", Cfengine restricts

Chapter 7: Bundles of agent 195

that to mean "zero or more of any character in a path component"). Correspondingly, Cfengine also
restricts where you can use the ‘/’ character (you can’t use it in a character class like ‘[^/]’ or in a
parenthesized or repeated regular expression component.

This means that regular expressions which include "optional directory components" won’t work.
You can’t have a files promise to tidy the directory ‘(/usr)?/tmp’. Instead, you need to be more
verbose and specify ‘/usr/tmp|/tmp’, or even better, think declaratively and create an slist that
contains both the strings ‘/tmp’ and ‘/usr/tmp’, and then allow Cfengine to iterate over the list!

This also means that the path ‘/tmp/.*/something’ will match files like ‘/tmp/abc/something’
or ‘/tmp/xyzzy/something’. However, even though the pattern ‘.*’ means "zero or more of any
character (except ‘/’)", Cfengine matches files bounded by directory separators. So even though
the pathname ‘/tmp//something’ is technically the same as the pathname ‘/tmp/something’, the
regular expression ‘/tmp/.*/something’ will not match on the degenerate case of ‘/tmp//something’
(or ‘/tmp/something’).

Promises involving regular expressions

Cfengine can only keep (or repair, or fail to keep) a promise on files which actually exist. If
you make a promise based on a wildcard match, then the promise is only ever attempted if the
match succeeds. However, if you make a promise which includes a recursive search which includes
a wildcard match, then the promise can be kept or repaired (provided that the directory specified
in the promise exists). Consider the following two examples, (assuming that there first exist files
named ‘/tmp/gar’, ‘/tmp/garbage’ and ‘/tmp/garden’). At first blush, the two promises look like
they should do the same thing, but there is a subtle difference:

bundle agent foobaz bundle agent foobaz

{ {

files: files:

"/tmp/gar.*" "/tmp"

delete => tidy, delete => tidy,

classes => if_ok("done"); depth_search => recurse("0"),

file_select => gars,

classes => if_ok("done");

}

body file_select gars

{

leaf_name => { "gar.*" };

file_result => "leaf_name";

}

body classes if_ok(x) body classes if_ok(x)

{ {

promise_repaired => { "$(x)" }; promise_repaired => { "$(x)" };

promise_kept => { "$(x)" }; promise_kept => { "$(x)" };

} }

In the first example, when the configuration containing this promise is first executed, any file
starting with "gar" that exists in the ‘/tmp’ directory will be removed, and the ‘done’ class will be
set. However, when the configuration is executed a second time, the pattern ‘/tmp/gar.*’ will not

196 Cfengine reference manual

match any files, and that promise will not even be attempted (and, consequently the ‘done’ class
will not be set).

In the second example, when the configuration containing this promise is first executed, any file
starting with "gar" that exists in the ‘/tmp’ directory will also be removed, and the ‘done’ class
will also be set. The second time the configuration is executed, however, the promise on the ‘/tmp’
directory will still be executed (because ‘/tmp’ of course still exists), and the ‘done’ class will be set,
because all files matching the ‘file_select’ attribute have been deleted from that directory.
Local and remote searches

There are two distinct kinds of depth search:

• A local search over promiser agents.

• A remote search over provider agents.

When we are copying or linking to a file source, it is the search over the remote source that
drives the content of a promise (the promise is a promise to use what the remote source provides).
In general, the sources are on a different device to the images that make the promises. For all other
promises, we search over existing local objects.

If we specify depth search together with copy of a directory, then the implied remote source
search is assumed, and it is made after the search over local base-path objects has been made. If
you mix complex promise body operations in a single prmose, this could lead to confusion about
the resulting behaviour, and a warning is issued. In general it is not recommended to mix searches
without a full understanding of the consequences, but this might occasionally be useful.

Depth search is not allowed with edit_line promises.
File editing in cfengine 3

Cfengine 2 assumed that all files were line-edited, because it was based on Unix traditions. Since
then many new file formats have emerged, including XML. Cfengine 3 opens up the possibiltiy for
multiple models of file editing. Line based editing is still present and is both much simplified and
much more powerful than previously.

File editing is not just a single kind of promise but a whole range of ‘promises within files’. It
is therefore not merely a body to a single kind of promise, but a bundle of sub-promises. After all,
inside each file is a new world of objects that can make promises, quite separate from files’ external
attributes.

A typical file editing stanza has the elements in the following example.
##

#

File editing

#

##

body common control

{

version => "1.2.3";

bundlesequence => { "outerbundle" };

}

##

Chapter 7: Bundles of agent 197

bundle agent outerbundle

{

files:

"/home/mark/tmp/cf3_test"

create => "true", # Like autocreate in cf2

edit_line => inner_bundle;

}

##

bundle edit_line inner_bundle

{

vars:

"who" string => "SysAdmin John";# private variable in bundle

insert_lines:

"/* This file is maintained by Cfengine (see $(who) for details) */",

location => first_line;

replace_patterns:

replace shell comments with C comments

"#(.*)"

replace_with => C_comment,

select_region => MySection("New section");

reports:

someclass::

"This is file $(edit.filename)";

}

##

Bodies for the library ...

##

body replace_with C_comment

{

198 Cfengine reference manual

replace_value => "/* $(match.1) */"; # backreference

occurrences => "all"; # first, last all

}

##

body select_region MySection(x)

{

select_start => "\[$(x)\]";

select_end => "\[.*\]";

}

##

body location first_line

{

before_after => "before";

first_last => "first";

select_line_matching => ".*";

}

There are several things to notice:

• The line-editing promises are all convergent promises about patterns within the file. They have
bodies, just like other attributes do and these allow us to make simple templates about file
editing while extending the power of the basic primitives.

• All file edits specified in a single edit_line bundle are handled "atomically". Cfengine edits
files like this:

• Cfengine makes a copy of the file you you want to edit

• Cfengine makes all the edits in the copy of the file. The filename is the same as your
original file with the extension ‘.cf-after-edit’ appended.

• After all edits are complete (the delete_lines, field_edits, insert_lines, and finally
replace_patterns promises), Cfengine checks to see if the new file is the same as the
original one. If there are no differences, the promises have converged, so it deletes the
copy, and the original is left completely unmodified.

• If there are any differences, Cfengine makes a copy of your original file with the exten-
sion ‘.cf-before-edit’ (so you always have the most recent backup available), and then
renames the edited version to your original filename.

Because file rename is an atomic operation (guaranteed by the operating system), any appli-
cation program will either see the old version of the file or the new one – there is no "window
of opportunity" where a partially edited file can be seen (unless an application intentionally
looks for the ‘.cf-after-edit’ file). Problems during editing (such as disk-full or permission
errors) are likewise detected, and Cfengine will not rename a partial file over your original.

Chapter 7: Bundles of agent 199

• All pattern matching is through perl compatible regular expressions

• Editing takes place within a marked region (which defaults to the whole file if not otherwise
specified).

• Search/replace functions now allow back-references.

• The line edit model now contains a field or column model for dealing with tabular files such as
Unix ‘passwd’ and ‘group’ files. We can now apply powerful convergent editing operations to
single fields inside a table, to append, order and delete items from lists inside fields.

• The special variable $(edit.filename) contains the name of the file being edited within an
edit bundle.

In the example above, back references are used to allow conversion of comments from shell-style to
C-style.

Another example of files promises is to look for changes in files. The following example reports on all
recent changes to files in a directory by maintaining the most recent version of the md5 hash of the
file contents. Similar checks can be used to examine metadata or both the contents and metadata,
as well as using different difference checks. The Community Edition only reports that changes were
found, but Enterprise versions of Cfengine can also report on what exactly the significant changes
were.

bundle agent example

{

files:

"/home/mark/tmp" -> "Security team"

changes => lay_a_tripwire,

depth_search => recurse("inf"),

action => background;

}

###

body changes lay_a_tripwire

{

hash => "md5";

report_changes => "content";

update => "yes";

}

7.4.1 acl (compound body)

Type: (ext body)

200 Cfengine reference manual

‘aces’ Type: slist

Allowed input range: ((user|group):[^:]+:[-=+,rwx()dtTabBpcoD]*(:(allow|deny))?)|((all|mask):[-
=+,rwx()]*(:(allow|deny))?)

Synopsis: Native settings for access control entry

Example:

body acl template

{

acl_method => "overwrite";

acl_type => "posix";

acl_directory_inherit => "parent";

aces => {

"user:*:r(wwx),-r:allow",

"group:*:+rw:allow",

"mask:x:allow",

"all:r"

};

}

Notes:

Access Control Lists are only available with Cfengine Nova or above. Form of the
permissions is:� �

aces => {

"user:uid:mode[:perm_type]", ...,

"group:gid:mode[:perm_type]", ...,

"all:mode[:perm_type]"

};
 	
• user indicates that the line applies to a user specified by the user identitfier uid.

mode is the permission mode string.

• group indicates that the line applies to a group specified by the group identitfier
gid. mode is the permission mode string.

• all indicates that the line applies to every user. mode is the permission mode
string.

• uid is a valid user identifier for the system and cannot be empty. However, uid
can be set to * as a synonym for the entity that owns the file system object (e.g.
user:*:r).

Chapter 7: Bundles of agent 201

• gid is a valid group identifier for the system and cannot be empty. However, in
some acl types, gid can be set to * to indicate a special group (e.g. in POSIX
this refers to the file group).

• mode is one or more strings op|perms|(nperms); a concatenation of op, perms and
optionally (nperms), see below, separated with commas (e.g. +rx,-w(s)). mode is
parsed from left to right.

• op specifies the operation on any existing permissions, if the defined ACE already
exists. op can be =, empty, + or -. = or empty sets the permissions to the ACE
as stated, + adds and - removes the permissions from any existing ACE.

• nperms (optional) specifies file system specific (native) permissions. Only valid if
acl_type is defined. nperms will only be enforced if the file object is stored on a
file system supporting the acl type set in acl_type (e.g. nperms will be ignored
if acl_type:ntfs and the object is stored on a file system not supporting ntfs
ACLs). Valid values for nperms varies with different ACL types, and is defined in
subsequent sections.

• perm_type (optional) can be set to either allow or deny, and defaults to allow.
deny is only valid if acl_type is set to an ACL type that support deny permissions.
A deny ACE will only be enforced if the file object is stored on a file system
supporting the acl type set in acl_type.

gperms (generic permissions) is a concatenation of zero or more of the characters shown
in the table below. If left empty, none of the permissions are set.

Flag Description Semantics on file Semantics on directory

r Read Read data, permissions,
attributes

Read directory contents, per-
missions, attributes

w Write Write data Create, delete, rename
subobjects

x Execute Execute file Access subobjects

Note that the r permission is not neccessary to read an object’s permissions and at-
tributes in all file systems (e.g. in POSIX, having x on its containing directory is
sufficient).

‘acl_directory_inherit’
Type: (menu option)

Allowed input range:

nochange

parent

specify

clear

Synopsis: Access control list type for the affected file system

Example:

202 Cfengine reference manual

body acl template

{

acl_method => "overwrite";

acl_type => "posix";

acl_directory_inherit => "parent";

aces => {

"user:*:rwx:allow",

"group:*:+rw:allow",

"mask:rx:allow",

"all:r"

};

}

Notes:

Directories have ACLs associated with them, but they also have the ability to inherit
an ACL to sub-objects created within them. POSIX calls the former ACL type "access
ACL" and the latter "default ACL", and we will use the same terminology.

The constraint acl_directory_inherit gives control over the default ACL of direc-
tories. The default ACL can be left unchanged (nochange), empty (clear), or be
explicitly specified (specify). In addition, the default ACL can be set equal to the
directory’s access ACL (parent). This has the effect that child objects of the directory
gets the same access ACL as the directory.

‘acl_method’
Type: (menu option)

Allowed input range:

append

overwrite

Synopsis: Editing method for access control list

Example:

body acl template

{

acl_method => "overwrite";

acl_type => "posix";

aces => { "user:*:rw:allow", "group:*:+r:allow", "all:"};

}

Chapter 7: Bundles of agent 203

Notes:

When defining an ACL, we can either use an existing ACL as the starting point, or
state all entries of the ACL. If we just care about one entry, say that the superuser
has full access, the method constraint can be set to append, which is the default. This
has the effect that all the existing ACL entries that are not mentioned will be left
unchanged. On the other hand, if method is set to overwrite, the resulting ACL will
only contain the mentioned entries. When doing this, it is important to check that all
the required ACL entries are set, e.g. owning user, group and all in Posix ACLs.

‘acl_type’ Type: (menu option)

Allowed input range:

generic

posix

ntfs

Synopsis: Access control list type for the affected file system

Example:

body acl template

{

acl_type => "ntfs";

aces => { "user:Administrator:rwx(po)", "user:Auditor:r(o)"};

}

Notes:

ACLs are supported on multiple platforms, which may have different sets of available
permission flags. By using the constraint acl_type, we can specify which platform, or
ACL API, we are targeting with the ACL. The default, generic, is designed to work
on all supported platforms. However, if very specific permission flags are required, like
“Take Ownership” on the NTFS platform, we must set acl_type to indicate the target
platform. Currently, the supported values are posix and ntfs.

‘specify_inherit_aces’
Type: slist

Allowed input range: ((user|group):[^:]+:[-=+,rwx()dtTabBpcoD]*(:(allow|deny))?)|((all|mask):[-
=+,rwx()]*(:(allow|deny))?)

Synopsis: Native settings for access control entry

204 Cfengine reference manual

Example:

body acl template

{

specify_inherit_aces => { "all:r" };

}

Notes:

specify_inherit_aces (optional) is a list of access control entries that are set on
child objects. It is also parsed from left to right and allows multiple entries with same
entity-type and id. Only valid if acl_directory_inherit is set to specify.

This is an acl which makes explicit setting for the acl inherited by new objects within a
directory. It is included for those implementations that do not have a clear inheritance
policy.

7.4.2 changes (compound body)

Type: (ext body)

‘hash’ Type: (menu option)

Allowed input range:

md5

sha1

sha256

sha384

sha512

best

Synopsis: Hash files for change detection

Example:

body changes example

{

hash => "md5";

}

Notes:

The best option cross correlates the best two available algorithms known in the
OpenSSL library.

Chapter 7: Bundles of agent 205

‘report_changes’
Type: (menu option)

Allowed input range:

all

stats

content

none

Synopsis: Specify criteria for change warnings

Example:

body changes example

{

report_changes => "content";

}

Notes:

Files can change in permissions and contents, i.e. external or internal attributes. If
‘all’ is chosen all attributes are checked.

‘update_hashes’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Update hash values immediately after change warning

Example:

body changes example

{

update_hashes => "true";

}

206 Cfengine reference manual

Notes:

If this is positive, file hashes should be updated as soon as a change is registered so
that multiple warnings are not given about a single change. This applies to addition
and removal too.

‘report_diffs’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Generate reports summarizing the major differences between individual text
files

Example:

body changes example

{

report_diffs => "true";

}

Notes:

This feature is available only in enterprise levels Nova and above.

If true, Cfengine will log a ‘diff’ summary of major changes to the files. It is not
permitted to combine this promise with a depth search, since this would consume a
dangerous amount of resources and would lead to unreadable reports.

The feature is intented as a informational summary, not as a version control function
suitable for transaction control. If you want to do versioning on system files, you
should keep a single repository for them and use cfengine to synchronize changes from
the repository source. Repositories should not be used to attempt to capture random
changes of the system.

7.4.3 copy_from (compound body)

Type: (ext body)

‘source’ Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Chapter 7: Bundles of agent 207

Synopsis: Reference source file from which to copy

Example:

body copy_from example

{

source => "/path/to/source";

}

or

body link_from example

{

source => "/path/to/source";

}

Notes:

For remote copies this refers to the file name on the remote server.

‘servers’ Type: slist

Allowed input range: [A-Za-z0-9_.:-]+

Synopsis: List of servers in order of preference from which to copy

Example:

body copy_from example

{

servers => { "primary.example.org", "secondary.example.org",

"tertiary.other.domain" };

}

Notes:

The servers are tried in order until one of them succeeds.

‘collapse_destination_dir’
Type: (menu option)

Allowed input range:

true

208 Cfengine reference manual

false

yes

no

on

off

Synopsis: true/false Place files in subdirectories into the root destination directory
during copy

Example:

body copy_from mycopy(from,server)

{

source => "$(from)";

servers => { "$(server)" };

collapse_destination_dir => "true";

}

Notes:

Under normal operations, recursive copies cause cfengine to track subdirectories of files.
So, for instance, if we copy recurively from ‘src’ to ‘dest’, then ‘src/subdir/file’
will map to ‘dest/subdir/file’.

By setting this option to ‘true’, the promiser destination directory promises to aggre-
gate files searched from all subdirectories into itself, i.e. a single destination directory.

‘compare’ Type: (menu option)

Allowed input range:

atime

mtime

ctime

digest

hash

exists

binary

Synopsis: Menu option policy for comparing source and image file attributes

Default value: mtime or ctime differs

Example:

body copy_from example

Chapter 7: Bundles of agent 209

{

compare => "digest";

}

Notes:

The default copy method is ‘mtime’ (modification time), meaning that the source file
is copied to the destination (promiser) file, if the source file has been modified more
recently than the destination.

The different options are:

• mtime Cfengine copies the file if the modification time of the source file is more
recent than that of the promised file

• ctime Cfengine copies the file if the creation time of the source file is more recent
than that of the promised file

• atime Cfengine copies the file if the modification time or creation time of the
source file is more recent than that of the promised file. If the times are equal, a
byte-for-bye comparison is done on the files to determine if it needs to be copied.

• exists Cfengine copies the file if the promised file does not already exist.

• binary Cfengine copies the file if they are both plain files and a byte-for-byte
comparison determines that they are different. If both are not plain files, Cfengine
reverts to comparing the mtime and ctime of the files. If the source file is on a
different machine (i.e., network copy), then hash is used instead to reduce network
bandwidth.

• hash Cfengine copies the file if they are both plain files and a message digest
comparison indicates that the files are different. In Enterprise versions of Cfengine
version 3.1.0 and later, SHA256 is used as a message digest hash to conform with
FIPS; in older Enterprise versions of Cfengine and all Community versions, MD5
is used.

• digest a synonym for hash

‘copy_backup’
Type: (menu option)

Allowed input range:

true

false

timestamp

Synopsis: Menu option policy for file backup/version control

Default value: true

Example:

210 Cfengine reference manual

body copy_from example

{

copy_backup => "timestamp";

}

Notes:

Determines whether a backup of the previous version is kept on the system. This
should be viewed in connection with the system repository, since a defined repository
affects the location at which the backup is stored.

‘encrypt’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false use encrypted data stream to connect to remote host

Default value: false

Example:

body copy_from example

{

servers => { "remote-host.example.org" };

encrypt => "true";

}

Notes:

Client connections are encrypted with using a Blowfish randomly generated session
key. The intial connection is encrypted using the public/private keys for the client and
server hosts.

‘check_root’
Type: (menu option)

Allowed input range:

Chapter 7: Bundles of agent 211

true

false

yes

no

on

off

Synopsis: true/false check permissions on the root directory when depth search

Example:

body copy_from example

{

check_root => "true";

}

Notes:

When copying files recursively (by depth search), this flag determines whether the
permissions of the root directory should be set from the root of the source. The default
is to check only copied file objects and subdirectories within this root (false).

‘copylink_patterns’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of patterns matching files that should be linked instead of copied

Example:

body copy_from example

{

copylink_patterns => { "special_node1", "other_node.*" };

}

Notes:

The matches are performed on the last node of the filename, i.e. the file without its
path. As windows does not support symbolic links, this feature is not available there.

‘copy_size’
Type: irange [int,int]

Allowed input range: 0,inf

212 Cfengine reference manual

Synopsis: Integer range of file sizes that may be copied

Default value: any size range

Example:

body copy_from example

{

copy_size => irange("0","50000");

}

Notes:

The use of the irange function is optional. Ranges may also be specified as a comma
separated numbers.

‘findertype’
Type: (menu option)

Allowed input range:

MacOSX

Synopsis: Menu option for default finder type on MacOSX

Example:

body copy_from example

{

findertype => "MacOSX";

}

Notes:

This applies only to the Macintosh OSX variants.

‘linkcopy_patterns’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of patterns matching files that should be replaced with symbolic links

Example:

Chapter 7: Bundles of agent 213

body copy_from mycopy(from)

{

source => "$(from)";

linkcopy_patterns => { ".*" };

}

Notes:

The pattern matches the last node filename (i.e. without the absolute path). Windows
only supports hard links, see link_type.

‘link_type’
Type: (menu option)
Allowed input range:

symlink

hardlink

relative

absolute

none

Synopsis: Menu option for type of links to use when copying
Default value: symlink
Example:

body link_from example

{

link_type => "hard";

}

Notes:

What kind of link should be used to link files. Users are advised to be wary of ‘hard
links’ (see Unix manual pages for the ‘ln’ command). The behaviour of non-symbolic
links is often precarious and unpredictable. However, hard links are the only supported
type by windows.
Note that ‘symlink’ is synonymous with ‘absolute’ links, which are different from
‘relative’ links. Although all of these are symbolic links, the nomenclature here is
defined such that ‘symlink’ and ‘absolute’ are equivalent . When verifying a link,
choosing ‘relative’ means that the link must be relative to the source, so relative and
absolute links are mutually exclusive.

214 Cfengine reference manual

‘force_update’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false force copy update always

Default value: false

Example:

body copy_from example

{

force_update => "true";

}

Notes:

Warning: this is a non-convergent operation. Although the end point might stabilize
in content, the operation will never quiesce. Use of this feature is not recommended
except in exceptional circumstances since it creates a busy-dependency. If the copy is
a network copy, the system will be disturbed by network disruptions.

‘force_ipv4’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false force use of ipv4 on ipv6 enabled network

Default value: false

Example:

Chapter 7: Bundles of agent 215

body copy_from example

{

force_ipv4 => "true";

}

Notes:

IPv6 should be harmless to most users unless you have a partially or misconfigured
setup.

‘portnumber’
Type: int

Allowed input range: 1024,99999

Synopsis: Port number to connect to on server host

Example:

body copy_from example

{

portnumber => "5308";

}

Notes:

The standard or registered port number is tcp/5308. Cfengine does not presently use
its registered udp port with the same number, but this could change in the future.

‘preserve’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false whether to preserve file permissions on copied file

Default value: false

Example:

216 Cfengine reference manual

History : Was introduced in version 3.1.0b3,Nova 2.0.0b1 (2010)

Fill me in (./bodypart_preserve_example.texinfo)

""

Notes:

History : Was introduced in version 3.1.0b3,Nova 2.0.0b1 (2010)

Fill me in (./bodypart_preserve_notes.texinfo)

""

‘purge’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false purge files on client that do not match files on server when a
depth search is used

Default value: false

Example:

body copy_from example

{

purge => "true";

}

Notes:

Purging files is a potentially dangerous matter during a file copy it implies that any
promiser (destination) file which is not matched by a source will be deleted. Since there
is no source, this means the file will be irretrievable. Great care should be exercised
when using this feature.

Note that purging will also delete backup files generated during the file copying if
copy_backup is set to true.

‘stealth’ Type: (menu option)

Allowed input range:

Chapter 7: Bundles of agent 217

true

false

yes

no

on

off

Synopsis: true/false whether to preserve time stamps on copied file

Default value: false

Example:

body copy_from example

{

stealth => "true";

}

Notes:

Preserves file access and modification times on the promiser files.

‘timeout’ Type: int

Allowed input range: 1,3600

Synopsis: Connection timeout, seconds

Example:

body agent control

{

timeout => "10";

}

Notes:

Timeout in seconds.

‘trustkey’ Type: (menu option)

Allowed input range:

true

false

yes

218 Cfengine reference manual

no

on

off

Synopsis: true/false trust public keys from remote server if previously unknown

Default value: false

Example:

body copy_from example

{

trustkey => "true";

}

Notes:

If the server’s public key has not already been trusted, this allows us to accept the key
in automated key-exchange.

Note that, as a simple security precaution, trustkey should normally be set to ‘false’,
to avoid key exchange with a server one is not one hundred percent sure about, though
the risks for a client are rather low. On the server-side however, trust is often granted
to many clients or to a whole network in which possibly unauthorized parties might be
able to obtain an IP address, thus the trust issue is most important on the server side.

As soon as a public key has been exchanged, the trust option has no effect. A machine
that has been trusted remains trusted until its key is manually revoked by a system
administrator. Keys are stored in ‘WORKDIR/ppkeys’.

‘type_check’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false compare file types before copying and require match

Example:

body copy_from example

{

Chapter 7: Bundles of agent 219

type_check => "false";

}

Notes:

File types at source and destination should normally match in order for updates to
overwrite them. This option allows this checking to be switched off.

‘verify’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false verify transferred file by hashing after copy (resource penalty)

Default value: false

Example:

body copy_from example

{

verify => "true";

}

Notes:

This is a highly resource intensive option, not recommended for large file transfers.

7.4.4 create

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false

220 Cfengine reference manual

Synopsis: true/false whether to create non-existing file
Example:

files:

"/path/plain_file"

create => "true";

"/path/dir/."

create => "true";

Notes:

Directories are created by using the ‘/.’ to signify a directory type. Note that, if no permissions
are specified, mode 600 is chosen for a file, and mode 755 is chosen for a directory. If you cannot
accept these defaults, you should specify permissions.

Note that technically, ‘/.’ is a regular expression. However, it is used as a special case mean-
ing "directory". See the filenames and regular expressions near the beginning of the section on
Section 7.4 [files promises], page 192 for a more complete discussion.

Note: In general, you should not use create with Section 7.4.3 [copy from], page 206 or Sec-
tion 7.4.11 [link from], page 238 in files promises. These latter attributes automatically create the
promised file, and using create may actually prevent the copy or link promise from being kept
(since create acts first, which may affect file comparison or linking operations).

7.4.5 delete (compound body)

Type: (ext body)

‘dirlinks’ Type: (menu option)

Allowed input range:

delete

tidy

keep

Synopsis: Menu option policy for dealing with symbolic links to directories during
deletion

Example:

body delete example

{

Chapter 7: Bundles of agent 221

dirlinks => "keep";

}

Notes:

Links to directories are normally removed just like any other link or file objects. By
keeping directory links, you preserve the logical directory structure of the file system so
that a link to a directory is not removed but is treated as a directory to be descended
into.

The value keep instructs cfengine not to remove directory links. The values delete

and tidy are synonymous, and instruct cfengine to remove directory links.

Default value (only if body is present):

The default value only has significance if there is a delete body present. If there is no
delete body, then files (and directory links) are not deleted.

dirlinks => delete

‘rmdirs’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false whether to delete empty directories during recursive deletion

Example:

body delete example

{

rmdirs => "true";

}

Notes:

When deleting files recursively from a base directory, should we delete empty directories
also, or keep the directory structure intact?

222 Cfengine reference manual

Note the parent directory of a search is not deleted in recursive deletions. In cfengine
2 there was an option to delete the parent of the search, but now in cfengine 3, you
must code a separate promise to delete the single parent object.

bundle agent cleanup

{

files:

This will not delete the parent

"/home/mark/tmp/testcopy"

delete => tidyfiles,

file_select => changed_within_1_year,

depth_search => recurse("inf");

Now delete the parent.

"/home/mark/tmp/testcopy"

delete => tidyfiles;

}

body delete tidyfiles

{

dirlinks => "delete";

rmdirs => "true";

}

body file_select changed_within_1_year

{

mtime => irange(ago(1,0,0,0,0,0),now);

file_result => "mtime";

}

Default value (only if body is present):

The default value only has significance if there is a delete body present. If there is no
delete body, then files (and directories) are not deleted.

rmdirs => true

7.4.6 depth_search (compound body)

Type: (ext body)

‘depth’ Type: int

Allowed input range: 0,99999999999

Chapter 7: Bundles of agent 223

Synopsis: Maximum depth level for search

Example:

body depth_search example

{

depth => "inf";

}

Notes:

This was previous called ‘recurse’ in earlier versions of cfengine. Note that the value
‘inf’ may be used for an unlimited value.

When searching recursively from a directory, the parent directory is not part of the
search. It is only the anchor point. To alter the parent, a separate non-recursive
promise should be made.

‘exclude_dirs’
Type: slist

Allowed input range: .*

Synopsis: List of regexes of directory names NOT to include in depth search

Example:

body depth_search

{

no dot directories

exclude_dirs => { "\..*" };

}

Notes:

Directory names are treated specially when searching recursively through a file system.

‘include_basedir’
Type: (menu option)

Allowed input range:

true

false

yes

224 Cfengine reference manual

no

on

off

Synopsis: true/false include the start/root dir of the search results

Example:

body depth_search example

{

include_basedir => "true";

}

Notes:

When checking files recursively (with depth_search) the promiser is a directory. This
parameter determines whether that initial directory should be considered part of the
promise or simply a boundary which marks the edge of the search. If true, the promiser
directory will also promise the same attributes as the files inside it.

‘include_dirs’
Type: slist

Allowed input range: .*

Synopsis: List of regexes of directory names to include in depth search

Example:

body depth_search example

{

include_dirs => { "subdir1", "subdir2", "pattern.*" };

}

Notes:

This is the complement of exclude_dirs.

‘rmdeadlinks’
Type: (menu option)

Allowed input range:

true

false

Chapter 7: Bundles of agent 225

yes

no

on

off

Synopsis: true/false remove links that point to nowhere

Default value: false

Example:

body depth_search example

{

rmdeadlinks => "true";

}

Notes:

If we find links that point to non-existence files, should we delete them or keep them?

‘traverse_links’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false traverse symbolic links to directories (false)

Default value: false

Example:

body depth_search example

{

traverse_links => "true";

}

Notes:

226 Cfengine reference manual

If this is true, cf-agent will treat symbolic links to directories as if they were directo-
ries. Normally this is considered a potentially dangerous assumption and links are not
traversed.

‘xdev’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false exclude directories that are on different devices

Default value: false

Example:

body depth_search example

{

xdev => "true";

}

Notes:

7.4.7 edit_line

Type: (ext bundle) (Separate Bundle)

7.4.8 edit_xml

Type: (ext bundle) (Separate Bundle)

7.4.9 edit_defaults (compound body)

Type: (ext body)

‘edit_backup’
Type: (menu option)

Allowed input range:

true

false

timestamp

rotate

Chapter 7: Bundles of agent 227

Synopsis: Menu option for backup policy on edit changes

Default value: true

Example:

body edit_defaults example

{

edit_backup => "timestamp";

}

Notes:

‘empty_file_before_editing’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Baseline memory model of file to zero/empty before commencing promised
edits

Default value: false

Example:

body edit_defaults example

{

empty_file_before_editing => "true";

}

Notes:

Emptying a file before reconstructing its contents according to a fixed recipe allows an
ordered procedure to be convergent.

‘max_file_size’
Type: int

228 Cfengine reference manual

Allowed input range: 0,99999999999

Synopsis: Do not edit files bigger than this number of bytes

Example:

body edit_defaults example

{

max_file_size => "50K";

}

Notes:

A local, per-file sanity check to make sure the file editing is sensible. If this is set to
zero, the check is disabled and any size may be edited. The default value of max_file_
size is determined by the global control body setting of See Section 5.2.15 [editfilesize
in agent], page 74, whose default value is 100k.

‘recognize_join’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Join together lines that end with a backslash, up to 4kB limit

Default value: false

Example:

files:

"/tmp/test_insert"

create => "true",

edit_line => Insert("$(insert.v)"),

edit_defaults => join;

}

#

body edit_defaults join

Chapter 7: Bundles of agent 229

{

recognize_join => "true";

}

Notes:

If set to true, this option allows Cfengine to process line based files with backslash
continuation. The default is to not process continuation backslashes.

Back slash lines will only be concatenated if the file requires editing, and will not be
restored. Restoration of the backslashes is not possible in a meaningful and convergent
fashion.

7.4.10 file_select (compound body)

Type: (ext body)

‘leaf_name’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of regexes that match an acceptable name

Example:

body file_select example

{

leaf_name => { "S[0-9]+[a-zA-Z]+", "K[0-9]+[a-zA-Z]+" };

file_result => "leaf_name";

}

Notes:

This pattern matches only the node name of the file, not its path.

‘path_name’
Type: slist

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: List of pathnames to match acceptable target

Example:

body file_select example

{

leaf_name => { "prog.pid", "prog.log" };

230 Cfengine reference manual

path_name => { "/etc/.*", "/var/run/.*" };

file_result => "leaf_name.path_name"

}

Notes:

Path name and leaf name can be conveniently tested for separately by use of appropriate
regular expressions.

‘search_mode’
Type: slist

Allowed input range: [0-7augorwxst,+-]+

Synopsis: A list of mode masks for acceptable file permissions

Example:

###

#

Searching for permissions

#

###

body common control

{

any::

bundlesequence => {

"testbundle"

};

version => "1.2.3";

}

##

bundle agent testbundle

{

files:

"/home/mark/tmp/testcopy"

file_select => by_modes,

Chapter 7: Bundles of agent 231

transformer => "/bin/echo DETECTED $(this.promiser)",

depth_search => recurse("inf");

}

##

body file_select by_modes

{

search_mode => { "711" , "666" };

file_result => "mode";

}

##

body depth_search recurse(d)

{

depth => "$(d)";

}

Notes:

The mode may be specified in symbolic or numerical form with ‘+’ and ‘-’ constraints.
Note that concatenation ug+s implies u OR g, and u+g,u+s implies u AND g.

‘search_size’
Type: irange [int,int]

Allowed input range: 0,inf

Synopsis: Integer range of file sizes

Example:

body file_select example

{

search_size => irange("0","20k");

file_result => "size";

}

Notes:

232 Cfengine reference manual

‘search_owners’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of acceptable user names or ids for the file, or regexes to match

Example:

body file_select example

{

search_owners => { "mark", "jeang", "student_.*" };

file_result => "owner";

}

Notes:

A list of regular expressions any of which must match the entire userid, (that is, it is
anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).
Note that windows does not have user ids, only names.

‘search_groups’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of acceptable group names or ids for the file, or regexes to match

Example:

body file_select example

{

search_groups => { "users", "special_.*" };

file_result => "group";

}

Notes:

A list of regular expressions, any of which which must match the entire group, (that
is, it is anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions],
page 36). Note that on windows, files do not have group associations.

‘search_bsdflags’
Type: slist

Allowed input range: [+-]*[(arch|archived|nodump|opaque|sappnd|sappend|schg|schange|simmutable|sunlnk|sunlink|uappnd|uappend|uchg|uchange|uimmutable|uunlnk|uunlink)]+

Chapter 7: Bundles of agent 233

Synopsis: String of flags for bsd file system flags expected set

Example:

body file_select xyz

{

search_bsdflags => "archived|dump";

file_result => "bsdflags";

}

Notes:

Extra BSD file system flags (these have no effect on non-BSD versions of cfengine).
See the manual page for chflags for more details.

‘ctime’ Type: irange [int,int]

Allowed input range: 0,2147483647

Synopsis: Range of change times (ctime) for acceptable files

Example:

body files_select example

{

ctime => irange(ago(1,0,0,0,0,0),now);

file_result => "ctime";

}

Notes:

The file’s change time refers to both modification of content and attributes such as
permissions. On windows, ctime refers to creation time.

‘mtime’ Type: irange [int,int]

Allowed input range: 0,2147483647

Synopsis: Range of modification times (mtime) for acceptable files

Example:

body files_select example

{

234 Cfengine reference manual

Files modified more than one year ago (i.e., not in mtime range)

mtime => irange(ago(1,0,0,0,0,0),now);

file_result => "!mtime";

}

Notes:

The file’s modification time refers to both modification of content but not other at-
tributes such as permissions.

‘atime’ Type: irange [int,int]

Allowed input range: 0,2147483647

Synopsis: Range of access times (atime) for acceptable files

Example:

body file_select used_recently

{

files accessed within the last hour

atime => irange(ago(0,0,0,1,0,0),now);

file_result => "atime";

}

body file_select not_used_much

{

files not accessed since 00:00 1st Jan 2000 (in the local timezime)

atime => irange(on(2000,1,1,0,0,0),now);

file_result => "!atime";

}

Notes:

A range of times during which a file was accessed can be specified in a file_select

body. (Like file filters in cfengine 2.)

‘exec_regex’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Matches file if this regular expression matches any full line returned by the
command

Chapter 7: Bundles of agent 235

Example:

body file_select example

{

exec_regex => "SPECIAL_LINE: .*";

exec_program => "/path/test_program $(this.promiser)";

file_result => "exec_program.exec_regex";

}

Notes:

The regular expression must be used in conjunction with the exec_program test. In
this way the program must both return exit status 0 and its output must match the
regular expression. The entire output must be matched (that is, as if the regex is
anchored, See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).

‘exec_program’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Execute this command on each file and match if the exit status is zero

Example:

body file_select example

{

exec_program => "/path/test_program $(this.promiser)";

file_result => "exec_program";

}

Notes:

This is part of the customizable file search criteria. If the user-defined program returns
exit status 0, the file is considered matched.

‘file_types’
Type: (option list)

Allowed input range:

plain

reg

symlink

236 Cfengine reference manual

dir

socket

fifo

door

char

block

Synopsis: List of acceptable file types from menu choices

Example:

body file_select filter

{

file_types => { "plain","symlink" };

file_result => "file_types";

}

Notes:

File types vary in details between operating systems. The main POSIX types are
provided here as menu options.

‘issymlinkto’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of regular expressions to match file objects

Example:

body file_select example

{

issymlinkto => { "/etc/[^/]*", "/etc/init\.d/[a-z0-9]*" };

}

Notes:

A list of regular expressions. If the file is a symbolic link which points to files matched
by one of these expressions, the file will be selected. As windows does not support
symbolic links, this attribute is not applicable there.

‘file_result’
Type: string

Chapter 7: Bundles of agent 237

Allowed input range: [(leaf_name|path_name|file_types|mode|size|owner|group|atime|ctime|mtime|issymlinkto|exec_
regex|exec_program|bsdflags)[|&!.]*]*

Synopsis: Logical expression combining classes defined by file search criteria

Example:

body file_select year_or_less

{

mtime => irange(ago(1,0,0,0,0,0),now);

file_result => "mtime";

}

body file_select my_pdf_files_morethan1dayold

{

mtime => irange(ago(0,0,1,0,0,0),now);

leaf_name => { ".*\.pdf" , ".*\.fdf" };

search_owners => { "mark" };

file_result => "owner.leaf_name.!mtime";

}

Notes:

Sets the criteria for file selection outcome during file searches. The syntax is the same
as for a class expression, since the file selection is a classification of the file-search in the
same way that system classes are a classification of the abstract host-search (that is,
you may specify a boolean expression involving any of the file-matching components).
In this way, you may specify arbitrarily complex file-matching parameters, such as
what is shown above, "is owned by mark, has the extension ’.pdf’ or ’.fdf’, and whose
modification time is not between 1 day ago and now (that is, it is older than 1 day)".

Items in the boolean expression in file_result must be from the following list:

• leaf name

• path name

• file types

• mode

• size

• owner

• group

• atime

• ctime

238 Cfengine reference manual

• mtime

• issymlinkto

• exec regex

• exec program

• bsdflags

7.4.11 link_from (compound body)

Type: (ext body)

‘copy_patterns’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: A set of patterns that should be copied ansd synchronized instead of linked

Example:

body link_from example

{

copy_patterns => { "special_node1", "/path/special_node2" };

}

Notes:

During the linking of files, it is sometimes useful to buffer changes with an actual copy,
especially if the link is to an emphemeral file system. This list of patterns matches
files that arise during a linking policy. A positive match means that the file should be
copied and updated by modification time.

‘link_children’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false whether to link all directory’s children to source originals

Default value: false

Example:

Chapter 7: Bundles of agent 239

body link_from example

{

link_children => "true";

}

Notes:

If the promiser is a directory, instead of copying the children, link them to the source.

‘link_type’
Type: (menu option)

Allowed input range:

symlink

hardlink

relative

absolute

none

Synopsis: The type of link used to alias the file

Default value: symlink

Example:

body link_from example

{

link_type => "hard";

}

Notes:

What kind of link should be used to link files. Users are advised to be wary of ‘hard
links’ (see Unix manual pages for the ‘ln’ command). The behaviour of non-symbolic
links is often precarious and unpredictable. However, hard links are the only supported
type by windows.

Note that ‘symlink’ is synonymous with ‘absolute’ links, which are different from
‘relative’ links. Although all of these are symbolic links, the nomenclature here is
defined such that ‘symlink’ and ‘absolute’ are equivalent . When verifying a link,
choosing ‘relative’ means that the link must be relative to the source, so relative and
absolute links are mutually exclusive.

‘source’ Type: string

Allowed input range: (arbitrary string)

240 Cfengine reference manual

Synopsis: The source file to which the link should point

Example:

body copy_from example

{

source => "/path/to/source";

}

or

body link_from example

{

source => "/path/to/source";

}

Notes:

For remote copies this refers to the file name on the remote server.

‘when_linking_children’
Type: (menu option)

Allowed input range:

override_file

if_no_such_file

Synopsis: Policy for overriding existing files when linking directories of children

Example:

body link_from example

{

when_linking_children => "if_no_such_file";

}

Notes:

The options refer to what happens if the directory exists already and is already partially
populated with files. If the directory being copied from contains a file with the same
name as that of a link to be created, we must decide whether to override the existing
destination object with a link or simply omit the automatic linkage for files that already

Chapter 7: Bundles of agent 241

exist. The latter case can be used to make a copy of one directory with certain fields
overridden.

‘when_no_source’
Type: (menu option)

Allowed input range:

force

delete

nop

Synopsis: Behaviour when the source file to link to does not exist

Default value: nop

Example:

body link_from example

{

when_no_source => "force";

}

Notes:

If we try to create a link to a file that does not exist a link, how should cfengine
respond? The options are to force the creation to a file that does not (yet) exist, delete
any existing link, or do nothing.

7.4.12 move_obstructions

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false whether to move obstructions to file-object creation
Example:

files:

242 Cfengine reference manual

"/tmp/testcopy"

copy_from => mycopy("/tmp/source"),

move_obstructions => "true",

depth_search => recurse("inf");

Notes:

If we have promised to make file ‘X’ a link, but it already exists as a file, or vice-versa, or if a
file is blocking the creation of a directory etc, then normally cfengine will report an error. If this is
set, existing objects will be moved aside to allow the system to heal without intervention. Files and
directories are saved/renamed, but symbolic links are deleted.

Note that symbolic links for directories are treated as directories, not links. This behaviour
can be discussed, but the aim is to err on the side of caution. Some operating systems (Solaris) use
symbolic links in path names. Copying to a directory could then result in renaming of the important
link, if the behaviour were different.

7.4.13 pathtype

Type: (menu option)
Allowed input range:

literal

regex

guess

Synopsis: Menu option for interpreting promiser file object
Example:

files:

"/var/lib\d"

pathtype => "guess", # best guess (default)

perms => system;

"/var/lib\d"

pathtype => "regex",# force regex interpretation

perms => system;

"/var/.*/lib"

pathtype => "literal", # force literal interpretation

perms => system;

Chapter 7: Bundles of agent 243

Notes:

By default, Cfengine makes an educated guess as to whether the promise pathname involves a
regular expression or not. This guesswork is needed due to cross-platform differences in filename
interpretation.

If Cfengine guesses (or is told) that the pathname uses a regular expression pattern, it will
undertake a file search to find possible matches. This can consume significant resources, and so the
‘guess’ option will always try to optimize this. Guesswork is, however, imperfect, so you have the
option to declare your intention.

If the keyword literal is invoked, a path will be treated as a literal string regardless of what
characters is contains. If it is declared ‘regex’, it will be treated as a pattern to match.

Note that Cfengine splits the promiser up into path links before matching, so that each link in
the path chain is matched separately. Thus it it meaningless to have a ‘/’ in a regular expression,
as the comparison will never see this character.

In the examples above, at least one case implies an iteration over all files/directories matching
the regular expression, while the last case means a single literal object with a name composed of
dots and stars.

Furthermore, on Windows paths using regex must use the forward slash (/) as path separator,
since the backward slash has a special meaning in a regular expression. Literal paths may also use
backslash (\) as a path separator; See Section 2.10.3 [Regular expressions in paths], page 34, for
more information.

7.4.14 perms (compound body)

Type: (ext body)

‘bsdflags’ Type: slist

Allowed input range: [+-]*[(arch|archived|nodump|opaque|sappnd|sappend|schg|schange|simmutable|sunlnk|sunlink|uappnd|uappend|uchg|uchange|uimmutable|uunlnk|uunlink)]+

Synopsis: List of menu options for bsd file system flags to set

Example:

body perms example

{

bsdflags => { "uappnd","uchg","uunlnk","nodump",

"opaque","sappnd","schg","sunlnk" };

}

Notes:

The BSD Unices (FreeBSD, OpenBSD, NetBSD) and MacOSX have additional filesys-
tem flags which can be set. Refer to the BSD chflags documentation for this.

‘groups’ Type: slist

244 Cfengine reference manual

Allowed input range: [a-zA-Z0-9_$.-]+

Synopsis: List of acceptable groups of group ids, first is change target

Example:

body perms example

{

groups => { "users", "administrators" };

}

Notes:

The first named group is the list is the defaul that will be configured if the file does
not match an element of the list. The reserved word ‘none’ may be used to match files
that are not owned by a registered group. On windows, files do not have file groups
associated with them and thus this attribute is ignored.

In Cfengine Nova, ACLs may be used in place for this.

‘mode’ Type: string

Allowed input range: [0-7augorwxst,+-]+

Synopsis: File permissions (like posix chmod)

Example:

body perms example

{

mode => "a+rx,o+w";

}

Notes:

The mode string may be symbolic or numerical, like chmod. This is ignored on windows,
as the permission model uses ACLs. ACLs are supported by Cfengine Nova.

‘owners’ Type: slist

Allowed input range: [a-zA-Z0-9_$.-]+

Synopsis: List of acceptable owners or user ids, first is change target

Example:

Chapter 7: Bundles of agent 245

body perms example

{

owners => { "mark", "wwwrun", "jeang" };

}

Notes:

The first user is the reference value that Cfengine will set the file to if none of the
list items matches the true state of the file. The reserved word ‘none’ may be used to
match files that are not owned by a registered user.

On windows, users can only take ownership of files, never give it. Thus, the first user
in the list should be the user running the Cfengine process (usually “Administrator”).
Additionally, some groups may be owners on windows (such as the “Administrators”
group).

‘rxdirs’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false add execute flag for directories if read flag is set

Example:

body perms rxdirs

{

rxdirs => "false";

}

Notes:

Default behaviour is to set the ‘x’ flag on directories automatically if the ‘r’ flag is
specified when specifying multiple files in a single promise. This is ignored on windows,
as the permission model uses ACLs.

7.4.15 rename (compound body)

Type: (ext body)

‘disable’ Type: (menu option)

246 Cfengine reference manual

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false automatically rename and remove permissions

Default value: false

Example:

body rename example

{

disable => "true";

disable_suffix => ".nuked";

}

Notes:

Disabling a file means making is impotent in the context in which it has an effect. For
executables this means preventing execution, for an information file it means making
the file unreadable.

‘disable_mode’
Type: string

Allowed input range: [0-7augorwxst,+-]+

Synopsis: The permissions to set when a file is disabled

Example:

body rename example

{

disable_mode => "0600";

}

Notes:

To disable an executable it is not enough to rename it, you should also remove the
executable flag.

Chapter 7: Bundles of agent 247

‘disable_suffix’
Type: string

Allowed input range: (arbitrary string)

Synopsis: The suffix to add to files when disabling (.cfdisabled)

Example:

body rename example

{

disable => "true";

disable_suffix => ".nuked";

}

Notes:

To make disabled files in a particular manner, use this string suffix. The default value
is ‘.cf-disabled’.

‘newname’ Type: string

Allowed input range: (arbitrary string)

Synopsis: The desired name for the current file

Example:

body rename example(s)

{

newname => "$(s)";

}

Notes:

‘rotate’ Type: int

Allowed input range: 0,99

Synopsis: Maximum number of file rotations to keep

Example:

body rename example

{

248 Cfengine reference manual

rotate => "4";

}

Notes:

Used for log rotation. If the file is named ‘foo’ and the ‘rotate’ attribute is set to ‘4’,
as above, then initially ‘foo’ is copied to ‘foo.1’ and the old file ‘foo’ is zeroed out
(that is, the inode of the original logfile does not change, but the original logfile will
be empty after the rotation is complete).

The next time the promise is executed, ‘foo.1’ will be renamed ‘foo.2’, ‘foo’ is again
copied to ‘foo.1’ and the old file ‘foo’ is again zeroed out.

Each time the promise is executed (and typically, the promise would be executed as
guarded by time-based or file-size-based classes), the files are copied/zeroed or rotated
as above until there are ‘rotate’ numbered files plus the one "main" file. In the
example above, the file ‘foo.3’ will be renamed ‘foo.4’, but the old version of the file
‘foo.4’ will be deleted (that is, it "falls off the end" of the rotation).

7.4.16 repository

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: Name of a repository for versioning
Example:

files:

"/path/file"

copy_from => source,

repository => "/var/cfengine/repository";

Notes:

A local repository for this object, overrides the default.

7.4.17 touch

Type: (menu option)
Allowed input range:

true

false

yes

Chapter 7: Bundles of agent 249

no

on

off

Synopsis: true/false whether to touch time stamps on file

Example:

files:

"/path/file"

touch => "true";

Notes:

7.4.18 transformer

Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command (with full path) used to transform current file (no shell wrapper used)

Example:

"/home/mark/tmp/testcopy"

file_select => pdf_files,

transformer => "/usr/bin/gzip $(this.promiser)",

depth_search => recurse("inf");

###################

classes:

"do_update" or => isnewerthan("/etc/postfix/alias",

"/etc/postfix/alias.cdb") };

files:

"/etc/postfix/alias.cdb"

create => true, # Must have this!

transformer => "/usr/sbin/postalias /etc/postfix/alias",

ifvarclass => "do_update";

}

250 Cfengine reference manual

Notes:

A command to execute, usually for the promised file to transform it to something else (but
possibly to create the promised file based on a different origin file). The examples above show both
types of promises.

In the first example, the promise is made on the file that we wish to transform. If the promised
file exists, the transformer will change the file to a compressed version (and the next time Cfengine
runs, the promised file will no longer exist, because it now has the ‘.gz’ extension).

In the second example, the promise is made on the file resulting from the transformation (and
the promise is conditional on the original file being newer than the result file). In this case, we must
specify ‘create => true’. If we do not, then if the promised file is removed, the transformer will
not be executed.

Note also that if you use the $(this.promiser) variable or other variable in this command, and
the file object contains spaces you should quote the variable, e.g.

transformer => "/usr/bin/gzip \"$(this.promiser)\"",

Note also that the transformer does not actually need to change the file. You can, for example,
simply report on the existence of files with

transformer => "/bin/echo I found a file named $(this.promiser)",

Be aware that stdout and stderr are redirected by Cfengine, and will not appear in any output
unless you run cf-agent with the ‘-v’ switch (or enable verbose in an outputs promise).

Finally, you should note that the command is not run in a shell - which means that you cannot
perform file redirection or create pipelines.

7.5 * promises in ‘edit_line’

Most promise bodies belong to one and only one type of promise. The generic ‘*’ promises bodies
can be added to any promise type in cf-agent, hence the star which means (for this documentation
only) ‘any’.

The body attributes described below can thus be added to any promise rule in the agent. These
promises address matters of a completely general nature – how cfengine behaves as it attempts to
keep a promise, comments about the promises etc.

files:

"/etc/passwd" -> "Security team"

perms => p("644"),

action => justcheck,

comment => "This was decided in internal procedures XYZ123";

Chapter 7: Bundles of agent 251

7.5.1 select_region (compound body)

Type: (ext body)

‘include_start_delimiter’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Whether to include the section delimiter

Default value: false

Example:

body select_region MySection(x)

{

select_start => "\[$(x)\]";

select_end => "\[.*\]";

include_start_delimiter => "true";

}

Notes:

In a sectioned file, the line that marks the opening of a section is not normally included
in the defined region (that is, it is recognized as a delimiter, but it is not included as
one of the lines available for editing). Setting this option to true makes it included.
e.g. in this example

[My section]

one

two

three

the section does not normally include the line ‘[My section]’. By setting include_

start_delimiter to ‘true’it would be possible for example, to delete the entire sec-
tion, including the section header. If however include_start_delimiter is ‘false’,
the contents of the section could be deleted, but the header would be unaffected by
any delete_lines promises. See the next section on include_start_delimiter for
further details.

252 Cfengine reference manual

History: This attribute was introduced in Cfengine version 3.0.5 (2010)

‘include_end_delimiter’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: Whether to include the section delimiter

Default value: false

Example:

body select_region BracketSection(x)

{

select_start => "$(x) \{";

select_end => "}";

include_end_delimiter => "true";

}

Notes:

In a sectioned file, the line that marks the end of a section is not normally included in
the defined region (that is, it is recognized as a delimiter, but it is not included as one
of the lines available for editing). Setting this option to true makes it included. e.g. in
this example

/var/log/mail.log {

monthly

missingok

notifempty

rotate 7

}

the section does not normally include the line containing ‘}’. By setting include_

end_delimiter to ‘true’it would be possible for example, to delete the entire section,
including the section trailer. If however include_end_delimiter is ‘false’, the con-
tents of the section could be deleted, but the header would be unaffected by any
delete_lines promises.

The use of include_start_delimiter and include_end_delimiter depend on the
type of sections you are dealing with, and what you want to do with them. Note that

Chapter 7: Bundles of agent 253

sections can be bounded at both the start and end (as in the example above) or just
at the start (as in the sample shown in include_start_delimiter).

History: This attribute was introduced in Cfengine version 3.0.5 (2010)

‘select_start’
Type: string

Allowed input range: .*

Synopsis: Regular expression matching start of edit region

Example:

body select_region example(x)

{

select_start => "\[$(x)\]";

select_end => "\[.*\]";

}

Notes:

See also select_end. These delimiters mark out the region of a file to be edited. In
the example, it is assumed that the file has section markers.

[section 1]

lines.

lines...

[section 2]

lines

etc..

The start marker includes the first matched line.

‘select_end’
Type: string

Allowed input range: .*

Synopsis: Regular expression matches end of edit region from start

Example:

body select_region example(x)

254 Cfengine reference manual

{

select_start => "\[$(x)\]";

select_end => "\[.*\]";

}

Notes:

See also select_start. These delimiters mark out the region of a file to be edited. In
the example, it is assumed that the file has section markes

[section 1]

lines.

lines...

[section 2]

lines

etc..

If you want to match from a starting location to the end of the file (even if there
are other lines matching select_start intervening), then just omit the select_end

promise and the selected region will run to the end of the file.

7.6 delete_lines promises in ‘edit_line’

This promise assures that certain lines matching regular expression patterns exactly will not be
present in a text file. If the lines are found, the default promise is to remove them (this behavior may
be modified with further pattern matching in delete_select and/or changed with not_matching).

bundle edit_line example

{

delete_lines:

"olduser:.*";

}

7.6.1 delete_select (compound body)

Type: (ext body)

Chapter 7: Bundles of agent 255

‘delete_if_startwith_from_list’
Type: slist

Allowed input range: .*

Synopsis: Delete line if it starts with a string in the list

Example:

body delete_select example(s)

{

delete_if_startwith_from_list => { @(s) };

}

Notes:

Delete lines from a file if they begin with the sub-strings listed. Note that this deter-
mination is made only on promised lines (that is, this attribute modifies the selection
criteria, it does not make the initial selection). Therefore, if the file contains the fol-
lowing lines:

start alpha igniter

start beta igniter

init alpha burner

init beta burner

stop beta igniter

stop alpha igniter

stop alpha burner

Then the following promise initially selects the four lines containing ‘alpha’, but is
moderated by the delete_select attribute. Thus, the promise will delete only the
first and third lines of the file:

bundle edit_line alpha

{

delete_lines:

".*alpha.*"

delete_select => starters;

}

body delete_select starters

{

delete_if_startwith_from_list => { "begin", "start", "init" };

}

‘delete_if_not_startwith_from_list’
Type: slist

Allowed input range: .*

256 Cfengine reference manual

Synopsis: Delete line if it DOES NOT start with a string in the list

Example:

body delete_select example(s)

{

delete_if_not_startwith_from_list => { @(s) };

}

Notes:

Delete lines from a file unless they start with the sub-strings in the list given. Note
that this determination is made only on promised lines (that is, this attribute modifies
the selection criteria, it does not make the initial selection).

‘delete_if_match_from_list’
Type: slist

Allowed input range: .*

Synopsis: Delete line if it fully matches a regex in the list

Example:

body delete_select example(s)

{

delete_if_match_from_list => { @(s) };

}

Notes:

Delete lines from a file if the lines completely match any of the regular expressions
listed (that is, the regular expression is anchored, See Section 2.10.4 [Anchored vs.
unanchored regular expressions], page 36).

Note that the “match” determination is made only on promised lines (that is, this
attribute modifies the selection criteria, it does not make the initial selection).

‘delete_if_not_match_from_list’
Type: slist

Allowed input range: .*

Synopsis: Delete line if it DOES NOT fully match a regex in the list

Example:

Chapter 7: Bundles of agent 257

body delete_select example(s)

{

delete_if_not_match_from_list => { @(s) };

}

Notes:

Delete lines from a file unless the lines completely match any of the regular expressions
listed (that is, the regular expressions are anchored, See Section 2.10.4 [Anchored vs.
unanchored regular expressions], page 36).

Note that the “match” determination is made only on promised lines (that is, this
attribute modifies the selection criteria, it does not make the initial selection).

‘delete_if_contains_from_list’
Type: slist

Allowed input range: .*

Synopsis: Delete line if a regex in the list match a line fragment

Example:

body delete_select example(s)

{

delete_if_contains_from_list => { @(s) };

}

Notes:

Delete lines from a file if they contain the sub-strings listed. Note that this determi-
nation is made only on promised lines (that is, this attribute modifies the selection
criteria, it does not make the initial selection).

‘delete_if_not_contains_from_list’
Type: slist

Allowed input range: .*

Synopsis: Delete line if a regex in the list DOES NOT match a line fragment

Example:

body delete_select discard(s)

{

258 Cfengine reference manual

delete_if_not_contains_from_list => { "substring1", "substring2" };

}

Notes:

Delete lines from the file which do not contain the sub-strings listed. Note that this
determination is made only on promised lines (that is, this attribute modifies the
selection criteria, it does not make the initial selection).

7.6.2 not_matching

Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Default value: false

Synopsis: true/false negate match criterion

Example:

delete_lines:

edit /etc/passwd - account names that are not "mark" or "root"

"(mark|root):.*" not_matching => "true";

Notes:

The negation of an expression (for convenience).

7.7 insert_lines promises in ‘edit_line’

This promise is part of the line-editing model. It inserts lines into the file at a specified location.
The location is determined by body-attributes. The promise object referred to can be a literal line
of a file-reference from which to read lines.

Chapter 7: Bundles of agent 259

� �
insert_lines:

"literal line or file reference"

location => location_body,

...;
 	

body common control

{

any::

bundlesequence => {

example

};

}

###

bundle agent example

{

files:

"/var/spool/cron/crontabs/root"

edit_line => addline;

}

###

For the library

###

bundle edit_line addline

{

insert_lines:

"0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/cfengine/bin/cf-execd -F";

}

260 Cfengine reference manual

By parameterizing the editing bundle, one can make generic and reusable editing bundles.

Note, when inserting multiple lines anchored to a particular place in a file, be careful with your
intuition. If your intention is to insert a set of lines in a given order after a marker, then the following
is incorrect:

bundle edit_lines x

{

insert_lines:

"line one" location => myloc;

"line two" location => myloc;

}

body location myloc

{

select_line_matching => "# Right here.*";

before_after => "after";

}

This will reverse the order of the lines and will not converge, since the anchoring after the marker
applies independently for each new line. This is not a bug, but an error of logic.

What was probably intended was to add multiple ordered lines after the marker, which should
be a single correlated promise.

bundle edit_lines x

{

insert_lines:

"line one$(const.n)line two" location => myloc;

}

Or:

bundle edit_lines x

{

insert_lines:

"line one

line two" location => myloc;

}

Chapter 7: Bundles of agent 261

7.7.1 expand_scalars

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: Expand any unexpanded variables
Example:

body common control

{

bundlesequence => { "testbundle" };

}

##

bundle agent testbundle

{

files:

"/home/mark/tmp/file_based_on_template"

create => "true",

edit_line => ExpandMeFrom("/tmp/source_template");

}

##

bundle edit_line ExpandMeFrom(template)

{

insert_lines:

"$(template)"

insert_type => "file",

262 Cfengine reference manual

expand_scalars => "true";

}

Notes:

A way of incorporating templates with variable expansion into file operations. Variables should
be named and scoped appropriately for the bundle in which this promise is made. i.e. you should
qualify the variables with the bundle in which they are defined:
$(bundle.variable)

$(sys.hostname)

$(mon.www_in)

In cfengine 2 editfiles this was called ‘ExpandVariables’.

7.7.2 insert_type

Type: (menu option)
Allowed input range:

literal

string

file

preserve_block

Default value: literal
Synopsis: Type of object the promiser string refers to
Example:

bundle edit_line lynryd_skynyrd

{

vars:

"keepers" slist => { "Won’t you give me", "Gimme three steps" };

insert_lines:

"And you’ll never see me no more"

insert_type => "literal"; # the default

"/song/lyrics"

insert_type => "file", # read selected lines from /song/lyrics

insert_select => keep("@{keepers}");

}

body insert_select keep(s)

{

insert_if_startwith_from_list => { "@(s)" };

}

Chapter 7: Bundles of agent 263

This will ensure that the following lines are inserted into the promised file:
And you’ll never see me no more

Gimme three steps, Mister

Gimme three steps towards the door

Gimme three steps

Notes:

The default is to treat the promiser as a literal string of convergent lines (the values literal

and string are synonymonous).
The value file is used to tell cfengine that the string is non-literal and should be interpreted as

a filename from which to import lines, see Section 7.7.3 [insert select], page 263
The default behaviour assumes that multi-line entries are not ordered specifically, and should

be treated as a collection of lines of text and not as a single unbroken object. If the option
‘preserve_block’ is used, then Cfengine will not break up multiple lines into individual, non-ordered
objects, so that the block of text will be preserved. However, due to convergence constraints, if all
the lines exist at the start, Cfengine will not see the need to add any new text. If any one of the
lines is missing from the block, then the whole block will be added as a single entity. (This is the
only way to achieve convergent behaviour in block editing.)

7.7.3 insert_select (compound body)

Type: (ext body)

‘insert_if_startwith_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if it starts with a string in the list

Example:

body insert_select example

{

insert_if_startwith_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The list contains literal strings to search for in the secondary file (the file being read via
the insert_type attribute, not the main file being edited). If a string with matching
starting characters is found, then that line from the secondary file will be inserted at
the present location in the primary file.

insert_if_startswith_from_list is ignored unless insert_type is file (see Sec-
tion 7.7.2 [insert type in insert lines], page 262), or the promiser is a multi-line block.

264 Cfengine reference manual

‘insert_if_not_startwith_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if it DOES NOT start with a string in the list

Example:

body insert_select example

{

insert_if_not_startwith_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The complement of insert_if_startwith_from_list. If the start of a line does not
match one of the strings, that line is inserted into the file being edited.

insert_if_not_startswith_from_list is ignored unless insert_type is file (see
Section 7.7.2 [insert type in insert lines], page 262), or the promiser is a multi-line
block.

‘insert_if_match_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if it fully matches a regex in the list

Example:

body insert_select example

{

insert_if_match_from_list => { ".*find_.*_1.*", ".*find_.*_2.*" };

}

Notes:

The list contains literal strings to search for in the secondary file (the file being read
via the insert_type attribute, not the main file being edited). If the regex matches
a complete line of the file, that line from the secondary file will be inserted at the
present location in the primary file. That is, the regex’s in the list are anchored See
Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).

insert_if_match_from_list is ignored unless insert_type is file (see Section 7.7.2
[insert type in insert lines], page 262), or the promiser is a multi-line block.

Chapter 7: Bundles of agent 265

‘insert_if_not_match_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if it DOES NOT fully match a regex in the list

Example:

body insert_select example

{

insert_if_not_match_from_list => { ".*find_.*_1.*", ".*find_.*_2.*" };

}

Notes:

The complement of insert_if_match_from_list. If the line does not match a line in
the secondary file, it is inserted into the file being edited.

insert_if_not_match_from_list is ignored unless insert_type is file (see Sec-
tion 7.7.2 [insert type in insert lines], page 262), or the promiser is a multi-line block.

‘insert_if_contains_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if a regex in the list match a line fragment

Example:

body insert_select example

{

insert_if_contains_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The list contains literal strings to search for in the secondary file (the file being read
via the insert_type attribute, not the main file being edited). If the string is found
in a line of the file, that line from the secondary file will be inserted at the present
location in the primary file.

insert_if_contains_from_list is ignored unless insert_type is file (see
Section 7.7.2 [insert type in insert lines], page 262), or the promiser is a multi-line
block.

266 Cfengine reference manual

‘insert_if_not_contains_from_list’
Type: slist

Allowed input range: .*

Synopsis: Insert line if a regex in the list DOES NOT match a line fragment

Example:

body insert_select example

{

insert_if_not_contains_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The complement of insert_if_contains_from_list. If the line is not found in the
secondary file, it is inserted into the file being edited.

insert_if_not_contains_from_list is ignored unless insert_type is file (see Sec-
tion 7.7.2 [insert type in insert lines], page 262), or the promiser is a multi-line block.

7.7.4 location (compound body)

Type: (ext body)

‘before_after’
Type: (menu option)

Allowed input range:

before

after

Synopsis: Menu option, point cursor before of after matched line

Default value: after

Example:

body location append

{

#...

before_after => "before";

}

Chapter 7: Bundles of agent 267

Notes:

Determines whether an edit will occur before or after the currently matched line.

‘first_last’
Type: (menu option)

Allowed input range:

first

last

Synopsis: Menu option, choose first or last occurrence of match in file

Default value: last

Example:

body location example

{

first_last => "last";

}

Notes:

In multiple matches, decide whether the first or last occurrence of the matching pattern
in the case affected by the change. In principle this could be generalized to more cases
but this seems like a fragile quality to evaluate, and only these two cases are deemed
of reproducible significance.

‘select_line_matching’
Type: string

Allowed input range: .*

Synopsis: Regular expression for matching file line location

Example:

body match_value example

{

select_line_matching => "Expression match.* whole line";

}

Notes:

268 Cfengine reference manual

The expression must match a whole line, not a fragment within a line (that is, it is
anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).

This attribute is mutually exclusive of select_line_number.

7.7.5 whitespace_policy

Type: (option list)
Allowed input range:

ignore_leading

ignore_trailing

ignore_embedded

ignore_embedded

exact_match

Synopsis: Criteria for matching and recognizing existing lines
Example:

bundle edit_line Insert(service, filename)

{

insert_lines:

"$(service).* $(filename)"

whitespace_policy => { "ignore_trailing", "ignore_embedded" };

}

Notes:

The white space matching policy applies only to insert_lines, as a convenience. It works by
rewriting the insert string as a regular expression when matching lines (that is, when determining
if the line is already in the file), but leaving the string as specified when actually inserting it.

Simply put, the ‘does this line exist’ test will be changed to a regexp match. The line being
tested will optionally have "\s*" prepended or appended if ignore_leading or ignore_trailing

is specified, and if ignore_imbedded is used then all embedded whitespaces are replaced with ‘\s+’.
You may specify more than one whitespace_policy – they are additive.

Any regular expression meta-characters that exist in your input line will be escaped, so that you
can still, for example, safely insert a line like ‘"authpriv.* /var/log/something"’ into your syslog
config file.

History: This attribute was introduced in Cfengine version 3.0.5 (2010)
Default value:

exact_match (so unless you use this new attribute, your insert_line promises should behave
as before.

Chapter 7: Bundles of agent 269

7.8 field_edits promises in ‘edit_line’

Certain types of text file (e.g. the ‘passwd’ and ‘group’ files in Unix) are tabular in nature, with
field separators (e.g. ‘:’ or ‘,’). This promise assumes a parameterizable model for editing the fields
of such files, using a regular expression to separate major fields and a character to separate sub-
fields. First you match the line with a regular expression. The regular expression must match the
entire line (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions],
page 36). Then a field_edits body describes the separators for fields and one level of sub-fields,
along with policies for editing these fields, ordering the items within them etc.� �
field_edits:

"regex matching line"

edit_field => body;
 	

bundle agent example

{

vars:

"userset" slist => { "one-x", "two-x", "three-x" };

files:

"/tmp/passwd"

create => "true",

edit_line => SetUserParam("mark","6","/set/this/shell");

"/tmp/group"

create => "true",

edit_line => AppendUserParam("root","4","@(userset)");

}

##

bundle edit_line SetUserParam(user,field,val)

{

field_edits:

270 Cfengine reference manual

"$(user):.*"

Set field of the file to parameter

edit_field => col(":","$(field)","$(val)","set");

}

##

bundle edit_line AppendUserParam(user,field,allusers)

{

vars:

"val" slist => { @(allusers) };

field_edits:

"$(user):.*"

Set field of the file to parameter

edit_field => col(":","$(field)","$(val)","alphanum");

}

##

Bodies

##

body edit_field col(split,col,newval,method)

{

field_separator => "$(split)";

select_field => "$(col)";

value_separator => ",";

field_value => "$(newval)";

field_operation => "$(method)";

extend_fields => "true";

}

Field editing allows us to edit tabular files in a unique way, adding and removing data from
addressable fields. The ‘passwd’ and ‘group’ files are classic examples of tabular files, but there are
many ways to use this feature, e.g. edit a string

Chapter 7: Bundles of agent 271

VARIABLE="one two three"

View this line as a tabular line separated by ‘"’ and with sub-separator given by the space.

7.8.1 edit_field (compound body)

Type: (ext body)

‘allow_blank_fields’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false allow blank fields in a line (do not purge)

Default value: false

Example:

body edit_field example

{

...

allow_blank_fields => "true";

}

Notes:

When editing a file using the field or column model, blank fields, especially at the start
and end are generally discarded. If this is set to true, cfengine will retain the blank
fields and print the appropriate number of field separators.

‘extend_fields’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

272 Cfengine reference manual

Synopsis: true/false add new fields at end of line if necessary to complete edit

Default value: false

Example:

body edit_field example

{

extend_fields => "true";

}

Notes:

If a user specifies a field that does not exist, because there are not so many fields, this
allows the number of fields to be extended. Without this setting, cfengine will issue an
error if a non-existent field is referenced. Blank fields in a tabular file can be eliminated
or kept depending in this setting. If in doubt, set this to true.

‘field_operation’
Type: (menu option)

Allowed input range:

prepend

append

alphanum

delete

set

Synopsis: Menu option policy for editing subfields

Default value: none

Example:

body edit_field example

{

field_operation => "append";

}

Notes:

The method by which to edit a field in multi-field/column editing of tabular files. The
methods mean:

Chapter 7: Bundles of agent 273

‘append’ - append the specified value to the end of the field/column, separating (po-
tentially) multiple values with ‘value_separator’

‘prepend’ - prepend the specified value at the beginning of the field/column, separating
(potentially) multiple values with ‘value_separator’

‘alphanum’ - insert the specified value into the field/column, keeping all the values
(separated by ‘value_separator’) in alphanumerically sorted order)

‘set’ - replace the entire field/column with the specified value

‘delete’ - delete the specified value (if present) in the specified field/column

Default value:

append

‘field_separator’
Type: string

Allowed input range: .*

Synopsis: The regular expression used to separate fields in a line

Default value: none

Example:

body edit_field example

{

field_separator => ":";

}

Notes:

Most tabular files are separated by simple characters, but by allowing a general regular
expression one can make creative use of this model to edit all kinds of line-based text
files.

‘field_value’
Type: string

Allowed input range: .*

Synopsis: Set field value to a fixed value

Example:

body edit_field example(s)

{

field_value => "$(s)";

274 Cfengine reference manual

}

Notes:

Set a field to a constant value, e.g. reset the value to a constant default, empty the
field, or set it fixed list.

‘select_field’
Type: int

Allowed input range: 0,99999999

Synopsis: Integer index of the field required 0..n (default starts from 1)

Example:

body field_edits example

{

select_field => "5";

}

Notes:

Numbering starts from 1 (not from 0).

‘start_fields_from_zero’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: If set, the default field numbering starts from 0

Example:

body edit_field col(split,col,newval,method)

{

field_separator => "$(split)";

select_field => "$(col)";

Chapter 7: Bundles of agent 275

value_separator => ",";

field_value => "$(newval)";

field_operation => "$(method)";

extend_fields => "true";

allow_blank_fields => "true";

start_fields_from_zero => "true";

}

Notes:

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

The numbering of fields is a matter for consistency and convention. Arrays are usually
thought to start with first index equal to zero (0), but the first column in a file would
normally be 1. By setting this option, you can tell Cfengine that the first column
should be understood as number 0 instead, for consistency with other array functions.

‘value_separator’
Type: string

Allowed input range: ^.$

Synopsis: Character separator for subfields inside the selected field

Default value: none

Example:

body field_edit example

{

value_separator => ",";

}

Notes:

For example, elements in the group file are separated by ‘:’, but the lists of users in
these fields are separated by ‘,’.

7.9 replace_patterns promises in ‘edit_line’

This promise refers to arbitrary text patterns in a file. The pattern is expressed as a regular
expression and must be compatible with the default model for regular expressions on your system.
The default model is PCRE (Perl Compatible Regular Expressions) if available.

276 Cfengine reference manual

� �
replace_patterns:

"search pattern"

replace_with => replace_body,

...;
 	

bundle edit_line upgrade_cfexecd

{

replace_patterns:

"cfexecd" replace_with => value("cf-execd");

}

##

body replace_with value(x)# defined in cfengine_stdlib.cf

{

replace_value => "$(x)";

occurrences => "all";

}

This is a straightforward search and replace function. Only the portion of the line that matches
the pattern in the promise will be replaced - the remainder of the line will not be affected. You can
also use PCRE lookbehind and lookahead patterns to restrict the lines upon which the pattern will
match.

NOTE: In replace_patterns promises, the regular expression may match a line fragment, that
is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36.

7.9.1 replace_with (compound body)

Type: (ext body)

‘occurrences’
Type: (menu option)

Allowed input range:

all

first

Synopsis: Menu option to replace all occurrences or just first (NB the latter is non-
convergent)

Default value: all

Chapter 7: Bundles of agent 277

Example:

body replace_with example

{

occurrences => "first"; # Warning! Using "first" is non-convergent

}

Notes:

A policy for string replacement.

Default value:
The default value is "all". Using "first" is generally unwise, as it is possibly non-
convergent (it will change a different matching string each time the promise is executed,
and may not "catch up" with whatever external action is altering the text the promise
applies to).

‘replace_value’
Type: string

Allowed input range: .*

Synopsis: Value used to replace regular expression matches in search

Example:

body replace_with example(s)

{

replace_value => "$(s)";

}

Notes:

7.10 interfaces promises in ‘agent’

Interfaces promises describe the configurable aspects relating to network interfaces. Most work-
stations and servers have only a single network interface, but routers and multi-homed hosts often
have multiple interfaces. Interface promises include attributes such as the IP address identity, as-
sumed netmask and routing policy in the case of multi-homed hosts. For virtual machines and hosts,
the list of interfaces can be quite large.

278 Cfengine reference manual

� �
interfaces:

"interface name"

tcp_ip => tcp_ip_body,

...;
 	
For future use.

For future use.

7.10.1 tcp_ip (compound body)

Type: (ext body)

‘ipv4_address’
Type: string

Allowed input range: [0-9.]+/[0-4]+

Synopsis: IPv4 address for the interface

Example:

body tcp_ip example

{

ipv4_address => "123.456.789.001";

}

Notes:

The address will be checked and if necessary set. Today few hosts will be managed in
this way: address management will be handled by other services like DHCP.

‘ipv4_netmask’
Type: string

Allowed input range: [0-9.]+/[0-4]+

Synopsis: Netmask for the interface

Example:

body tcp_ip example

{

Chapter 7: Bundles of agent 279

ipv4_netmask => "255.255.254.0";

}

Notes:

In many cases the CIDR form of address will show the netmask as ‘/23’, but this offers
and ‘old style’ alternative.

‘ipv6_address’
Type: string

Allowed input range: [0-9a-fA-F:]+/[0-9]+

Synopsis: IPv6 address for the interface

Example:

"eth0"

ipv6_address => "2001:700:700:3:211:63ff:feeb:5d18/64";

Notes:

7.11 methods promises in ‘agent’

Methods are compound promises that refer to whole bundles of promises. Methods may be
parameterized. Methods promises are written in a form that is ready for future development. The
promiser object is an abstract identifier that refers to a collection (or pattern) of lower level objects
that are affected by the promise-bundle. Since the use of these identifiers is for the future, you can
simply use any string here for the time being.� �
methods:

"any"

usebundle => method_id("parameter",...);
 	
Methods are useful for encapsulating repeatedly used configuration issues and iterating over

parameters.

In cfengine 2 methods referred to separate sub-programs executed as separate processes. Methods
are now implemented as bundles that are run inline.

280 Cfengine reference manual

bundle agent example

{

vars:

"userlist" slist => { "mark", "jeang", "jonhenrik", "thomas", "eben" };

methods:

"any" usebundle => subtest("$(userlist)");

}

###

bundle agent subtest(user)

{

commands:

"/bin/echo Fix $(user)";

reports:

linux::

"Finished doing stuff for $(user)";

}

Methods offer powerful ways to encapsulate multiple issues pertaining to a set of parameters.

Because a method is just an encapsulation, there is a subtlety about how to interpret a suc-
cessful method invocation. Before version 3.1.0, a method was considered repaired if executed (like
commands), however this led to unnecessary logging of executions, even if not actual encapsulated
promise was kept. In version 3.1.0 this has been changed so that a method promise is considered
kept if the method is expanded. A method promise is thus never considered repaired.

Starting from version 3.1.0, methods may be specified using variables. Care should be exercised
when using this approach. In order to make the function call uniquely classified, Cfengine requires
the promiser to contain the variable name of the method if the variable is a list.

bundle agent default

{

Chapter 7: Bundles of agent 281

vars:

"m" slist => { "x", "y" };

"p" string => "myfunction";

methods:

"set of $(m)" usebundle => $(m) ("one");

"any" usebundle => $(p)("two");

}

7.11.1 usebundle

Type: (ext bundle) (Separate Bundle)

7.12 outputs promises in ‘agent’

Outputs promises are only available in commercial editions of Cfengine. They allow promises
to make meta-promises about their output levels. More simply, you can switch on ‘verbose’ or
‘inform’ level output to named promises, or whole bundles for debugging purposes.

If you use the ‘-I’ or ‘-v’ command line options, then Cfengine will generate informative or
verbose output for all the promises it is processing. This can be a daunting collection of data when
dealing with even a medium-sized set of promises.

Output promises enable you to selectively debug individually named promises (or bundles), thus
eliminating the need for scanning unrelated Cfengine output.

outputs:

"run_agent"; # Promise handle, verbose output

"web_server" # Bundle handle, inform output

output_level => "inform",

promiser_type => "bundle";

The default behaviour is to print verbose output for listed promise handles; See Section 6.4.4
[handle in *], page 164, for bundle names.

History This was introduced in Nova version 1.1.3. (2010)

7.12.1 output_level

Type: (menu option)
Allowed input range:

282 Cfengine reference manual

verbose

debug

inform

Default value: verbose
Synopsis: Output level to observe for the named promise or bundle (meta-promise)
Example:

commands:

"/etc/init.d/agent start"

handle => "run_agent",

ifvarclass => "need_to_run_agent";

outputs:

"run_agent"

output_level => "inform";

Notes:

With no attribute, verbose output is assumed.

7.12.2 promiser_type

Type: (menu option)
Allowed input range:

promise

bundle

Default value: promise
Synopsis: Output level to observe for the named promise or bundle (meta-promise)
Example:

outputs:

"web_server"

promiser_type => "bundle";

Chapter 7: Bundles of agent 283

Notes:

Without this attribute, Cfengine assumes a list of promises to report on (because there may be
a promise for a thing that has the same name as a bundle, you must explicitly specify when you
want to report on a bundle of promises).

7.13 packages promises in ‘agent’

� �
vars:

"match_package" slist => {

"apache2",

"apache2-mod_php5",

"apache2-prefork",

"php5"

};

packages:

"$(match_package)"

package_policy => "add",

package_method => yum;

 	
Software packaging is a core paradigm in operating system release management today, and

cfengine supports a generic approach to integration with native operating support for packaging.
Package promises allow cfengine to make promises the state of software packages conditionally,
given the assumption that a native package manager will perform the actual manipulations. Since
no agent can make unconditional promises about another, this is the best that can be achieved.

Packages are treated as black-boxes with three labels:

• A package name.

• A version string.

• An architecture name.

Package managers are treated as black boxes that may support some or all of the following
promise types:

• List installed packages

• Add packages

• Delete packages

• Reinstall (repair) packages

• Update packages

• Patch packages

284 Cfengine reference manual

• Verify packages

If these services are promised by a package manager, cf-agent promises to use the service and
encapsulate it within the overall cfengine framework.

Domain knowledge

Cfengine does not maintain operating system specific expert knowledge internally, rather it uses
a generic model for dealing with promises about packages (which depend on the behaviour of an
external package manager). The approach is to define package system details in body-constraints
that can be written once and for all, for each package system.

Package promises are like commands promises in the sense that cfengine promises nothing about
the outcome of executing a command. All it can promise is to interface with it, starting it and using
the results in good faith. Packages are basically ‘outsourced’, to invoke IT parlance.

The possibility of a cfengine package format that enables more guaranteeable behaviour for
special purposes has not been excluded for the future, but in any case cf-agent must support
native package formats used by operating system maintainers as these are a core part of modern
operating systems.

Behaviour

A package promise consists of a name, a version and an architecture, (n,v,a), and behaviour to
be promised about packages that match criteria based on these. The components (n,v,a) can be
determined in one of two different ways:

• They may be specified independently, e.g.

packages:

"mypackage"

package_policy => "add",

package_method => rpm,

package_select => ">=",

package_architectures => { "x86_64", "i586" },

package_version => "1.2.3";

• They may be extracted from a package identifier or filename, using pattern matching, e.g.:

package_list_name_regex => "[^|]+\|[^|]+\|\s+([^\s|]+).*";

package_list_version_regex => "[^|]+\|[^|]+\|[^|]+\|\s+([^\s|]+).*";

package_list_arch_regex => "[^|]+\|[^|]+\|[^|]+\|[^|]+\|\s+([^\s]+).*";

When scanning a list of installed packages different managers present the information (n,v,a) in
quite different forms and pattern extraction is necessary. When making a promise about a specific
package, the cfengine user may choose one or the other model.

Smart and dumb package systems

Package managers vary enormously in their capabilities and in the kinds of promises they make.
There are broadly two types

• Smart package systems tha resolve dependencies and require only a symbolic package name.

• Dumb package managers that do not resolve dependencies and need filename input.

Normal ordering for packages is the following:

Chapter 7: Bundles of agent 285

• Delete

• Add

• Update

• Patch

Promise repair logic

We can discuss package promise repair in the following table.

bundle agent packages

{

vars:

Test the simplest case -- leave everything to the yum smart manager

"match_package" slist => {

286 Cfengine reference manual

"apache2",

"apache2-mod_php5",

"apache2-prefork",

"php5"

};

packages:

"$(match_package)"

package_policy => "add",

package_method => yum;

}

Packages promises can be very simple if the package manager is of the smart variety that handles
details for you. If you need to specify architecture and version numbers of packages, this adds some
complexity, but the options are flexible and designed for maximal adaptability.
Patching

Some package systems also support the idea of ‘patches’. These might be formally different
objects to packages. A patch might contain material for several packages and be numbered differently.
When you select patching-policy the package name (promiser) can be a regular expression that will
match possible patch names, otherwise identifying specific patches can be cumbersome.

Note that patching is a subtle business. There is no simple way using the patch settings to install
‘all new system patches’. Here’s why:

If we specify the name of a patch, then cfengine will try to see if it exists and/or is installed. If it
exists in the pending list, it will be installed. If it exists in the installed list it will not be installed.
Now consider the pattern ‘.*’. This will match any installed package, so cfengine will assume the
relevant patch has been installed already. On the other hand, the pattern ‘no match’ will not match
an installed patch, but it will not match a named patch either.

Some systems provide a command to do this, which can be specified without specific patch
arguments. If so, that command can be called periodically under commands. The main purposes of
patching body items are:

• To install specific named patches in a controlled manner.

• To generate reports of available and installed patches during system reporting.

Installers without package/patch arguments

Cfengine supports the syntax ‘$’ at the end of a command to mean that no package name
arguments should be used or appended after the dollar. This is because some commands require a
list of packages, while others require an empty list. The default behaviour is to try to append the
name of one or more packages to the command, depending on whether the policy is for individual
or bulk installation.

7.13.1 package_architectures

Type: slist

Chapter 7: Bundles of agent 287

Allowed input range: (arbitrary string)
Synopsis: Select the architecture for package selection
Example:

packages:

"$(exact_package)"

package_policy => "add",

package_method => rpm,

package_architectures => { "x86_64" };

Notes:

It is possible to specify a list of packages of different architectures if it is desirable to install
multiple architectures on the host. If no value is specified, cfengine makes no promise about the
result; the package manager’s behaviour prevails.

7.13.2 package_method (compound body)

Type: (ext body)

‘package_add_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to install a package to the system

Example:

body package_method rpm

{

package_add_command => "/bin echo /bin/rpm -i ";

}

Notes:

This command should install a package when appended with the package
reference id, formed using the package_name_convention, using the model of
(name,version,architecture). If package_file_repositories is specified, the package
reference id will include the full path to a repoistory containing the package.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the

288 Cfengine reference manual

command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_arch_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package architecture
string

Example:

body package_method rpm

{

package_list_arch_regex => "[^.]+\.([^.]+)";

}

Notes:

This is for use when extracting architecture from the name of the promiser, i.e. when
the architecture is not specified using the package_architectures list. It is a regular
expression that contains exactly one parenthesized back reference which marks the
location in the promiser at which the architecture is specified. The regex may match a
portion of the string (i.e., it is unanchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36). If no architecture is specified for the given package
manager, then do not define this.

‘package_changes’
Type: (menu option)

Allowed input range:

individual

bulk

bulk_no_names

Synopsis: Menu option - whether to group packages into a single aggregate command

Example:

body package_method rpm

{

package_changes => "bulk";

}

Chapter 7: Bundles of agent 289

Notes:

This indicate whether the package manager is capable of handling package operations in
bulk, i.e. with by given multiple arguments. If this is set to ‘bulk’ then multiple argu-
ments will be passed to the package commands. If set to ‘individual’ packages will be
handled one by one. This might add a significant overhead to the operations, and also
affect the ability of the operating system’s package manager to handle dependencies.

‘package_delete_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to remove a package from the system

Example:

body package_method rpm

{

package_delete_command => "/bin/rpm -e --nodeps";

}

Notes:

The command that deletes a package from the system when appended with the package
reference identifier specified by package_name_convention.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the
command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_delete_convention’
Type: string

Allowed input range: (arbitrary string)

Synopsis: This is how the package manager expects the package to be referred to in
the deletion part of a package update, e.g. $(name)

Example:

body package_method freebsd

{

package_file_repositories => { "/path/to/packages" };

290 Cfengine reference manual

package_name_convention => "$(name)-$(version).tbz";

package_delete_convention => "$(name)-$(version)";

}

Notes:

This attribute is used when package_policy is ‘delete’, or package_policy is
‘update’ and package_file_repositories is set and package_update_command is
not set. It is then used to set the pattern for naming the package in the way expected
by the package manager during the deletion of existing packages.

Three special variables are defined from the extracted data, in a private context
for use: ‘$(name)’, ‘$(version)’ and ‘$(arch)’. ‘version’ and ‘arch’ is the
version and arch (if package_list_arch_regex is given) of the already installed
package. Additionally, if package_file_repositories is defined, ‘$(firstrepo)’
can be prepended to expand the first repository containing the package, e.g.
‘$(firstrepo)$(name)-$(version)-$(arch).msi’.

If this is not defined, it defaults to the value of package_name_convention.

‘package_file_repositories’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: A list of machine-local directories to search for packages

Example:

body package_method filebased

{

package_file_repositories => { "/package/repos1", "/packages/repos2" };

}

Notes:

If specified, cfengine will assume that the package installation occurs by filename
and will search the named paths for a package matching the pattern package_name_

convention. If found the name will be prefixed to the package name in the package
commands.

‘package_installed_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression which matches packages that are already installed

Chapter 7: Bundles of agent 291

Example:

body package_method yum

{

package_installed_regex => ".*installed.*";

}

Notes:

This regular expression must match complete lines in the output of the list command
that are actually installed packages (that is, the regex is anchored See Section 2.10.4
[Anchored vs. unanchored regular expressions], page 36). If all the lines match then
the regex can be set of ‘.*’, however most package systems output prefix lines and a
variety of human padding that needs to be ignored.

‘package_list_arch_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package architecture
string

Example:

body package_method rpm

{

package_list_arch_regex => "[^|]+\|[^|]+\|[^|]+\|[^|]+\|\s+([^\s]+).*";

}

Notes:

A regular expression that contains exactly one parenthesized back reference which
marks the location in the listed package at which the architecture is specified. The
regular expression may match a portion of the string (that is, it is unanchored See Sec-
tion 2.10.4 [Anchored vs. unanchored regular expressions], page 36). If no architecture
is specified for the given package manager, then do not define this regex.

‘package_list_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to obtain a list of available packages

292 Cfengine reference manual

Example:

body package_method rpm

{

package_list_command => "/bin/rpm -qa --queryformat \"%{name} %{version}-%{release}\n\"";

}

Notes:

This command should provide a complete list of the packages installed on the system.
It might also list packages that are not installed. Those should be filtered out using
the package_installed_regex.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the
command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_list_name_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package name string

Example:

body package_method rpm

{

package_list_name_regex => "([^\s]+).*";

}

Notes:

A regular expression that contains exactly one parenthesized back reference which
marks the name of the package from the package listing. The regular expression may
match a portion of the string (that is, it is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36).

‘package_list_update_command’
Type: string

Allowed input range: (arbitrary string)

Chapter 7: Bundles of agent 293

Synopsis: Command to update the list of available packages (if any)

Example:

body package_method xyz

{

debian|ubuntu::

package_list_update_command => "/usr/bin/apt-get update";

package_list_update_ifelapsed => "240"; # 4 hours

}

Notes:

Not all package managers update their list information from source automatically. This
command allows a separate update command to be executed at intervals determined
by package_list_update_ifelapsed.

‘package_list_update_ifelapsed’
Type: int

Allowed input range: -99999999999,9999999999

Synopsis: The ifelapsed locking time in between updates of the package list

Example:

body package_method xyz

{

debian|ubuntu::

package_list_update_command => "/usr/bin/apt-get update";

package_list_update_ifelapsed => "240"; # 4 hours

}

Notes:

Not all package managers update their list information from source automatically. This
command allows a separate update command to be executed at intervals determined
by package_list_update_ifelapsed.

‘package_list_version_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package version string

Example:

294 Cfengine reference manual

body package_method rpm

{

package_list_version_regex => "[^\s]+ ([^.]+).*";

}

Notes:

This regular expression should containe exactly one parenthesized back-reference that
marks the version string of packages listed as installed. The regular expression may
match a portion of the string (that is, it is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36)

‘package_name_convention’
Type: string

Allowed input range: (arbitrary string)

Synopsis: This is how the package manager expects the package to be referred to, e.g.
$(name).$(arch)

Example:

body package_method rpm

{

package_name_convention => "$(name).$(arch).rpm";

}

Notes:

This sets the pattern for naming the package in the way expected by the package
manager. Three special variables are defined from the extracted data, in a private con-
text for use: ‘$(name)’, ‘$(version)’ and ‘$(arch)’. Additionally, if package_file_
repositories is defined, ‘$(firstrepo)’ can be prepended to expand the first reposi-
tory containing the package, e.g. ‘$(firstrepo)$(name)-$(version)-$(arch).msi’.

When package_policy is ‘update’, and package_file_repositories is specified,
package_delete_convention may be used to specify a different convention for the
delete command.

If this is not defined, it defaults to the value ‘$(name)’.

‘package_name_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package name string

Chapter 7: Bundles of agent 295

Example:

body package_method rpm

{

package_name_regex => "([^\s]).*";

}

Notes:

This regular expression is only used when the promiser contains not only the name of
the package, but its version and archiecture also. In that case, this expression should
contain a single parenthesized back-reference to extract the name of the package from
the string. The regex may match a portion of the string (that is, it is unanchored See
Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36)

‘package_noverify_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression to match verification failure output

Example:

body package_method xyz

{

package_noverify_regex => ".*problem.*";

package_noverify_regex => ".*[^\s].*"; # some non-zero output

}

Notes:

A regular expression to match output from a package verification command. If the
output string matches this expression, the package is deemed broken. The regex must
match the entire line (that is, it is anchored See Section 2.10.4 [Anchored vs. unan-
chored regular expressions], page 36)

‘package_noverify_returncode’
Type: int

Allowed input range: -99999999999,9999999999

Synopsis: Integer return code indicating package verification failure

296 Cfengine reference manual

Example:

body package_method xyz

{

package_noverify_returncode => "-1";

}

Notes:

For use if a package verification command uses the return code as the signal for a failed
package verification.

‘package_patch_arch_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract update architecture
string

Example:

body package_method zypper

{

package_patch_arch_regex => "";

}

Notes:

A few package managers keep a separate notion of patches, as opposed to package
updates. OpenSuSE, for example, is one of these. This provide an analogous command
struct to the packages for patch updates. The regular expression must match the
entire line (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

‘package_patch_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to update to the latest patch release of an installed package

Example:

body package_method zypper

Chapter 7: Bundles of agent 297

{

package_patch_command => "/usr/bin/zypper -non-interactive patch";

}

Notes:

If the package manager supports patching, this command should patch a named pack-
age. If only patching of all packages is supported then consider running that as a
batch operation in commands. Alternatively one can end the command string with a ‘$’
symbol, which cfengine will interpret as an instruction to not append package names.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the
command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_patch_installed_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression which matches packages that are already installed

Example:

body package_method zypper

{

package_patch_installed_regex => ".*(Installed|Not Applicable).*";

}

Notes:

A few package managers keep a separate notion of patches, as opposed to package
updates. OpenSuSE, for example, is one of these. This provide an analogous command
struct to the packages for patch updates. The regular expression must match the entire
string (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

‘package_patch_list_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to obtain a list of available patches or updates

Example:

package_patch_list_command => "/usr/bin/zypper patches";

298 Cfengine reference manual

Notes:

This command, if it exists at all, is presumed to generate a list of available patches in
a format analogous to (but not necessarily the same as) the package-list command, of
patches that are available on the system. Patches might formally be available in the
packagae manager’s view, but if they have already been installed, cfengine will ignore
them.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the
command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_patch_name_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract update name string

Example:

body package_method zypper

{

package_patch_name_regex => "[^|]+\|\s+([^\s]+).*";

}

Notes:

A few package managers keep a separate notion of patches, as opposed to package
updates. OpenSuSE, for example, is one of these. This provide an analogous command
struct to the packages for patch updates. The regular expression may match a partial
string (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

‘package_patch_version_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract update version string

Example:

body package_method zypper

{

Chapter 7: Bundles of agent 299

package_patch_version_regex => "[^|]+\|[^|]+\|\s+([^\s]+).*";

}

Notes:

A few package managers keep a separate notion of patches, as opposed to package
updates. OpenSuSE, for example, is one of these. This provide an analogous command
struct to the packages for patch updates. The regular expression may match a partial
string (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

‘package_update_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to update to the latest version a currently installed package

Example:

body package_method zypper

{

package_update_command => "/usr/bin/zypper -non-interactive update";

}

Notes:

If supported this should be a command that updates the version of a single currently
installed package. If only bulk updates are supported, consider running this as a single
command under commands. The package reference id is appended, with the pattern of
package_name_convention.

When package_file_repositories is specified, the package reference id will include
the full path to a repoistory containing the package. If package_policy is ‘update’,
and this command is not specified, the package_delete_command and package_add_

command will be executed to carry out the update.

‘package_verify_command’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Command to verify the correctness of an installed package

Example:

body package_method rpm

300 Cfengine reference manual

{

package_verify_command => "/bin/rpm -V";

}

Notes:

If available, this is a command to verify an already installed package. Such commands
are not necessarily meaningful in the context of a tool like cfengine which patches the
system by ‘other means’.

The promise is kept if the package is installed correctly, not kept otherwise.

Package managers generally expect the name of a package to be passed as a parameter.
However, in some cases we do not need to pass the name of a particular package to the
command. Ending the command string with ‘$’ prevents Cfengine from appending the
package name to the string.

‘package_version_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression with one backreference to extract package version string

Example:

body package_method rpm

{

package_version_regex => "[^\s]+ ([^.]+).*";

}

Notes:

If the version of a package is not specified separately using package_version, then this
should be a regular expression that contains exactly one parenthesized back-reference
that matches the version string in the promiser. The regular expression may match a
partial string (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36).

‘package_multiline_start’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression which matches the start of a new package in multiline
output

Chapter 7: Bundles of agent 301

Example:

body package_method solaris (pkgname, spoolfile, adminfile)

{

package_changes => "individual";

package_list_command => "/usr/bin/pkginfo -l";

package_multiline_start => "\s*PKGINST:\s+[^\s]+";

...

}

Notes:

This pattern is used in determining when a new package record begins. It is used when
package managers (like the solaris package manager) use multi-line output formats.
This pattern matches the first line of a new record.

7.13.3 package_policy

Type: (menu option)
Allowed input range:

add

delete

reinstall

update

addupdate

patch

verify

Default value: verify
Synopsis: Criteria for package installation/upgrade on the current system
Example:

packages:

"$(match_package)"

package_policy => "add",

package_method => "xyz";

Notes:

302 Cfengine reference manual

This decides what fate is intended for the named package.

•add Ensure that a package is present.

•delete Ensure that a package is not present.

•reinstall Delete then add package (warning, non-convergent).

•update Update the package if an update is available (manager dependent).

•addupdate
Equivalent to ‘add’ if the package is not installed, and ‘update’ if it is installed.

•patch Install one or more patches if available (manager dependent).

•verify Verify the correctness of the package (manager dependent). The promise is kept if the
package is installed correctly, not kept otherwise.

7.13.4 package_select

Type: (menu option)

Allowed input range:

>

<

==

!=

>=

<=

Synopsis: A criterion for first acceptable match relative to "package version"

Example:

packages:

"$(exact_package)"

package_policy => "add",

package_method => xyz,

package_select => ">=",

package_architectures => { "x86_64" },

package_version => "1.2.3-456";

Notes:

This selects the operator that compares the promiser to the state of the system packages currently
installed. If the criterion matches, the policy action is scheduled for promise-keeping.

Chapter 7: Bundles of agent 303

7.13.5 package_version

Type: string
Allowed input range: (arbitrary string)
Synopsis: Version reference point for determining promised version
Example:

packages:

"mypackage"

package_policy => "add",

package_method => rpm,

package_select => "=",

package_version => "1.2.3";

Notes:

Used for specifying the targeted package version when the version is written separately from the
name of the command.

7.14 processes promises in ‘agent’

Process promises refer to items in the system process table. Note that this is not the same as
commands (which are instructions). A process is a command in some state of execution (with a
Process Control Block). Promiser objects here are patterns that match line fragments in the system
process table (that is, the patterns are unanchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36).� �
processes:

"regex contained in process line"

process_select => process_filter_body,

restart_class => "activation class for process",

..;
 	
In cfengine 2 there was a restart clause for directly executing a command to restart a process.

In cfengine 3 there is instead a class to activate. You must then desribe a command in that class to
restart the process.

commands:

304 Cfengine reference manual

restart_me::

"/path/executable" ... ;

This rationalizes complex restart-commands and avoids unnecessary overlap between processes

and commands.

The process_stop is also arguably a command, but it should be an ephemeral command that
does not lead to a persistent process. It is intended only for commands of the form ‘/etc/inetd
service stop’, not for processes that persist. Processes are restarted at the end of a bundle’s
execution, but stop commands are executed immediately.

Take care to note that process table formats differ between operating systems, and the use of
simple patterns such as program-names is recommended. For more sophisticated matches, users
should use the process_select feature.

Note: process_select was previously called process filters in cfengine 2 and earlier.

bundle agent example

{

processes:

".*"

process_count => anyprocs,

process_select => proc_finder;

reports:

any_procs::

"Found processes out of range";

}

##

body process_select proc_finder

{

Processes started between 5.5 hours and 20 minutes ago

stime_range => irange(ago(0,0,0,5,30,0),ago(0,0,0,0,20,0));

process_result => "stime";

}

##

body process_count anyprocs

Chapter 7: Bundles of agent 305

{

match_range => "0,0";

out_of_range_define => { "any_procs" };

}

In cfengine 2, one has two separate actions:
processes

shellcommands

In cfengine 3 we have
processes

commands

Cfengine 2 got this ontology about right intuitively, but not quite. It allowed a ‘restart’
command to appear in a process promise, which is really a command execution. This has been
changed in cfengine 3 so that there is a cleaner separation. Let’s see why.

Executions are about jobs, services, scripts etc. They are properties of an executable file. The
referring ‘promiser’ is a file object. On the other hand a process is a property of a "process identifier"
which is a kernel instantiation, a quite different object altogether. So it makes sense to say that

• A "PID" (which is not an executable) promises to be reminded of a signal, e.g.
kill signal pid

• An "command" promises to start or stop itself with a parameterized specification.
exec command argument1 argument2 ...

Neither the file nor the pid necessarily promise to respond to these activations, but they are
nonetheless physically meaningful phenomena or attributes associated with these objects.

• Executable files do not listen for signals as they have no active state.

• PIDs do not run themselves or stop themselves with new arguments, but they can use signals
as they are running.

Executions lead to processes for the duration of their lifetime, so these two issues are related,
although the promises themselves are not.

Services verus processes:

A service is an abstraction that requires processes to run and files to be configured. It makes a
lot of sense to wrap services in modular bundles. Starting and stopping a service can be handled in
at least two ways. Take the web service as an example.

We can start the service by promising an execution of a daemon (e.g. httpd). Normally this
execution does not terminate without intervention. We can terminate it in one of two ways:

• Using a process signal, by promising a signal to processes matching a certain pid search

• Using an execution of a termination command, e.g. ‘/etc/init.d/apache stop’.

The first case makes sense if we need to qualify the termination by searching for the processes.
The processes section of a cfengine 3 policy includes a control promise to search for matching
processes. If matches are found, signals can be sent to precisely each specific process.

306 Cfengine reference manual

Classes can also be defined, in principle triggering an execution of the stop script, but then
the class refers only to the presence of matching pids, not to the individual pids concerned. So it
becomes the responsibility of the execution to locate and interact with the pids necessary.

Want it running?:

How do we say simply that we want a service running? In the agent control promises, we could
check each service individually.
bundlesequence => { Update, Service("apache"), Service("nfsd") };

or
bundlesequence => { Update, @(globals.all_services) };

The bundle for this can look like this:
bundle agent Service("$(service)")

{

processes:

"$(service)"

process_count => up("$(service)");

commands:

"$daemons[$(service)]"

ifvarclass => "$(service)_up",

args => "$args[$(service)]";

}

An alternative would be self-contained:
bundle agent Service

{

vars:

"service" slist => { "apache", "nfsd", "bind" };

processes:

"$(service)"

process_count => up("$(service)");

commands:

"$daemons[$(service)]"

Chapter 7: Bundles of agent 307

ifvarclass => "$(service)_up",

args => "$args[$(service)]";

}

######################

Parameterized body

######################

body process_count("$(s)")

{

match_range => "[0,10]";

out_of_range_define => "$(s)_up";

}

Is this a step backwards? The cfengine 3 approach might seem like a step backwards from the
simple cfengine 2 statement:
processes:

"httpd" restart "/etc/init.d/apache restart"

However, it allows several improvements.
You can do other things in between stopping and starting the service, like file editing, or security

sweeps. You can use templates to simplify the syntax in bulk for several process checks or restarts.
processes:

"$(service.list)"

If you don’t want any delay in stopping and starting the service, then place these promises in a
private bundle with nothing in between them.

7.14.1 process_count (compound body)

Type: (ext body)

‘in_range_define’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of classes to define if the matches are in range

Example:

body process_count example

{

in_range_define => { "class1", "class2" };

308 Cfengine reference manual

}

Notes:

Classes are defined if the processes that are found in the process table satisfy the
promised process count, i.e. if the promise about the number of processes matching
the other criteria is kept.

‘match_range’
Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Integer range for acceptable number of matches for this process

Example:

body process_count example

{

match_range => irange("10","50");

}

Notes:

This is a numerical range for the number of occurrences of the process in the process
table. As long as it falls within the specified limits, the promise is considered kept.

‘out_of_range_define’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of classes to define if the matches are out of range

Example:

body process_count example(s)

{

out_of_range_define => { "process_anomaly", "anomaly_$(s)"};

}

Notes:

Classes to activate remedial promises conditional on this promise failure to be kept.

Chapter 7: Bundles of agent 309

7.14.2 process_select (compound body)

Type: (ext body)

‘command’ Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression matching the command/cmd field of a process

Example:

body process_select example

{

command => "cf-.*";

process_result => "command";

}

Notes:

This expression should match the entire COMMAND field of the process table (not just a
fragment). This field is usually the last field on the line and thus starts with the first
non-space character and ends with the end of line.

‘pid’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the process id of a process

Example:

body process_select example

{

pid => irange("1","10");

process_result => "pid";

}

Notes:

‘pgid’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the parent group id of a process

310 Cfengine reference manual

Example:

body process_select example

{

pgid => irange("1","10");

process_result => "pgid";

}

Notes:

‘ppid’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the parent process id of a process

Example:

body process_select example

{

ppid => irange("407","511");

process_result => "ppid";

}

Notes:

‘priority’ Type: irange [int,int]

Allowed input range: -20,+20

Synopsis: Range of integers matching the priority field (PRI/NI) of a process

Example:

body process_select example

{

priority => irange("-5","0");

}

Notes:

Chapter 7: Bundles of agent 311

‘process_owner’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of regexes matching the user of a process

Example:

body process_select example

{

process_owner => { "wwwrun", "nobody" };

}

Notes:

Regular expression should match a legal user name on the system. The regex must
match the entire name (that is, it is anchored See Section 2.10.4 [Anchored vs. unan-
chored regular expressions], page 36).

‘process_result’
Type: string

Allowed input range: [(process_owner|pid|ppid||pgid|rsize|vsize|status|command|ttime|stime|tty|priority|threads)[|&!.]*]*

Synopsis: Boolean class expression returning the logical combination of classes set by
a process selection test

Example:

body process_select proc_finder(p)

{

process_owner => { "avahi", "bin" };

command => "$(p)";

pid => irange("100","199");

vsize => irange("0","1000");

process_result => "command.(process_owner|vsize).!pid";

}

Notes:

A logical combination of the process selection classifiers. The syntax is the same as
that for class expressions. There should be no spaces in the expressions.

312 Cfengine reference manual

‘rsize’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the resident memory size of a process, in kilobytes

Example:

body process_select

{

rsize => irange("4000","8000");

}

Notes:

‘status’ Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression matching the status field of a process

Example:

body process_select example

{

status => "Z";

}

Notes:

For instance, characters in the set ‘NRS<sl+..’. Windows processes do not have status
fields.

‘stime_range’
Type: irange [int,int]

Allowed input range: 0,2147483647

Synopsis: Range of integers matching the start time of a process

Example:

body process_select example

{

Chapter 7: Bundles of agent 313

stime_range => irange(ago(0,0,0,1,0,0),now);

}

Notes:

The calculation of time from process table entries is sensitive to Daylight Savings Time
(Summer/Winter Time) so calculations could be a hour off. This is for now a bug to
be fixed.

‘ttime_range’
Type: irange [int,int]

Allowed input range: 0,2147483647

Synopsis: Range of integers matching the total elapsed time of a process

Example:

body process_select example

{

ttime_range => irange(0,accumulated(0,1,0,0,0,0));

}

Notes:

This is total accumulated time for a process.

‘tty’ Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression matching the tty field of a process

Example:

body process_select example

{

tty => "pts/[0-9]+";

}

Notes:

Windows processes are not regarded as attached to any terminal, so they all have tty
’?’.

314 Cfengine reference manual

‘threads’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the threads (NLWP) field of a process

Example:

body process_select example

{

threads => irange(1,5);

}

Notes:

‘vsize’ Type: irange [int,int]

Allowed input range: 0,99999999999

Synopsis: Range of integers matching the virtual memory size of a process, in kilobytes

Example:

body process_select example

{

vsize => irange("4000","9000");

}

Notes:

On Windows, the virtual memory size is the amount of memory that cannot be shared
with other processes. In Task Manager, this is called Commit Size (Windows 2008),
or VM Size (Windows XP).

7.14.3 process_stop

Type: string
Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))
Synopsis: A command used to stop a running process
Example:

processes:

Chapter 7: Bundles of agent 315

"snmpd"

process_stop => "/etc/init.d/snmp stop";

Notes:

As an alternative to sending a termination or kill signal to a process, one may call a ‘stop script’
to perform a graceful shutdown.

7.14.4 restart_class

Type: string
Allowed input range: [a-zA-Z0-9_$()\[\].]+
Synopsis: A class to be defined globally if the process is not running, so that a command: rule can
be referred to restart the process
Example:

processes:

"cfservd"

restart_class => "start_cfserv";

commands:

start_cfserv::

"/usr/local/sbin/cfservd";

Notes:

This is a signal to restart a process that should be running, if it is not running. Processes are
signalled first and then restarted later, at the end of bundle execution, after all possible corrective
actions have been made that could influence their execution.

Windows does not support that processes start themselves in the background, like Unix daemons
usually do (i.e. fork off a child process). Therefore, it may be useful to specify an action bodypart
that sets background to true in a commands promise that is invoked by the class set by restart class.
See the commands promise type for more information.

7.14.5 signals

Type: (option list)

316 Cfengine reference manual

Allowed input range:

hup

int

trap

kill

pipe

cont

abrt

stop

quit

term

child

usr1

usr2

bus

segv

Synopsis: A list of menu options representing signals to be sent to a process

Example:

processes:

cfservd_out_of_control::

"cfservd"

signals => { "stop" , "term" },

restart_class => "start_cfserv";

any::

"snmpd"

signals => { "term" , "kill" };

Notes:

Signals are presented as an ordered list to the process. On windows, only the kill signal is
supported, which terminates the process.

Chapter 7: Bundles of agent 317

7.15 services promises in ‘agent’

A service is a set of zero or more processes. It can be zero if the service is not currently running.
Services run in the background, and do not require user intervention.

Service promises may be viewed as an abstraction of process and commands promises. An im-
portant distinguiser is however that a single service may consist of multiple processes. Additionally,
services are registered in the operating system in some way, and gets a unique name. Unlike pro-
cesses and commands promises, this makes it possible to use the same name both when it is running
and not.

Some operating systems are bundled with a lot of unused services that are running as default.
At the same time, faulty or inherently insecure services are often the cause of security issues. With
Cfengine Nova, one can create promises stating services that should be stopped and disabled.

The operating system may start a service at boot time, or it can be started by Cfengine. Either
way, Cfengine will ensure that the service maintains the correct state (started, stopped, or disabled).
On some operating systems, Cfengine also allows services to be started on demand, i.e. when they
are needed. This is implemented though the inetd or xinetd daemon on Unix. Windows does not
support this.

Cfengine Nova also allows for the concept of dependencies between services, and can automatically
start or stop these, if desired. Parameters can be passed to services that are started by Cfengine.

bundle agent example

{

services:

"Dhcp"

service_policy => "start",

service_dependencies => { "Alerter", "W32Time" },

service_method => winmethod;

}

##

body service_method winmethod

{

service_type => "windows";

service_args => "--netmask=255.255.0.0";

service_autostart_policy => "none";

service_dependence_chain => "start_parent_services";

}

Services promises are only avaiable in Cfengine Nova and above.

318 Cfengine reference manual

Windows Vista/Server 2008 and later introduced new complications to the service security policy.
Therefore, when testing services promises from the command line, Cfengine may not be given
proper access rights, which gives errors like "Access is denied". However, when running through
the Cfengine Nova Executor service, which is done on production machines, Cfengine has sufficent
rights.

7.15.1 service_policy

Type: (menu option)

Allowed input range:

start

stop

disable

Synopsis: Policy for cfengine service status

Example:

services:

"Telnet"

service_policy => "disable";

Notes:

If set to start, Cfengine Nova will keep the service in a running state, while stop means that
the service is kept in a stopped state. disable implies stop, and ensures that the service can not
be started directly, but needs to be enabled somehow first (e.g. by changing file permissions).

7.15.2 service_dependencies

Type: slist

Allowed input range: [a-zA-Z0-9_$()\[\].]+

Synopsis: A list of services on which the named service abstraction depends

Example:

services:

"ftp"

service_policy => "start",

service_dependencies => { "network", "logging" };

Chapter 7: Bundles of agent 319

Notes:

A list of services that must be running before the service can be started. These dependencies can
be started automatically by Cfengine Nova if they are not running — see service_dependence_

chain. However, the dependencies will never be implicitly stopped by Cfengine Nova. Specifying
dependencies is optional.

Note that the operating system may keep an additional list of dependencies for a given service,
defined during installation of the service. Cfengine Nova requires these dependencies to be running
as well before starting the service. The complete list of dependencies is thus the union of service_
dependencies and the internal operating system list.

7.15.3 service_method (compound body)

Type: (ext body)

‘service_type’
Type: (menu option)

Allowed input range:

windows

init

inetd

xinetd

Synopsis: Service abstraction type

Example:

body service_method example

{

type => "windows";

}

Notes:

On Windows this defaults to, and must be windows. Unix systems can however have
multiple means of registering services, but the choice must be available on the given
system.

‘service_args’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Parameters for starting the service

320 Cfengine reference manual

Example:

body service_method example

{

service_args => "-f filename.conf --some-argument";

}

Notes:

These arguments will only be passed if Cfengine Nova starts the service. Thus, set
service_autostart_policy to none to ensure that the arguments are always passed.

Escaped quoutes can be used to pass an argument contianing spaces as a single argu-
ment, e.g. "-f \"file name.conf\"". Passing arguments is optional.

‘service_autostart_policy’
Type: (menu option)

Allowed input range:

none

boot_time

on_demand

Synopsis: Should the service be started automatically by the OS

Example:

body service_method example

{

service_autostart_policy => "boot_time";

}

Notes:

Defaults to none, which means that the service is not registered for automatic startup
by the operating system in any way. It must be none if service_policy is not start.
boot_time means the service is started at boot time, while on_demand means that the
service is dispatched once it is being used.

on_demand is not supported by Windows, and is implemented through inetd or xinetd
on Unix.

‘service_dependence_chain’
Type: (menu option)

Chapter 7: Bundles of agent 321

Allowed input range:

ignore

start_parent_services

stop_child_services

all_related

Synopsis: How to handle dependencies and dependent services

Example:

body service_method example

{

service_dependence_chain => "start_parent_services";

}

Notes:

The service dependencies include both the dependencies defined by the operating sys-
tem and in service_dependencies, as described there.

Defaults to ignore, which means that Cfengine Nova will never start or stop dependen-
cies or dependent services, but fail if dependencies are not satisfied. start_parent_

services means that all dependencies of the service will be started if they are not
already running. When stopping a service, stop_child_services means that other
services that depend on this service will be stopped also. all_related means both
start_parent_services and stop_child_services.

Note that this setting also affects dependencies of dependencies and so on.

For example, consider the case where service A depends on B, which depends on C. If
we want to start B, we must first make sure A is running. If start_parent_services
or all_related is set, Cfengine Nova will start A, if it is not running. On the other
hand, if we want to stop B, C needs to be stopped first. stop_child_services or
all_related means that Cfengine Nova will stop C, if it is running.

7.16 storage promises in ‘agent’

Storage promises refer to disks and filesystem properties.

322 Cfengine reference manual

� �
storage:

"/disk volume or mountpoint"

volume => volume_body,

...;
 	
In cfengine 2, storage promises were divided into disks or required, and misc_mounts types.

The old mount-models for binary and home servers has been deprecated and removed from cfengine
3. Users who use these models can reconstruct them from the low-level tools.

bundle agent storage

{

storage:

"/usr" volume => mycheck("10%");

"/mnt" mount => nfs("nfsserv.example.org","/home");

}

###

body volume mycheck(free) # reusable template

{

check_foreign => "false";

freespace => "$(free)";

sensible_size => "10000";

sensible_count => "2";

}

body mount nfs(server,source)

{

mount_type => "nfs";

mount_source => "$(source)";

mount_server => "$(server)";

edit_fstab => "true";

}

7.16.1 mount (compound body)

Type: (ext body)

Chapter 7: Bundles of agent 323

‘edit_fstab’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false add or remove entries to the file system table ("fstab")

Default value: false

Example:

body mount example

{

edit_fstab => "true";

}

Notes:

The default behaviour is to not place edits in the file system table.

‘mount_type’
Type: (menu option)

Allowed input range:

nfs

nfs2

nfs3

nfs4

Synopsis: Protocol type of remote file system

Example:

body mount example

{

mount_type => "nfs3";

}

324 Cfengine reference manual

Notes:

This field is mainly for future extensions.

‘mount_source’
Type: string

Allowed input range: "?(([a-zA-Z]:\\.*)|(/.*))

Synopsis: Path of remote file system to mount

Example:

body mount example

{

mount_source "/location/disk/directory";

}

Notes:

This is the location on the remote device, server, SAN etc.

‘mount_server’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Hostname or IP or remote file system server

Example:

body mount example

{

mount_server => "nfs_host.example.org";

}

Notes:

Hostname or IP address, this could be on a SAN.

‘mount_options’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of option strings to add to the file system table ("fstab")

Chapter 7: Bundles of agent 325

Example:

body mount example

{

mount_options => { "rw", "acls" };

}

Notes:

This list is concatenated in a form appropriate for the filesystem. The options must be
legal options for the system mount commands.

‘unmount’ Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false unmount a previously mounted filesystem

Default value: false

Example:

body mount example

{

unmount => "true";

}

Notes:

7.16.2 volume (compound body)

Type: (ext body)

‘check_foreign’
Type: (menu option)

Allowed input range:

326 Cfengine reference manual

true

false

yes

no

on

off

Synopsis: true/false verify storage that is mounted from a foreign system on this host

Default value: false

Example:

body volume example

{

#..

check_foreign => "false";

}

Notes:

Cfengine will not normally perform sanity checks on filesystems which are not local to
the host. If true it will ignore a partition’s network location and ask the current host
to verify storage located physically on other systems.

‘freespace’
Type: string

Allowed input range: [0-9]+[MBkKgGmb%]

Synopsis: Absolute or percentage minimum disk space that should be available before
warning

Example:

body volume example1

{

freespace => "10%";

}

body volume example2

{

freespace => "50M";

}

Chapter 7: Bundles of agent 327

Notes:

The amount of freespace that is promised on a storage device. Once this promise is
found not to be kept, warnings are generated.

‘sensible_size’
Type: int

Allowed input range: 0,99999999999

Synopsis: Minimum size in bytes that should be used on a sensible-looking storage
device

Example:

body volume example

{

sensible_size => "20K";

}

Notes:

body volume control

{

sensible_size => "20K";

}

‘sensible_count’
Type: int

Allowed input range: 0,99999999999

Synopsis: Minimum number of files that should be defined on a sensible-looking storage
device

Example:

body volume example

{

sensible_count => "20";

}

328 Cfengine reference manual

Notes:

Files must be readable by the agent, i.e. it is assumed that the agent has privileges on
volumes being checked.

‘scan_arrivals’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

off

Synopsis: true/false generate pseudo-periodic disk change arrival distribution

Default value: false

Example:

body volume example

{

scan_arrivals => "true";

}

Notes:

This operation should not be left ‘on’ for more than a single run (maximum once per
week). It causes cfengine to perform an extensive disk scan noting the schedule of
changes between files. This can be used for a number of analyses including optimum
backup schedule computation.

Chapter 8: Bundles of server 329

8 Bundles of server

� �
bundle server access_rules()

{

access:

"/home/mark/PrivateFiles"

admit => { ".*\.example\.org" };

"/home/mark/\.cfagent/bin/cf-agent"

admit => { ".*\.example\.org" };

roles:

".*" authorize => { "mark" };

}

 	

Bundles in the server describe access promises on specific file and class objects supplied by the
server to clients.

8.1 access promises in ‘server’

Access promises are conditional promises made by the server about file objects. The promise has
two consequences. For file copy requests, the file becomes transferrable to the remote client according
to the conditions specified in the server promse (i.e. if the connection encryption requirements are
met, and if the client has been granted appropriate privileges with maproot (like its NFS counterpart)
to be able to see file objects not owned by the server process owner).

The promise has two mutally exclusive attributes ‘admit’ and ‘deny’. Use of ‘admit’ is preferred
as mistakes and omissions can easily be made when excluding from a group.

When access is granted to a directory, the promise is automatically given about all of its contents
and sub-directories. The access promise allows overlapping promises to be made, and these are kept
in a first-come-first-served fashion. Thus file objects (promisers) should be listed in order of most-
specific file first. In this way, specific promises will override less specific ones.

330 Cfengine reference manual

� �
access:

"/path/file_object"

admit => { "hostname", "ipv4_address", "ipv6_address" };

 	

8.1.1 Access Example

###

Server config

###

body server control

{

allowconnects => { "127.0.0.1" , "::1" };

allowallconnects => { "127.0.0.1" , "::1" };

trustkeysfrom => { "127.0.0.1" , "::1" };

}

###

bundle server access_rules()

{

access:

"/home/mark/LapTop"

admit => { "127.0.0.1" };

}

Entries may be literal addresses of IPv4 or IPv6, or any name registered in the POSIX
gethostbyname service.

8.1.2 admit

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of host names or IP addresses to grant access to file objects

Chapter 8: Bundles of server 331

Example:

access:

"/home/mark/LapTop"

admit => { "127.0.0.1", "192.168.0.1/24", ".*\.domain\.tld" };

Notes:

Admit promises grant access to file objects on the server. Arguments may be IP addresses or
hostnames, provided DNS name resolution is active. In order to reach this stage, a client must first
have passed all of the standard connection tests in the control body.

The lists may contain network addresses in CIDR notation or regular expressions to match the
IP address or name of the connecting host.

8.1.3 deny

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of host names or IP addresses to deny access to file objects
Example:

bundle server access_rules()

{

access:

"/path"

admit => { ".*\.example\.org" },

deny => { "badhost_1\.example\.org", "badhost_1\.example\.org" };

}

Notes:

Denial is for special exceptions. A better strategy is always to grant on a need to know basis. A
security policy based on exceptions is a weak one.

8.1.4 maproot

Type: slist

332 Cfengine reference manual

Allowed input range: (arbitrary string)
Synopsis: List of host names or IP addresses to grant full read-privilege on the server
Example:

access:

"/home"

admit => { "backup_host.example.org" },

ifencrypted => "true",

Backup needs to have access to all users

maproot => { "backup_host.example.org" };

Notes:

Normally users authenticated by the server are granted access only to files owned by them and no-
one else. Even if the cf-serverd process runs with root privileges on the server side of a client-server
connection, the client is not automatically granted access to download files owned by non-privileged
users. If maproot is true then remote root users are granted access to all files.

A typical case where mapping is important is in making backups of many user files. On the
Windows cf-serverd, maproot is required to read files if the connecting user does not own the file
on the server.

8.1.5 ifencrypted

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off

Default value: false
Synopsis: true/false whether the current file access promise is conditional on the connection from
the client being encrypted
Example:

Chapter 8: Bundles of server 333

access:

"/path/file"

admit => { ".*\.example\.org" },

ifencrypted => "true";

Notes:

If this flag is true a client cannot access the file object unless its connection is encrypted.

8.1.6 resource_type

Type: (menu option)

Allowed input range:

path

literal

context

query

Synopsis: The type of object being granted access (the default grants access to files)

Example:

bundle server access_rules()

{

vars:

"localvar" string => "literal string";

access:

"This is a $(localvar) for remote access"

handle => "test_scalar",

resource_type => "literal",

admit => { "127.0.0.1" };

}

Notes:

334 Cfengine reference manual

By default, access to resources granted by the server are files. However, sometimes it is useful to
cache literal strings, hints and data in the server, e.g. the contents of variables, hashed passwords
etc for easy access. In the case of literal data, the promise handle serves as the reference identifier
for queries. Queries are instigated by function calls by any agent.

The term query may also be used in commercial versions of Cfengine to query the server for
data from embedded databases. This is currently for internal use only, and is used to grant access
to report ‘menus’.

8.2 roles promises in ‘server’

Roles promises are server-side decisions about which users are allowed to define soft-classes on the
server’s system during remote invocation of cf-agent. This implements a form of Role Based Access
Control (RBAC) for pre-assigned class-promise bindings. The user names cited must be attached to
trusted public keys in order to be accepted. The regular expression must match the entire name (that
is, they are anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).� �
roles:

"regex"

authorize => { "usernames", ... };
 	
It is worth re-iterating here that it is not possible to send commands or modify promise definitions

by remote access. At best users may try to send classes when using cf-runagent in order to activate
sleeping promises. This mechanism limits their ability to do this.

bundle server access_rules()

{

roles:

Allow mark

"Mark_.*" authorize => { "mark" };

}

In this example user ‘mark’ is granted permission to remotely activate classes matching the
regular expression when using the cf-runagent to activate cfengine. In this way one can implement
a form of Role Based Access Control (RBAC), provided users do not have privileged access on the
host directly.

Chapter 8: Bundles of server 335

8.2.1 authorize

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of public-key user names that are allowed to activate the promised class during remote
agent activation
Example:

roles:

".*" authorize => { "mark", "marks_friend" };

Notes:

Part of Role Based Access Control (RBAC) in cfengine. The users listed in this section are
granted access to set certain classes by using the remote cf-runagent. The user-names will refer to
public key identities already trusted on the system.

336 Cfengine reference manual

Chapter 9: Bundles of knowledge 337

9 Bundles of knowledge

� �
bundle knowledge system

{

topics:

Troubleshooting::

"Segmentation fault"

association => a("is caused by","Bad memory reference","can cause");

"Remote connection problem";

"Web server not running";

"Print server not running";

"Bad memory reference";

}
 	
Knowledge bundles describe topic maps, i.e. Topics, Associations and Occurrences (of topics in

documents). This is for knowledge modelling and has no functional effect on a system.

9.1 topics promises in ‘knowledge’

Topic promises are part of the knowledge management engine. A topic is any string that refers
to a concept or subject that we wish to include in a knowledge base. If a topic has a very long
name, it is best to made the promiser object a short name and use the comment field to add the long
explanation (e.g. unique acronym and full text).� �
topics:

"topic string"

comment => "long name..",

...;
 	
Topics form associative structures based entirely on an abstract space of natural language. Actu-

ally, this is only slightly more abstract than files, processes and commands etc. The main difference
in knowledge management is that there are no corrective or maintenance operations associated with
knowledge promises.

Class membership in knowledge management is subtly different from other parts of cfengine. If a
topic lies in a certain class context, the topic uses it as a type-label. This is used for disambiguation
of subject-area in searches rather than for disambiguation of rules between physical environments.

338 Cfengine reference manual

bundle knowledge example

{

topics:

"Distro"

comment => "Distribution of linux",

association => a("is a packaging of","Linux","is packaged as a");

}

Topics are basically identifiers, where the comment field here is a long form of the subject string.
Associations form semantic links between topics. Topics can appear multiple times in order to form
multiple associations.

9.1.1 association (compound body)

Type: (ext body)

‘forward_relationship’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of forward association between promiser topic and associates

Example:

body association example

{

forward_relation => "is bigger than";

}

Notes:

‘backward_relationship’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of backward/inverse association from associates to promiser topic

Example:

Chapter 9: Bundles of knowledge 339

body association example

{

..

backward_relationship => "is less than";

}

Notes:

Denotes the inverse name which is used to ‘moralizing’ the association graph.

‘associates’
Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of associated topics by this forward relationship

Example:

body association example(literal,scalar,list)

{

#...

associates => { "literal", $(scalar), @(list)};

}

Notes:

An element of an association which is a list of topics to which the current topic is
associated.

9.1.2 comment

Type: string
Allowed input range: (arbitrary string)
Synopsis: Retained comment about this promise’s real intention
Example:

comment => "This comment follows the data for reference ...",

Notes:

340 Cfengine reference manual

Comments written in code follow the program, they are not merely discarded. They appear in
reports and error messages.

9.2 occurrences promises in ‘knowledge’

Occurrences are documents or information resources that discuss topics. An occurrence promise
asserts that a particular document of text resource in fact represents information about one or more
topics. This is used to construct references to actual information in a topic map.� �
occurrences:

topic_name::

"URL reference or literal string"

represents => { "sub-topic disambiguator", ... },

representation => "literal or url";
 	

Mark_Burgess::

"http://www.iu.hio.no/~mark"

represents => { "Home Page" };

lvalue::

"A variable identifier, i.e. the left hand side of an ’=’ association. The promiser in a variable promise."

represents => { "Definitions" },

representation => "literal";

Editing_Files::

"http://www.cfengine.org/confdir/customizepasswd.html"

represents => { "Setting up users" };

Occurrences are pointers to information about topics. This might be a literal text string or a
URL reference to an external document.

9.2.1 represents

Type: slist

Chapter 9: Bundles of knowledge 341

Allowed input range: (arbitrary string)

Synopsis: List of subtopics that explains the type(s) of information represented by the occurrence

Example:

occurrences:

Promise_Theory::

"A theory of autonomous actors that offer certainty through promises"

represents => { "Definitions" },

representation => "literal";

Notes:

The sub-topic or occurrence-type represented by the document reference in a knowledge base.
This string is intended as an annotation to the reader about the nature of the inforation located in
the occurrence document. It should be used ‘creatively’.

If the document type is an image and one of the items in this list is a url, beginning with either
‘/’ or ‘http’, then cf-know treats the reference as a url to be reached when the image is clicked on.

9.2.2 representation

Type: (menu option)

Allowed input range:

literal

url

db

file

web

image

portal

Synopsis: How to interpret the promiser string e.g. actual data or reference to data

Example:

occurrences:

Promise_Theory::

"A theory of autonomous actors that offer certainty through promises"

342 Cfengine reference manual

represents => { "Definitions" },

representation => "literal";

Notes:

The form of knowledge representation in a topic map occurrence reference. If the type portal

is used it assumes that a new website should open in a new target window.

9.2.3 web_root

Type: string
Allowed input range: (arbitrary string)
Synopsis: Base URL of the occurrence when rendered as a web-URL (replaces path root)
Example:

bundle knowledge demo

{

occurrences:

mytopic:

"reports/(.*)/mytopic_file.html"

represents => { "found in directory $(match.1)" },

representation => "file",

path_root => "$(enterprise_start.doc_root)",

web_root => "";

}

Notes:

When identifying occurrences by searching for files on the local file system, the web root provides
the HTTP prefix for the document root under which we are searching so that path names can be
mapped into URLs, See Section 9.2.4 [path root in occurrences], page 342.

9.2.4 path_root

Type: string
Allowed input range: (arbitrary string)
Synopsis: Base path of the occurrence when locating file (replaced by web root)
Example:

Chapter 9: Bundles of knowledge 343

bundle knowledge demo

{

occurrences:

mytopic:

"reports/(.*)/mytopic_file.html"

represents => { "found in directory $(match.1)" },

representation => "file",

path_root => "$(enterprise_start.doc_root)",

web_root => "";

}

Notes:

When searching a local file system for document occurrences, the path_root points to the local
file system’s name for the document root. This will be translated into the URL prefix defined by
web_root, See Section 9.2.3 [web root in occurrences], page 342.

9.3 inferences promises in ‘knowledge’

inferences:

"is close to"

comment => "Cluster property",

precedent => "is close to",

qualifier => "is close to";

"is far from"

comment => "Remote cluster property",

precedent => "is far from",

qualifier => "is close to";

History : Was introduced in version 3.1.0, Constellation 1.0.0 (2010)

The promiser is the result of the inference.

344 Cfengine reference manual

9.3.1 precedent

Type: string
Allowed input range: (arbitrary string)
Synopsis: The foundational vector for a trinary inference
Example:

inferences:

"is far from"

comment => "Remote cluster property",

precedent => "is far from",

qualifier => "is close to";

Notes:

History : Was introduced in version 3.1.0b3,Nova 2.0.0b1 (2010)

9.3.2 qualifier

Type: string
Allowed input range: (arbitrary string)
Synopsis: The second vector in a trinary inference
Example:

inferences:

"is far from"

comment => "Remote cluster property",

precedent => "is far from",

qualifier => "is close to";

Notes:

History : Was introduced in version 3.1.0, Constellation 1.0.0 (2010)

Chapter 10: Bundles of monitor 345

10 Bundles of monitor

� �
bundle monitor example

{

measurements:

Discover disk device information

"/bin/df"

handle => "free_diskspace_watch",

stream_type => "pipe",

data_type => "slist",

history_type => "static",

units => "device",

match_value => file_systems;

}
 	
Monitor bundles contain user defined promises for system discovery and monitoring.

10.1 measurements promises in ‘monitor’

These features are available only in Enterprise versions of cfengine.
Cfengine’s monitoring component cf-monitord records a number of performance data about the

system by default. These include process counts, service traffic, load average and cpu utilization
and temperature when available.

Cfengine Nova extends this in two ways. First it adds a three year trend summary based any
‘shift’-averages. Second, it adds customizable promises to monitor or log very specific user data
through a generic interface. The end result is to either generate a periodic time series, like the above
mentioned values, or to log the results to custom-defined reports.

Cfengine Nova adds a new promise type in bundles for the monitoring agent. These are written
just like all other promises within a bundle destined for the agent concerned (however, you do not
need to add them to the bundlesequence – they are executed by cf-monitord because they are
bundles of type monitor). In this case:
bundle monitor watch

{

measurements:

promises ...

346 Cfengine reference manual

}

It is important to specificy a promise handle for measurement promises, as the names defined in
the handle are used to determine the name of the log file or variable to which data will be reported.
Log files are created under ‘WORKDIR/state’. Data that have no history type are stored in a special
variable context called ‘mon’, analogous to the system variables in ‘sys’. Thus the values may be
used in other promises in the form $(mon.handle).

Follow a special process over time

using cfengine’s process cache to avoid resampling

"/var/cfengine/state/cf_rootprocs"

handle => "monitor_self_watch",

stream_type => "file",

data_type => "int",

history_type => "weekly",

units => "kB",

match_value => proc_value(".*cf-monitord.*",

"root\s+[0-9.]+\s+[0-9.]+\s+[0-9.]+\s+[0-9.]+\s+([0-9]+).*");

Discover disk device information

"/bin/df"

handle => "free_diskspace_watch",

stream_type => "pipe",

data_type => "slist",

history_type => "static",

units => "device",

match_value => file_systems;

Update this as often as possible

}

##

body match_value proc_value(x,y)

{

select_line_matching => "$(x)";

extraction_regex => "$(y)";

}

Chapter 10: Bundles of monitor 347

body match_value file_systems

{

select_line_matching => "/.*";

extraction_regex => "(.*)";

}

Notes:

The general pattern of these promises is to decide the source of the information either file or
pipe, determine the data type (integer, string etc.), specify a pattern to match the result in the file
stream and then specify what to do with the result afterwards.
Standard measurements:

The cf-monitord service monitors a number of variables as standard on Unix and Windows
systems. Windows is fundamentally different from Unix and currently has less support for out-of-
the-box probes.

1. users: Users logged in

2. rootprocs: Privileged system processes

3. otherprocs: Non-privileged process

4. diskfree: Free disk on / partition

5. loadavg: % kernel load utilization

6. netbiosns in: netbios name lookups (in)

7. netbiosns out: netbios name lookups (out)

8. netbiosdgm in: netbios name datagrams (in)

9. netbiosdgm out: netbios name datagrams (out)

10. netbiosssn in: netbios name sessions (in)

11. netbiosssn out: netbios name sessions (out)

12. irc in: IRC connections (in)

13. irc out: IRC connections (out)

14. cfengine in: cfengine connections (in)

15. cfengine out: cfengine connections (out)

16. nfsd in: nfs connections (in)

17. nfsd out: nfs connections (out)

18. smtp in: smtp connections (in)

19. smtp out: smtp connections (out)

20. www in: www connections (in)

21. www out: www connections (out)

22. ftp in: ftp connections (in)

23. ftp out: ftp connections (out)

348 Cfengine reference manual

24. ssh in: ssh connections (in)

25. ssh out: ssh connections (out)

26. wwws in: wwws connections (in)

27. wwws out: wwws connections (out)

28. icmp in: ICMP packets (in)

29. icmp out: ICMP packets (out)

30. udp in: UDP dgrams (in)

31. udp out: UDP dgrams (out)

32. dns in: DNS requests (in)

33. dns out: DNS requests (out)

34. tcpsyn in: TCP sessions (in)

35. tcpsyn out: TCP sessions (out)

36. tcpack in: TCP acks (in)

37. tcpack out: TCP acks (out)

38. tcpfin in: TCP finish (in)

39. tcpfin out: TCP finish (out)

40. tcpmisc in: TCP misc (in)

41. tcpmisc out: TCP misc (out)

42. webaccess: Webserver hits

43. weberrors: Webserver errors

44. syslog: New log entries (Syslog)

45. messages: New log entries (messages)

46. temp0: CPU Temperature core 0

47. temp1: CPU Temperature core 1

48. temp2: CPU Temperature core 2

49. temp3: CPU Temperature core 3

50. cpu: %CPU utilization (all)

51. cpu0: %CPU utilization core 0

52. cpu1: %CPU utilization core 1

53. cpu2: %CPU utilization core 2

54. cpu3: %CPU utilization core 3

Slots with a higher number are used for custom measurement promises in Cfengine Nova.
These values collected and analysed by cf-monitord are transformed into agent variables in the

$(mon.name) context.
Measurement promise syntax:

10.1.1 stream_type

Type: (menu option)
Allowed input range:

Chapter 10: Bundles of monitor 349

pipe

file

Synopsis: The datatype being collected.
Example:

stream_type => "pipe";

Notes:

Cfengine treats all input using a stream abstraction. The preferred interface is files, since they
can be read without incurring the cost of a process. However pipes from executed commands may
also be invoked.

10.1.2 data_type

Type: (menu option)
Allowed input range:

counter

int

real

string

slist

Synopsis: The datatype being collected.
Example:

"/bin/df"

handle => "free_disk_watch",

stream_type => "pipe",

data_type => "slist",

history_type => "static",

units => "device",

match_value => file_systems,

action => sample_min(10,15);

Notes:

350 Cfengine reference manual

When cfengine (Nova) observes data, such as the attached partitions in the example above, the
datatype determines how that data will be handled. Integer and real values, counters etc., are
recorded as time-series if the history type is ‘weekly’, or as single values otherwise. If multiple items
are matched by an observation, e.g. several lines in a file match the given regular expression, then
these can be made into a list by choosing slist, else the first matching item will be selected.

10.1.3 history_type

Type: (menu option)
Allowed input range:

weekly

scalar

static

log

Synopsis: Whether the data can be seen as a time-series or just an isolated value
Example:

"/proc/meminfo"

handle => "free_memory_watch",

stream_type => "file",

data_type => "int",

history_type => "weekly",

units => "kB",

match_value => free_memory;

Notes:

‘scalar’ A single value, with compressed statistics is retained. The value of the data is not
expected to change much for the lifetime of the daemon (and so will be sampled less
often by ‘cf-monitord’).

‘static’ A synonym for ‘scalar’.

‘log’ The measured value is logged as an infinite time-series in ‘$(sys.workdir)/state’.

‘weekly’ A standard cfengine two-dimensional time average (over a weekly period) is retained.

10.1.4 units

Type: string
Allowed input range: (arbitrary string)
Synopsis: The engineering dimensions of this value or a note about its intent used in plots
Example:

Chapter 10: Bundles of monitor 351

"/var/cfengine/state/cf_rootprocs"

handle => "monitor_self_watch",

stream_type => "file",

data_type => "int",

history_type => "weekly",

units => "kB",

match_value => proc_value(".*cf-monitord.*",

"root\s+[0-9.]+\s+[0-9.]+\s+[0-9.]+\s+[0-9.]+\s+([0-9]+).*");

Notes:

This is an arbitary string used in documentation only.

10.1.5 match_value (compound body)

Type: (ext body)

‘select_line_matching’
Type: string

Allowed input range: .*

Synopsis: Regular expression for matching line location

Example:

body match_value example

{

select_line_matching => "Expression match.* whole line";

}

Notes:

The expression must match a whole line, not a fragment within a line (that is, it is
anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).

This attribute is mutually exclusive of select_line_number.

‘select_line_number’
Type: int

Allowed input range: 0,99999999999

Synopsis: Read from the n-th line of the output (fixed format)

352 Cfengine reference manual

Example:

body match_value find_line

{

select_line_number => "2";

}

Notes:

This is mutually exclusive of select_line_matching.

‘extraction_regex’
Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression that should contain a single backreference for extracting
a value

Example:

body match_value free_memory

{

select_line_matching => "MemFree:.*";

extraction_regex => "MemFree:\s+([0-9]+).*";

}

Notes:

A single parenthesized backreference should be given to lift the value to be measured
out of the text stream. The regular expression may match a partial string (that is,
it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular expressions],
page 36).

‘track_growing_file’
Type: (menu option)

Allowed input range:

true

false

yes

no

on

Chapter 10: Bundles of monitor 353

off

Synopsis: If true, cfengine remembers the position to which is last read when opening
the file, and resets to the start if the file has since been truncated

Example:

bundle monitor watch

{

measurements:

"/home/mark/tmp/file"

handle => "line_counter",

stream_type => "file",

data_type => "counter",

match_value => scan_log("MYLINE.*"),

history_type => "log",

action => sample_rate("0");

}

#

body match_value scan_log(x)

{

select_line_matching => "^(x)";

track_growing_file => "true";

}

#

body action sample_rate(x)

{

ifelapsed => "$(x)";

expireafter => "10";

}

Notes:

This option applies only to file based input streams. If this is ‘true’, Cfengine treats
the file as if it were a log file, growing continuously. Thus the monitor reads all new
entries since the last sampling time on each invocation. In this way, the monitor does
not count lines in the log file redundantly.

This makes a log pattern promise equivalent to something like ‘tail -f logfile |

grep pattern’ in Unix parlance.

354 Cfengine reference manual

Chapter 11: Special functions 355

11 Special functions

11.1 Introduction to functions

There is a large number of functions built into Cfengine, and finding the right one to use can be a
daunting task. The following tables are designed to make it easier for you to find the function you
need, based on the value or type that the function returns or processes as inputs.

11.1.1 Functions listed by return value

Functions which return class

Section 11.2
[accessedbefore],
page 359

Section 11.6
[changedbefore],
page 364

Section 11.7
[classify],
page 365

Section 11.8
[classmatch],
page 365

Section 11.14
[fileexists],
page 370

Section 11.15 [file-
sexist], page 371

Section 11.23
[groupexists],
page 378

Section 11.25
[hashmatch],
page 380

Section 11.27
[hostinnetgroup],
page 381

Section 11.28
[hostrange],
page 382

Section 11.31
[iprange], page 384

Section 11.33 [is-
dir], page 385

Section 11.34
[isexecutable],
page 386

Section 11.35
[isgreaterthan],
page 387

Section 11.36
[islessthan],
page 388

Section 11.37 [is-
link], page 389

Section 11.38
[isnewerthan],
page 389

Section 11.39 [is-
plain], page 390

Section 11.40
[isvariable],
page 391

Section 11.44
[ldaparray],
page 394

Section 11.63 [re-
garray], page 415

Section 11.64
[regcmp],
page 416

Section 11.65
[regextract],
page 418

Section 11.69
[regldap],
page 422

Section 11.67
[regline],
page 420

Section 11.68
[reglist], page 421

Section 11.71
[remoteclass-
esmatching],
page 424

Section 11.72
[returnszero],
page 425

Section 11.75
[splayclass],
page 428

Section 11.77
[strcmp],
page 431

Section 11.80 [use-
module], page 433

Section 11.81
[userexists],
page 434

Functions which return (i,r,s)list

Section 11.19
[getindices],
page 375

Section 11.21 [ge-
tusers], page 377

Section 11.22
[grep], page 377

Section 11.45
[ldaplist],
page 395

Section 11.51
[peerleaders],
page 402

Section 11.49
[peers], page 399

Section 11.56
[readintlist],
page 406

Section 11.58
[readreallist],
page 408

Section 11.61
[readstringlist],
page 413

Section 11.76
[splitstring],
page 430

356 Cfengine reference manual

Functions which return int

Section 11.3 [accu-
mulated], page 360

Section 11.4
[ago], page 362

Section 11.10
[countlines-
matching],
page 367

Section 11.11
[diskfree],
page 368

Section 11.17
[getfields],
page 373

Section 11.18 [get-
gid], page 374

Section 11.20 [ge-
tuid], page 376

Section 11.47
[now], page 398

Section 11.48
[on], page 398

Section 11.53
[randomint],
page 404

Section 11.55 [read-
intarray], page 405

Section 11.57
[readrealarray],
page 407

Section 11.59
[read-
stringarray],
page 410

Section 11.60
[readstringar-
rayidx],
page 411

Section 11.74
[selectservers],
page 426

Functions which return (i,r)range

Section 11.32
[irange], page 385

Section 11.73
[rrange],
page 426

Functions which return real

Section 11.52 [prod-
uct], page 403

Section 11.78
[sum], page 432

Functions which return string

Section 11.5 [canon-
ify], page 363

Section 11.12 [es-
cape], page 368

Section 11.13
[execresult],
page 369

Section 11.16
[getenv],
page 372

Section 11.24
[hash], page 379

Section 11.26
[host2ip], page 381

Section 11.29
[hostsseen],
page 383

Section 11.41
[join], page 392

Section 11.42
[lastnode],
page 393

Section 11.46
[ldapvalue],
page 396

Section 11.50 [peer-
leader], page 400

Section 11.54
[readfile],
page 404

Section 11.62
[readtcp],
page 414

Section 11.66
[registryvalue],
page 419

Section 11.70
[remotescalar],
page 423

Section 11.79
[translatepath],
page 432

11.1.2 Functions which fill arrays

The following functions all fill arrays, although they return values which depend on the number of
items processed.
Section 11.17 [get-
fields], page 373

Section 11.55
[readintarray],
page 405

Section 11.57
[readrealarray],
page 407

Section 11.59
[read-
stringarray],
page 410

Section 11.60
[readstringar-
rayidx],
page 411

Section 11.65
[regextract],
page 418

Chapter 11: Special functions 357

11.1.3 Functions which read “large” data

The following functions read data from inside Cfengine (from classes, lists, strings, etc.) and outside
of Cfengine (from files, databases, arrays, etc.)

Functions which read arrays

Section 11.19
[getindices],
page 375

Section 11.63 [re-
garray], page 415

Functions which read disk data

Section 11.11 [disk-
free], page 368

Functions which read from a remote-cfengine

Section 11.71
[remoteclass-
esmatching],
page 424

Section 11.70
[remotescalar],
page 423

Functions which read classes

Section 11.7 [clas-
sify], page 365

Section 11.8
[classmatch],
page 365

Functions which read command output

Section 11.13 [exe-
cresult], page 369

Section 11.72
[returnszero],
page 425

Section 11.80
[usemodule],
page 433

Functions which read the environment

Section 11.16
[getenv], page 372

Functions which read files

Section 11.10
[countlines-
matching],
page 367

Section 11.17
[getfields],
page 373

Section 11.21 [ge-
tusers], page 377

Section 11.25
[hashmatch],
page 380

Section 11.50
[peerleader],
page 400

Section 11.51 [peer-
leaders], page 402

Section 11.49
[peers], page 399

Section 11.54
[readfile],
page 404

Section 11.55
[readintarray],
page 405

Section 11.56
[readintlist],
page 406

Section 11.57 [read-
realarray], page 407

Section 11.58
[readreallist],
page 408

Section 11.59
[read-
stringarray],
page 410

Section 11.60
[readstringar-
rayidx],
page 411

Section 11.61
[readstringlist],
page 413

Section 11.67 [reg-
line], page 420

358 Cfengine reference manual

Functions which read LDAP data

Section 11.44 [lda-
parray], page 394

Section 11.45
[ldaplist],
page 395

Section 11.46
[ldapvalue],
page 396

Section 11.69
[regldap],
page 422

Functions which read from the network

Section 11.62
[readtcp], page 414

Section 11.74
[selectservers],
page 426

Functions which read the Windows registry

Section 11.66
[registryvalue],
page 419

Functions which read (i,r,s)lists

Section 11.22 [grep],
page 377

Section 11.41
[join], page 392

Section 11.52 [prod-
uct], page 403
Section 11.68
[reglist], page 421
Section 11.78 [sum],
page 432

Functions which read strings

Section 11.24
[hash], page 379

Section 11.42
[lastnode],
page 393

Section 11.64
[regcmp],
page 416

Section 11.65
[regextract],
page 418

Section 11.76
[splitstring],
page 430

Section 11.77 [str-
cmp], page 431

Section 11.79
[translatepath],
page 432

11.1.4 Functions which look at file metadata

The following functions examine file metadata, but don’t use the contents of the file.
Section 11.2
[accessedbefore],
page 359

Section 11.6
[changedbefore],
page 364

Section 11.14
[fileexists],
page 370

Section 11.15
[filesexist],
page 371

Section 11.33 [is-
dir], page 385

Section 11.37 [is-
link], page 389

Section 11.38
[isnewerthan],
page 389

Section 11.39 [is-
plain], page 390

11.1.5 Functions which look at variables

Section 11.35
[isgreaterthan],
page 387

Section 11.36
[islessthan],
page 388

Section 11.40
[isvariable],
page 391

Chapter 11: Special functions 359

11.1.6 Functions involving date or time

The following functions all do date or time computation

Section 11.2
[accessedbefore],
page 359

Section 11.3
[accumulated],
page 360

Section 11.4
[ago], page 362

Section 11.6
[changedbefore],
page 364

Section 11.38
[isnewerthan],
page 389

Section 11.47 [now],
page 398

Section 11.48
[on], page 398

Section 11.75
[splayclass],
page 428

11.1.7 Functions which work with or on regular expressions

Section 11.8 [class-
match], page 365

Section 11.10
[countlines-
matching],
page 367

Section 11.12 [es-
cape], page 368

Section 11.17
[getfields],
page 373

Section 11.22
[grep], page 377

Section 11.55 [read-
intarray], page 405

Section 11.56
[readintlist],
page 406

Section 11.57
[readrealarray],
page 407

Section 11.58
[readreallist],
page 408

Section 11.59
[read-
stringarray],
page 410

Section 11.60 [read-
stringarrayidx],
page 411

Section 11.61
[readstringlist],
page 413

Section 11.63 [re-
garray], page 415

Section 11.64
[regcmp],
page 416

Section 11.65
[regextract],
page 418

Section 11.69
[regldap], page 422

Section 11.67
[regline],
page 420

Section 11.68
[reglist],
page 421

Section 11.76
[splitstring],
page 430

11.2 Function accessedbefore

Synopsis: accessedbefore(arg0,arg1) returns type class

arg0 : Newer filename, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Older filename, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if arg1 was accessed before arg2 (atime)

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

360 Cfengine reference manual

{

classes:

"do_it" and => { accessedbefore("/tmp/earlier","/tmp/later"), "linux" };

reports:

do_it::

"The secret changes have been accessed after the reference time";

}

Notes:

The function accesses the atime fields of a file and makes a comparison.

touch /tmp/reference

touch /tmp/secretfile

/usr/local/sbin/cf-agent -f ./unit_accessed_before.cf -K

R: The secret changes have been accessed after the reference time

11.3 Function accumulated

Synopsis: accumulated(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Years, in the range 0,1000
arg1 : Months, in the range 0,1000
arg2 : Days, in the range 0,1000
arg3 : Hours, in the range 0,1000
arg4 : Minutes, in the range 0,1000
arg5 : Seconds, in the range 0,40000

Convert an accumulated amount of time into a system representation
Example:

bundle agent testbundle

{

processes:

".*"

Chapter 11: Special functions 361

process_count => anyprocs,

process_select => proc_finder;

reports:

any_procs::

"Found processes in range";

}

##

body process_select proc_finder

{

ttime_range => irange(accumulated(0,0,0,0,2,0),accumulated(0,0,0,0,20,0));

process_result => "ttime";

}

##

body process_count anyprocs

{

match_range => "0,0";

out_of_range_define => { "any_procs" };

}

Notes:

In the example we look for processes that have accumulated between 2 and 20 minutes of total
run time.
ARGUMENTS:

The accumulated function measures total accumulated runtime. Arguments are applied addi-
tively, so that ago(0,0,2,27,90,0) means "2 days, 27 hours and 90 minutes of runtime" " – however,
you are strongly encouraged to keep your usage of accumulated sensible and readable, e.g., accu-
mulated(0,0,0,48,0,0) or accumulated(0,0,0,0,90,0).

‘Years’ Years of run time. For convenience in conversion, a year of runtime is always 365 days
(one year equals 31,536,000 seconds).

‘Month’ Months of run time. For convenience in conversion, a month of runtime is always equal
to 30 days of runtime (one month equals 2,592,000 seconds).

‘Day’ Days of runtime (one day equals 86,400 seconds)

‘Hours’ Hours of runtime

362 Cfengine reference manual

‘Minutes’ Minutes of runtime 0-59

‘Seconds’ Seconds of runtime

11.4 Function ago

Synopsis: ago(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Years, in the range 0,1000
arg1 : Months, in the range 0,1000
arg2 : Days, in the range 0,1000
arg3 : Hours, in the range 0,1000
arg4 : Minutes, in the range 0,1000
arg5 : Seconds, in the range 0,40000

Convert a time relative to now to an integer system representation

Example:

bundle agent testbundle

{

processes:

".*"

process_count => anyprocs,

process_select => proc_finder;

reports:

any_procs::

"Found processes out of range";

}

##

body process_select proc_finder

{

Processes started between 5.5 hours and 20 minutes ago

stime_range => irange(ago(0,0,0,5,30,0),ago(0,0,0,0,20,0));

process_result => "stime";

}

Chapter 11: Special functions 363

##

body process_count anyprocs

{

match_range => "0,0";

out_of_range_define => { "any_procs" };

}

Notes:

The ago function measures time relative to now. Arguments are applied in order, so that
ago(0,18,55,27,0,0) means "18 months, 55 days, and 27 hours ago" – however, you are strongly en-
couraged to keep your usage of ago sensible and readable, e.g., ago(0,0,120,0,0,0) or ago(0,0,0,72,0,0).
ARGUMENTS:

‘Years’ Years ago. If today is February 29, and "n years ago" is not within a leap-year,
February 28 will be used.

‘Month’ Months ago. If the current month has more days that "n months ago", the last day
of "n months ago" will be used (e.g., if today is April 31 and you compute a date 1
month ago, the resulting date will be March 30). equal to 30 days of runtime (one
month equals 2,592,000 seconds).

‘Day’ Days ago (you may, for example, specify 120 days)

‘Hours’ Hours ago. Since all computation are done using "Epoch time", 1 hour ago will alway
result in a time 60 minutes in the past, even during the transition from Da ylight time
to Standard time.

‘Minutes’ Minutes ago 0-59

‘Seconds’ Seconds ago

11.5 Function canonify

Synopsis: canonify(arg0) returns type string

arg0 : String containing non-identifer characters, in the range .*

Convert an abitrary string into a legal class name
Example:

commands:

"/var/cfengine/bin/$(component)"

364 Cfengine reference manual

ifvarclass => canonify("start_$(component)");

Notes:

This is for use in turning arbitrary text into class data. See Section 11.7 [Function classify],
page 365.

11.6 Function changedbefore

Synopsis: changedbefore(arg0,arg1) returns type class

arg0 : Newer filename, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Older filename, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if arg1 was changed before arg2 (ctime)

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"do_it" and => { changedbefore("/tmp/earlier","/tmp/later"), "linux" };

reports:

do_it::

"The derived file needs updating";

}

Notes:

Chapter 11: Special functions 365

Change times include both file permissions and file contents. Comparisons like this are normally
used for updating files (like the ‘make’ command).

11.7 Function classify

Synopsis: classify(arg0) returns type class

arg0 : Input string, in the range .*

True if the canonicalization of the argument is a currently defined class
Example:

classes:

"i_am_the_policy_host" expression => classify("master.example.org");

Notes:

This function returns true if the canonical form of the argument is already a defined class. This
is useful, for example, transforming variables into classes. See Section 11.5 [Function canonify],
page 363.

11.8 Function classmatch

Synopsis: classmatch(arg0) returns type class

arg0 : Regular expression, in the range .*

True if the regular expression matches any currently defined class
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

366 Cfengine reference manual

classes:

"do_it" and => { classmatch(".*_cfengine_com"), "linux" };

reports:

do_it::

"Host matches pattern";

}

Notes:

The regular expression is matched against the current list of defined classes. The regular expres-
sion must match a complete class for the expression to be true, that is, the regex is anchored See
Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36.

11.9 Function countclassesmatching

Synopsis: countclassesmatching(arg0) returns type int

arg0 : Regular expression, in the range .*

Count the number of defined classes matching regex arg1
Example:

bundle agent example

{

vars:

"num" int => countclassesmatching("entropy.*low");

reports:

cfengine_3::

"Found $(num) classes matching";

}

Notes:

Chapter 11: Special functions 367

This function matches classes, using a regular expression that should match the whole line.

‘regex’ A regular expression matching zero or more classes in the current list of defined classes.
The regular expression must match a complete class, that is, it is anchored See Sec-
tion 2.10.4 [Anchored vs. unanchored regular expressions], page 36.

The function returns the number of classes matched.

11.10 Function countlinesmatching

Synopsis: countlinesmatching(arg0,arg1) returns type int

arg0 : Regular expression, in the range .*
arg1 : Filename, in the range "?(([a-zA-Z]:\\.*)|(/.*))

Count the number of lines matching regex arg1 in file arg2

Example:

bundle agent example

{

vars:

"no" int => countlinesmatching("m.*","/etc/passwd");

reports:

cfengine_3::

"Found $(no) lines matching";

}

Notes:

This function matches lines in the named file, using a regular expression that should match the
whole line.

‘regex’ A regular expression matching zero or more lines. The regular expression must match
a complete line (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36).

‘filename’ The name of the file to be examined.

The function returns the number of lines matched.

368 Cfengine reference manual

11.11 Function diskfree

Synopsis: diskfree(arg0) returns type int

arg0 : File system directory, in the range "?(([a-zA-Z]:\\.*)|(/.*))

Return the free space (in KB) available on the directory’s current partition (0 if not found)

Example:

bundle agent example

{

vars:

"free" int => diskfree("/tmp");

reports:

cfengine_3::

"Freedisk $(free)";

}

Notes:

Values returned in kilobytes.

11.12 Function escape

Synopsis: escape(arg0) returns type string

arg0 : IP address or string to escape, in the range .*

Escape regular expression characters in a string

Example:

bundle server control

{

allowconnects => { "127\.0\.0\.1", escape("192.168.2.1") };

}

Chapter 11: Special functions 369

Notes:

This function is useful for making inputs readable when a regular expression is required, but the
literal string contains special characters. The function simply ’escapes’ all the regular expression
characters, so that you don’t have to.

This in the example above, the string "192.168.2.1" is "escaped" to be equivalent to
"192\.168\.2\.1" (because without the backslashes, the regular expression "192.168.2.1" will also
match the IP ranges "192.168.201", "192.168.231", etc - since the dot character means "match any
character" when used in a regular expression).

History: This function was introduced in Cfengine version 3.0.4 (2010)

11.13 Function execresult

Synopsis: execresult(arg0,arg1) returns type string

arg0 : Fully qualified command path, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Shell encapsulation option, in the range useshell,noshell

Execute named command and assign output to variable

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"my_result" string => execresult("/bin/ls /tmp","noshell");

reports:

linux::

"Variable is $(my_result)";

}

370 Cfengine reference manual

Notes:

The second argument (‘useshell’/‘noshell’) decides whether a shell will be used to encapsulate
the command. This is necessary in order to combine commands with pipes etc, but remember that
each command requires a new process that reads in files beyond cfengine’s control. Thus using a
shell is both a performance hog and a potential security issue.

Note: you should never use this function to execute comands that make changes to the system,
or perform lengthy computations. Such an operation is beyond cfengine’s ability to guarantee
convergence, and on multiple passes and during syntax verification, these function calls are executed
resulting in system changes that are ‘covert’. Calls to execresult should be for discovery and
information extraction only.

Note: if the command is not found, the result will be the empty string!
Change: policy change in Cfengine 3.0.5. Previously newlines were changed for spaces, now newlines
are preserved.

11.14 Function fileexists

Synopsis: fileexists(arg0) returns type class

arg0 : File object name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if the named file can be accessed
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"exists" expression => fileexists("/etc/passwd");

reports:

exists::

Chapter 11: Special functions 371

"File exists";

}

Notes:

The user must have access permissions to the file for this to work faithfully.

11.15 Function filesexist

Synopsis: filesexist(arg0) returns type class

arg0 : Array identifier containing list, in the range @[(][a-zA-Z0-9]+[)]

True if the named list of files can ALL be accessed
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"mylist" slist => { "/tmp/a", "/tmp/b", "/tmp/c" };

classes:

"exists" expression => filesexist("@(mylist)");

reports:

exists::

"Files exist";

!exists::

372 Cfengine reference manual

"Do not exist";

}

Notes:

The user must have access permissions to the file for this to work faithfully.

11.16 Function getenv

Synopsis: getenv(arg0,arg1) returns type string

arg0 : Name of environment variable, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : Maximum number of characters to read , in the range 0,99999999999

Return the environment variable named arg1, truncated at arg2 characters

Example:

bundle agent example

{

vars:

"myvar" string => getenv("PATH","20");

classes:

"isdefined" not => strcmp("$(myvar)","");

reports:

isdefined::

"The path is $(myvar)";

!isdefined::

"The named variable PATH does not exist";

}

Chapter 11: Special functions 373

Notes:

Returns an empty string if the environment variable is not defined. Arg2 is used to avoid
unexpectedly large return values, which could lead to security issues. Choose a reasonable value
based on the environment variable you are querying.

History: This function was introduced in Cfengine version 3.0.4 (2010)

11.17 Function getfields

Synopsis: getfields(arg0,arg1,arg2,arg3) returns type int

arg0 : Regular expression to match line, in the range .*
arg1 : Filename to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg2 : Regular expression to split fields, in the range .*
arg3 : Return array name, in the range .*

Get an array of fields in the lines matching regex arg1 in file arg2, split on regex arg3 as array name
arg4
Example:

bundle agent example

{

vars:

"no" int => getfields("mark:.*","/etc/passwd",":","userdata");

reports:

cfengine_3::

"Found $(no) lines matching";

"Mark’s homedir = $(userdata[6])";

}

Notes:

This function matches lines (using a regular expression) in the named file, and splits the first
matched line into fields (using a second) regular expression), placing these into a named array whose
elements are array[1],array[2],... This is useful for examining user data in the Unix password
or group files.

374 Cfengine reference manual

‘regex’ A regular expression matching one or more lines. The regular expression must match
the entire line (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36).

‘filename’ The name of the file to be examined.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items

‘array_lval’
The base name of the array that returns the values.

The function returns the number of lines matched. This function is most useful when you
want only the first matching line (e.g., to mimic the behavior of the getpwnam(3) on the file
‘/etc/passwd’). If you want to examine all matching lines, See Section 11.59 [Function read-
stringarray], page 410 instead.

11.18 Function getgid

Synopsis: getgid(arg0) returns type int

arg0 : Group name in text, in the range .*

Return the integer group id of the named group on this host
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"gid" int => getgid("users");

reports:

Yr2008::

"Users gid is $(gid)";

Chapter 11: Special functions 375

}

Notes:

If the named group does not exist, the variable will not be defined. On windows, which does not
support group ids, the variable will not be defined.

11.19 Function getindices

Synopsis: getindices(arg0) returns type slist

arg0 : Cfengine array identifier, in the range [a-zA-Z0-9 $()\[\].]+

Get a list of keys to the array whose id is the argument and assign to variable
Example:

body common control

{

any::

bundlesequence => { "testsetvar" };

}

###

bundle agent testsetvar

{

vars:

"v[index_1]" string => "value_1";

"v[index_2]" string => "value_2";

"parameter_name" slist => getindices("v");

reports:

Yr2008::

"Found index: $(parameter_name)";

}

376 Cfengine reference manual

Notes:

Make sure you specify the correct scope when supplying the name of the variable.

11.20 Function getuid

Synopsis: getuid(arg0) returns type int

arg0 : User name in text, in the range .*

Return the integer user id of the named user on this host

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"uid" int => getuid("mark");

reports:

Yr2008::

"Users uid is $(uid)";

}

Notes:

If the named user is not registered the variable will not be defined. On windows, which does not
support user ids, the variable will not be defined.

Chapter 11: Special functions 377

11.21 Function getusers

Synopsis: getusers(arg0,arg1) returns type slist

arg0 : Comma separated list of User names, in the range .*
arg1 : Comma separated list of UserID numbers, in the range .*

Get a list of all system users defined, minus those names defined in args 1 and uids in args
Example:

vars:

"allusers" slist => getusers("zenoss,mysql,at","12,0");

reports:

linux::

"Found user $(allusers)";

Notes:

History: Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010) This function is only available
on Unix-like systems in the present version.

The function has two arguments, both are comma separated lists. The first argument is a list
of user names that should be excluded from the output. The second is a list of integrer UIDs that
should be excluded.

11.22 Function grep

Synopsis: grep(arg0,arg1) returns type slist

arg0 : Regular expression, in the range .*
arg1 : Cfengine array identifier, in the range [a-zA-Z0-9 $()\[\].]+

Extract the sub-list if items matching the regular expression in arg1 of the list named in arg2
Example:

bundle agent test

{

vars:

"mylist" slist => { "One", "Two", "Three", "Four", "Five" };

378 Cfengine reference manual

"sublist" slist => grep("T.*","mylist");

reports:

linux::

"Item: $(sublist)";

}

Notes:

Extracts a sublist of a list variable matching the regular expression in arg 1.

11.23 Function groupexists

Synopsis: groupexists(arg0) returns type class

arg0 : Group name or identifier, in the range .*

True if group or numerical id exists on this host
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"gname" expression => groupexists("users");

"gid" expression => groupexists("100");

reports:

gname::

"Group exists by name";

Chapter 11: Special functions 379

gid::

"Group exists by id";

}

Notes:

The group may be specified by name or number.

11.24 Function hash

Synopsis: hash(arg0,arg1) returns type string

arg0 : Input text, in the range .*
arg1 : Hash or digest algorithm, in the range md5,sha1,sha256,sha512,sha384,crypt

Return the hash of arg1, type arg2 and assign to a variable
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"md5" string => hash("Cfengine is not cryptic","md5");

reports:

Yr2008::

"Hashed to: $(md5)";

}

380 Cfengine reference manual

Notes:

Hash functions are extremely sensitive to input. You should not expect to get the same answer
from this function as you would from every other tool, since it depends on how whitespace and end
of file characters are handled.

Valid hash types (depending on availablity) include: md5, sha1, sha256, sha512 ,sha384, crypt.

11.25 Function hashmatch

Synopsis: hashmatch(arg0,arg1,arg2) returns type class

arg0 : Filename to hash, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Hash or digest algorithm, in the range md5,sha1,crypt,cf sha224,cf sha256,cf sha384,cf sha512

arg2 : ASCII representation of hash for comparison, in the range [a-zA-Z0-9 $()\[\].]+

Compute the hash of arg1, of type arg2 and test if it matches the value in arg 3

Example:

bundle agent example

{

classes:

"matches" expression => hashmatch("/etc/passwd","md5","c5068b7c2b1707f8939b283a2758a691");

reports:

matches::

"File has correct version";

}

Notes:

� �
(class) hashmatch(file,md5|sha1|crypt,hash-comparison);

 	

Chapter 11: Special functions 381

This function may be used to determine whether a system has a particular version of a binary
file (e.g. software patch).
ARGUMENTS:

• The file concerned

• The type of hash

• A string of the hash to which we expect the file to conform.

11.26 Function host2ip

Synopsis: host2ip(arg0) returns type string

arg0 : Host name in ascii, in the range .*

Returns the primary name-service IP address for the named host
Example:

bundle server control

{

allowconnects => { escape(host2ip("www.example.com")) };

}

Notes:

Uses whatever configured name service is used by the resolver library to translate a hostname
into an IP address. It will return an IPv6 address by preference if such an address exists. This
function uses the standard lookup procedure for a name, so it mimics internal processes and can
therefore be used not only to cache multiple lookups in the configuration, but to debug the behaviour
of the resolver.

History: This function was introduced in Cfengine version 3.0.4 (2010)

11.27 Function hostinnetgroup

Synopsis: hostinnetgroup(arg0) returns type class

arg0 : Host name, in the range .*

True if the current host is in the named netgroup
Example:

classes:

382 Cfengine reference manual

"ingroup" expression => hostinnetgroup("my_net_group");

Notes:

11.28 Function hostrange

Synopsis: hostrange(arg0,arg1) returns type class

arg0 : Hostname prefix, in the range .*
arg1 : Enumerated range, in the range .*

True if the current host lies in the range of enumerated hostnames specified

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"compute_nodes" expression => hostrange("cpu-","01-32");

reports:

compute_nodes::

"No computer is a cluster";

}

Notes:

This is a pattern matching function for non-regular (enumerated) expressions.

Chapter 11: Special functions 383

11.29 Function hostsseen

Synopsis: hostsseen(arg0,arg1,arg2) returns type slist

arg0 : Horizon since last seen in hours, in the range 0,99999999999
arg1 : Complements for selection policy, in the range lastseen,notseen
arg2 : Type of return value desired, in the range name,address

Extract the list of hosts last seen/not seen within the last arg1 hours
Example:

bundle agent test

{

vars:

"myhosts" slist => { hostsseen("inf","lastseen","address") };

reports:

cfengine_3::

"Found client/peer: $(myhosts)";

}

Notes:

Finds a list of hosts seen by a cfengine remote connection on the current host within the number
of hours specified by argument 1. Argument 2 may be ‘lastseen’ or ‘notseen’, the latter being all
hosts not observed to have connected within the specified time. Argument 3 may be ‘address’ or
‘name’, to return ip address or hostname form.

11.30 Function hubknowledge

Synopsis: hubknowledge(arg0) returns type string

arg0 : Variable identifier, in the range [a-zA-Z0-9 $()\[\].]+

Read global knowledge from the hub host by id (commercial extension)
Example:

vars:

384 Cfengine reference manual

"global_number" string => hubknowledge("number_variable");

Notes:

This function is only available in commercial releases of Cfengine. It is intended for use in
distributed orchestration. It is recommended that you use this function sparingly with guards, as it
contributes to network traffic and depends on the network for its function.

This function behaves is essentially similar to the remotescalar function, except that it always
gets its information from the policy server hub by an encrypted connection. It is designed for
spreading globally calibrated information about a Cfengine swarm back to the client machines. The
data available through this channel are generated automatically by discovery, unlike remotescalar

which accesses user defined data.

11.31 Function iprange

Synopsis: iprange(arg0) returns type class

arg0 : IP address range syntax, in the range .*

True if the current host lies in the range of IP addresses specified

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"adhoc_group_1" expression => iprange("128.39.89.10-15");

"adhoc_group_2" expression => iprange("128.39.74.1/23");

reports:

adhoc_group_1::

Chapter 11: Special functions 385

"Some numerology";

adhoc_group_2::

"The masked warriors";

}

Notes:

Pattern matching based on IP addresses.

11.32 Function irange

Synopsis: irange(arg0,arg1) returns type irange [int,int]

arg0 : Integer, in the range -99999999999,9999999999
arg1 : Integer, in the range -99999999999,9999999999

Define a range of integer values for cfengine internal use
Example:

irange("1","100");

irange(ago(0,0,0,1,30,0), "0");

Notes:

Used for any scalar attribute which requires an integer range. You can generally interchangeably
say ‘"1,10"’ or ‘irange("1","10")’ (however, if you want to create a range of dates or times, you
must use irange if you also use the functions ‘ago’, ‘now’, ‘accumulated’, etc).

11.33 Function isdir

Synopsis: isdir(arg0) returns type class

arg0 : File object name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if the named object is a directory
Example:

386 Cfengine reference manual

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"isdir" expression => isdir("/etc");

reports:

isdir::

"Directory exists..";

}

Notes:

The cfengine process must have access to the object concerned in order for this to work.

11.34 Function isexecutable

Synopsis: isexecutable(arg0) returns type class

arg0 : File object name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if the named object has execution rights for the current user

Example:

classes:

"yes" expression => isexecutable("/bin/ls");

Notes:

Chapter 11: Special functions 387

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

11.35 Function isgreaterthan

Synopsis: isgreaterthan(arg0,arg1) returns type class

arg0 : Larger string or value, in the range .*
arg1 : Smaller string or value, in the range .*

True if arg1 is numerically greater than arg2, else compare strings like strcmp

Example:

body common control

{

bundlesequence => { "test" };

}

###

bundle agent test

{

classes:

"ok" expression => isgreaterthan("1","0");

reports:

ok::

"Assertion is true";

!ok::

"Assertion is false";

}

Notes:

The comparison is made numerically if possible. If the values are strings, the result is identical
to that of comparing with ‘strcmp()’.

388 Cfengine reference manual

11.36 Function islessthan

Synopsis: islessthan(arg0,arg1) returns type class

arg0 : Smaller string or value, in the range .*
arg1 : Larger string or value, in the range .*

True if arg1 is numerically less than arg2, else compare strings like NOT strcmp

Example:

body common control

{

bundlesequence => { "test" };

}

###

bundle agent test

{

classes:

"ok" expression => islessthan("0","1");

reports:

ok::

"Assertion is true";

!ok::

"Assertion is false";

}

Notes:

The complement of isgreaterthan. The comparison is made numerically if possible. If the
values are strings, the result is identical to that of comparing with ‘strcmp()’.

Chapter 11: Special functions 389

11.37 Function islink

Synopsis: islink(arg0) returns type class

arg0 : File object name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if the named object is a symbolic link
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"isdir" expression => islink("/tmp/link");

reports:

isdir::

"Directory exists..";

}

Notes:

The link node must both exist and be a symbolic link. Hard links cannot be detected using this
function. A hard link is a regular file or directory.

11.38 Function isnewerthan

Synopsis: isnewerthan(arg0,arg1) returns type class

arg0 : Newer file name, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Older file name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

390 Cfengine reference manual

True if arg1 is newer (modified later) than arg2 (mtime)

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"do_it" and => { isnewerthan("/tmp/later","/tmp/earlier"), "linux" };

reports:

do_it::

"The derived file needs updating";

}

Notes:

This function compares the modification time of the file, referring to changes of content only.

11.39 Function isplain

Synopsis: isplain(arg0) returns type class

arg0 : File object name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

True if the named object is a plain/regular file

Example:

body common control

Chapter 11: Special functions 391

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"isplain" expression => isplain("/etc/passwd");

reports:

isplain::

"File exists..";

}

Notes:

11.40 Function isvariable

Synopsis: isvariable(arg0) returns type class

arg0 : Variable identifier, in the range [a-zA-Z0-9 $()\[\].]+

True if the named variable is defined
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

392 Cfengine reference manual

vars:

"bla" string => "xyz..";

classes:

"exists" expression => isvariable("bla");

reports:

exists::

"Variable exists: \"$(bla)\"..";

}

Notes:

The variable need only exist. This says nothing about its value. Use regcmp to check variable
values.

11.41 Function join

Synopsis: join(arg0,arg1) returns type string

arg0 : Join glue-string, in the range .*
arg1 : Cfengine array identifier, in the range [a-zA-Z0-9 $()\[\].]+

Join the items of arg2 into a string, using the conjunction in arg1
Example:

bundle agent test

{

vars:

"mylist" slist => { "one", "two", "three", "four", "five" };

"scalar" string => join("<->","mylist");

reports:

linux::

Chapter 11: Special functions 393

"Concatenated $(scalar)";

}

Notes:

Converts a string of type list into a scalar variable using the join string in first argument.

11.42 Function lastnode

Synopsis: lastnode(arg0,arg1) returns type string

arg0 : Input string, in the range .*
arg1 : Link separator, e.g. /,:, in the range .*

Extract the last of a separated string, e.g. filename from a path

Example:

bundle agent yes

{

vars:

"path1" string => "/one/two/last1";

"path2" string => "one:two:last2";

"last1" string => lastnode("$(path1)","/");

"last2" string => lastnode("$(path2)",":");

"last3" string => lastnode("$(path2)","/");

reports:

Yr2009::

"Last = $(last1),$(last2),$(last3)";

}

Notes:

This function returns the final node in a chain, given a regular expression to split on. This is
mainly useful for finding leaf-names of files, from a fully qualified path name.

394 Cfengine reference manual

11.43 Function laterthan

Synopsis: laterthan(arg0,arg1,arg2,arg3,arg4,arg5) returns type class

arg0 : Years, in the range 0,1000
arg1 : Months, in the range 0,1000
arg2 : Days, in the range 0,1000
arg3 : Hours, in the range 0,1000
arg4 : Minutes, in the range 0,1000
arg5 : Seconds, in the range 0,40000

True if the current time is later than the given date
Example:

classes:

"after_deadline" expression => laterthan(2000,1,1,0,0,0);

Notes:

The arguments are standard time, See Section 11.48 [Function on], page 398.

11.44 Function ldaparray

Synopsis: ldaparray(arg0,arg1,arg2,arg3,arg4,arg5) returns type class

arg0 : URI, in the range .*
arg1 : Distinguished name, in the range .*
arg2 : Filter, in the range .*
arg3 : Record name, in the range .*
arg4 : Search scope policy, in the range subtree,onelevel,base
arg5 : Security level, in the range none,ssl,sasl

Extract all values from an ldap record
Example:

classes:

"gotdata" expression => ldaparray(

"myarray",

"ldap://ldap.example.org",

"dc=cfengine,dc=com",

Chapter 11: Special functions 395

"(uid=mark)",

"subtree",

"none");

Notes:

� �
(class) ldaparray (array,uri,dn,filter,scope,security)

 	
This function retrieves an entire record with all elements and populates an associative array with

the entries. It returns a class which is true if there was a match for the search and false if nothing
was retrieved.
ARGUMENTS:

‘array’ String name of the array to populate with the result of the search

‘uri’ String value of the ldap server. e.g. "ldap://ldap.cfengine.com.no"

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.
"dc=cfengine,dc=com".

‘filter’ String filter criterion, in ldap search, e.g. "(sn=User)".

‘scope’ Menu option, the type of ldap search, from
subtree

onelevel

base

‘security’ Menu option indicating the encryption and authentication settings for communication
with the LDAP server. These features might be subject to machine and server capa-
bilites.

none

ssl

sasl

11.45 Function ldaplist

Synopsis: ldaplist(arg0,arg1,arg2,arg3,arg4,arg5) returns type slist

arg0 : URI, in the range .*
arg1 : Distinguished name, in the range .*
arg2 : Filter, in the range .*
arg3 : Record name, in the range .*
arg4 : Search scope policy, in the range subtree,onelevel,base
arg5 : Security level, in the range none,ssl,sasl

Extract all named values from multiple ldap records
Example:

396 Cfengine reference manual

vars:

Get all matching values for "uid" - should be a single record match

"list" slist => ldaplist(

"ldap://ldap.example.org",

"dc=cfengine,dc=com",

"(sn=User)",

"uid",

"subtree",

"none"

);

Notes:

� �
(slist) ldaplist(uri,dn,filter,name,scope,security)

 	
This function retrieves a single field from all matching LDAP records identified by the search

parameters.
ARGUMENTS:

‘uri’ String value of the ldap server. e.g. "ldap://ldap.cfengine.com.no"

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.
"dc=cfengine,dc=com".

‘filter’ String filter criterion, in ldap search, e.g. "(sn=User)".

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:
subtree

onelevel

base

‘security’ Menu option indicating the encryption and authentication settings for communication
with the LDAP server. These features might be subject to machine and server capa-
bilites.

none

ssl

sasl

11.46 Function ldapvalue

Synopsis: ldapvalue(arg0,arg1,arg2,arg3,arg4,arg5) returns type string

arg0 : URI, in the range .*
arg1 : Distinguished name, in the range .*

Chapter 11: Special functions 397

arg2 : Filter, in the range .*
arg3 : Record name, in the range .*
arg4 : Search scope policy, in the range subtree,onelevel,base
arg5 : Security level, in the range none,ssl,sasl

Extract the first matching named value from ldap

Example:

vars:

Get the first matching value for "uid" in schema

"value" string => ldapvalue(

"ldap://ldap.example.org",

"dc=cfengine,dc=com",

"(sn=User)",

"uid",

"subtree",

"none"

);

Notes:

� �
(string) ldapvalue(uri,dn,filter,name,scope,security)

 	
This function retrieves a single field from a single LDAP record identified by the search param-

eters. The first matching value it taken.

ARGUMENTS:

‘uri’ String value of the ldap server. e.g. "ldap://ldap.cfengine.com.no"

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.
"dc=cfengine,dc=com".

‘filter’ String filter criterion, in ldap search, e.g. "(sn=User)".

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:

subtree

onelevel

base

398 Cfengine reference manual

11.47 Function now

Synopsis: now() returns type int

Convert the current time into system representation
Example:

body file_select zero_age

{

mtime => irange(ago(1,0,0,0,0,0),now);

file_result => "mtime";

}

Notes:

11.48 Function on

Synopsis: on(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Year, in the range 1970,3000
arg1 : Month, in the range 1,12
arg2 : Day, in the range 1,31
arg3 : Hour, in the range 0,23
arg4 : Minute, in the range 0,59
arg5 : Second, in the range 0,59

Convert an exact date/time to an integer system representation
Example:

body file_select zero_age

{

mtime => irange(on(2000,1,1,0,0,0),now);

file_result => "mtime";

}

Notes:

An absolute date in the local timezone. Note that in process matching dates could be wrong by
an hour depending on Daylight Savings Time / Summer Time. This is a known bug to be fixed.

Chapter 11: Special functions 399

ARGUMENTS:

‘Years’ The year, e.g. 2009

‘Month’ The Month, 1-12

‘Day’ The day 1-31

‘Hours’ The hour 0-23

‘Minutes’ The minutes 0-59

‘Seconds’ The number of seconds 0-59

11.49 Function peers

Synopsis: peers(arg0,arg1,arg2) returns type slist

arg0 : File name of host list, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Comment regex pattern, in the range .*
arg2 : Peer group size, in the range 0,99999999999

Get a list of peers (not including ourself) from the partition to which we belong
Example:

bundle agent peers

{

vars:

"mygroup" slist => peers("/tmp/hostlist","#.*",4);

"myleader" string => peerleader("/tmp/hostlist","#.*",4);

"all_leaders" slist => peerleaders("/tmp/hostlist","#.*",4);

reports:

linux::

"mypeer $(mygroup)";

"myleader $(myleader)";

"another leader $(all_leaders)";

}

Notes:

400 Cfengine reference manual

� �
(slist) peers(file of hosts,comment pattern,group size);

 	
This function returns a list of hostnames that may be considered peers of the current host. Peers

are defined according to a list of hosts, provided as a file in the first argument. This file should
contain a list (one per line), possible with comments, of fully qualified host names. Cfengine breaks
up this list into non-overlapping groups of up to groupsize, each of which has a leader which is the
first host in the group.

The current host should belong to this file if it is expected to interact with the others. The
function returns nothing if the host does not belong to the list.
ARGUMENTS:

‘File of hosts’
A path to a list of hosts.

‘Comment pattern’
A pattern that matches a legal comment in the file. The regex may match a partial
line (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36). Comments are stripped as the file is read.

‘Group size’
A number between 2 and 64 which represents the number of peers in a peer-group. An
arbitary limit of 64 is set on groups to avoid nonsensical promises.

Example file:
one

two

three # this is a comment

four

five

six

seven

eight

nine

ten

eleven

twelve

etc

11.50 Function peerleader

Synopsis: peerleader(arg0,arg1,arg2) returns type string

arg0 : File name of host list, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Comment regex pattern, in the range .*
arg2 : Peer group size, in the range 0,99999999999

Get the assigned peer-leader of the partition to which we belong
Example:

Chapter 11: Special functions 401

bundle agent peers

{

vars:

"mygroup" slist => peers("/tmp/hostlist","#.*",4);

"myleader" string => peerleader("/tmp/hostlist","#.*",4);

"all_leaders" slist => peerleaders("/tmp/hostlist","#.*",4);

reports:

linux::

"mypeer $(mygroup)";

"myleader $(myleader)";

"another leader $(all_leaders)";

}

Notes:

� �
(string) peerleader(file of hosts,comment pattern,group size);

 	
This function returns the name of a ost that may be considered the leader of a group of peers

of the current host. Peers are defined according to a list of hosts, provided as a file in the first
argument. This file should contain a list (one per line), possibly with comments, of fully qualified
host names. Cfengine breaks up this list into non-overlapping groups of up to groupsize, each of
which has a leader which is the first host in the group.

The current host should belong to this file if it is expected to interact with the others. The
function returns nothing if the host does not belong to the list.
ARGUMENTS:

‘File of hosts’
A path to a list of hosts.

‘Comment pattern’
A pattern that matches a legal comment in the file. The regex may match a partial
line (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36). Comments are stripped as the file is read.

‘Group size’
A number between 2 and 64 which represents the number of peers in a peer-group. An
arbitary limit of 64 is set on groups to avoid nonsensical promises.

Example file:
one

402 Cfengine reference manual

two

three # this is a comment

four

five

six

seven

eight

nine

ten

eleven

twelve

etc

11.51 Function peerleaders

Synopsis: peerleaders(arg0,arg1,arg2) returns type slist

arg0 : File name of host list, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Comment regex pattern, in the range .*
arg2 : Peer group size, in the range 0,99999999999

Get a list of peer leaders from the named partitioning
Example:

bundle agent peers

{

vars:

"mygroup" slist => peers("/tmp/hostlist","#.*",4);

"myleader" string => peerleader("/tmp/hostlist","#.*",4);

"all_leaders" slist => peerleaders("/tmp/hostlist","#.*",4);

reports:

linux::

"mypeer $(mygroup)";

"myleader $(myleader)";

"another leader $(all_leaders)";

}

Notes:

Chapter 11: Special functions 403

� �
(slist) peers(file of hosts,comment pattern,group size);

 	
This function returns a list of hostnames that may be considered peer leaders in the partitioning

scheme described in the file of hosts. Peers are defined according to a list of hosts, provided as a file
in the first argument. This file should contain a list (one per line), possible with comments, of fully
qualified host names. Cfengine breaks up this list into non-overlapping groups of up to groupsize,
each of which has a leader which is the first host in the group.

The current host need not belong to this file.
ARGUMENTS:

‘File of hosts’
A path to a list of hosts.

‘Comment pattern’
A pattern that matches a legal comment in the file. The regex may match a partial
line (that is, it is unanchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36). Comments are stripped as the file is read.

‘Group size’
A number between 2 and 64 which represents the number of peers in a peer-group. An
arbitary limit of 64 is set on groups to avoid nonsensical promises.

Example file:
one

two

three # this is a comment

four

five

six

seven

eight

nine

ten

eleven

twelve

etc

11.52 Function product

Synopsis: product(arg0) returns type real

arg0 : A list of arbitrary real values, in the range [a-zA-Z0-9 $()\[\].]+

Return the product of a list of reals
Example:

bundle agent test

{

vars:

404 Cfengine reference manual

"series" rlist => { "1.1", "2.2", "3.3", "5.5", "7.7" };

"prod" real => product("series");

"sum" real => sum("series");

reports:

cfengine_3::

"Product result: $(prod) > $(sum)";

}

Notes:

Of course, you could easily combine product with readstringarray or readreallist, etc. to
collect summary information from a source external to Cfengine.

History: Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

This function might be used for simple ring computation.

11.53 Function randomint

Synopsis: randomint(arg0,arg1) returns type int

arg0 : Lower inclusive bound, in the range -99999999999,9999999999
arg1 : Upper inclusive bound, in the range -99999999999,9999999999

Generate a random integer between the given limits

Example:

vars:

"ran" int => randomint(4,88);

Notes:

The limits must be integer values and the resulting numbers are based on the entropy of the md5
algorithm.

11.54 Function readfile

Synopsis: readfile(arg0,arg1) returns type string

arg0 : File name, in the range "?(([a-zA-Z]:\\.*)|(/.*))

Chapter 11: Special functions 405

arg1 : Maximum number of bytes to read, in the range 0,99999999999

Read max number of bytes from named file and assign to variable
Example:

vars:

"xxx"

string => readfile("/home/mark/tmp/testfile" , "33");

Notes:

The file (fragment) is read into a single scalar variable.

11.55 Function readintarray

Synopsis: readintarray(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Array identifer to populate, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg2 : Regex matching comments, in the range .*
arg3 : Regex to split data, in the range .*
arg4 : Maximum number of entries to read, in the range 0,99999999999
arg5 : Maximum bytes to read, in the range 0,99999999999

Read an array of integers from a file and assign the dimension to a variable
Example:

vars:

"dim_array"

int => readintarray("array_name","/tmp/array","#[^\n]*",":",10,4000);

ARGUMENTS:

‘array_name’
The name to be used for the container array (the array is filled by this routine).

‘filename’ The name of a text file containing the text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped

406 Cfengine reference manual

characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

Reads a two dimensional array from a file. One dimension is separated by the character specified
in the argument, the other by the the lines in the file. The first field of the lines names the first
array argument.

1: 5:7:21:13

2:19:8:14:14

3:45:1:78:22

4:64:2:98:99

Results in
array_name[1][0] 1

array_name[1][1] 5

array_name[1][2] 7

array_name[1][3] 21

array_name[1][4] 13

array_name[2][0] 2

array_name[2][1] 19

array_name[2][2] 8

array_name[2][3] 14

array_name[2][4] 14

array_name[3][0] 3

array_name[3][1] 45

array_name[3][2] 1

array_name[3][3] 78

array_name[3][4] 22

array_name[4][0] 4

array_name[4][1] 64

array_name[4][2] 2

array_name[4][3] 98

array_name[4][4] 99

11.56 Function readintlist

Synopsis: readintlist(arg0,arg1,arg2,arg3,arg4) returns type ilist

arg0 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Regex matching comments, in the range .*
arg2 : Regex to split data, in the range .*
arg3 : Maximum number of entries to read, in the range 0,99999999999
arg4 : Maximum bytes to read, in the range 0,99999999999

Read and assign a list variable from a file of separated ints

Chapter 11: Special functions 407

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"mylist" ilist => { readintlist("/tmp/listofint","#.*","[\n]",10,400) };

reports:

Yr2008::

"List entry: $(mylist)";

}

ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

11.57 Function readrealarray

Synopsis: readrealarray(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

408 Cfengine reference manual

arg0 : Array identifer to populate, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg2 : Regex matching comments, in the range .*
arg3 : Regex to split data, in the range .*
arg4 : Maximum number of entries to read, in the range 0,99999999999
arg5 : Maximum bytes to read, in the range 0,99999999999

Read an array of real numbers from a file and assign the dimension to a variable
Example:

vars:

"dim_array"

int => readrealarray("array_name","/tmp/array","#[^\n]*",":",10,4000);

ARGUMENTS:

‘array_name’
The name to be used for the container array (the array is filled by this routine).

‘filename’ The name of a text file containing the text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

For detailed notes, See Section 11.55 [Function readintarray], page 405.

11.58 Function readreallist

Synopsis: readreallist(arg0,arg1,arg2,arg3,arg4) returns type rlist

arg0 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Regex matching comments, in the range .*
arg2 : Regex to split data, in the range .*
arg3 : Maximum number of entries to read, in the range 0,99999999999

Chapter 11: Special functions 409

arg4 : Maximum bytes to read, in the range 0,99999999999

Read and assign a list variable from a file of separated real numbers
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"mylist" rlist => { readreallist("/tmp/listofreal","#.*","[\n]",10,400) };

reports:

Yr2008::

"List entry: $(mylist)";

}

ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

410 Cfengine reference manual

11.59 Function readstringarray

Synopsis: readstringarray(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Array identifer to populate, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg2 : Regex matching comments, in the range .*
arg3 : Regex to split data, in the range .*
arg4 : Maximum number of entries to read, in the range 0,99999999999
arg5 : Maximum bytes to read, in the range 0,99999999999

Read an array of strings from a file and assign the dimension to a variable
Example:

vars:

"dim_array"

int => readstringarray("array_name","/tmp/array","\s*#[^\n]*",":",10,4000);

Returns an integer number of keys in the array (i.e., the number of lines matched). If you only
want the fields in the first matching line (e.g., to mimic the behavior of the getpwnam(3) on the file
‘/etc/passwd’), See Section 11.17 [Function getfields], page 373 instead.
ARGUMENTS:

‘array_name’
The name to be used for the container array (the array is filled by this routine).

‘filename’ The name of a text file containing the text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

Reads a two dimensional array from a file. One dimension is separated by the character specified
in the argument, the other by the the lines in the file. The first field of the lines names the first
array argument.

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash

Chapter 11: Special functions 411

avahi:x:103:105:User for Avahi:/var/run/avahi-daemon:/bin/false # Disallow login

beagleindex:x:104:106:User for Beagle indexing:/var/cache/beagle:/bin/bash

bin:x:1:1:bin:/bin:/bin/bash

Daemon has the default shell

daemon:x:2:2:Daemon:/sbin:

Results in a systematically indexed map of the file. Some samples are show below to illustrate the
pattern.

...

array_name[daemon][0] daemon

array_name[daemon][1] x

array_name[daemon][2] 2

array_name[daemon][3] 2

array_name[daemon][4] Daemon

array_name[daemon][5] /sbin

array_name[daemon][6] /bin/bash

...

array_name[at][3] 25

array_name[at][4] Batch jobs daemon

array_name[at][5] /var/spool/atjobs

array_name[at][6] /bin/bash

...

array_name[games][3] 100

array_name[games][4] Games account

array_name[games][5] /var/games

array_name[games][6] /bin/bash

...

11.60 Function readstringarrayidx

Synopsis: readstringarrayidx(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

arg0 : Array identifer to populate, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg2 : Regex matching comments, in the range .*
arg3 : Regex to split data, in the range .*
arg4 : Maximum number of entries to read, in the range 0,99999999999
arg5 : Maximum bytes to read, in the range 0,99999999999

Read an array of strings from a file and assign the dimension to a variable with integer indeces

Example:

vars:

"dim_array"

int => readstringarrayidx("array_name","/tmp/array","\s*#[^\n]*",":",10,4000);

412 Cfengine reference manual

Returns an integer number of keys in the array (i.e., the number of lines matched). If you only
want the fields in the first matching line (e.g., to mimic the behavior of the getpwnam(3) on the file
‘/etc/passwd’), See Section 11.17 [Function getfields], page 373 instead.
ARGUMENTS:

‘array_name’
The name to be used for the container array (the array is filled by this routine).

‘filename’ The name of a text file containing the text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36.

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

Reads a two dimensional array from a file. One dimension is separated by the character specified
in the argument, the other by the the lines in the file. The array arguments are both integer
indeces, allowing for non-identifiers at first field (e.g. duplicates or names with spaces), unlike
readstringarray.

at spaced:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash

duplicate:x:103:105:User for Avahi:/var/run/avahi-daemon:/bin/false # Disallow login

beagleindex:x:104:106:User for Beagle indexing:/var/cache/beagle:/bin/bash

duplicate:x:1:1:bin:/bin:/bin/bash

Daemon has the default shell

daemon:x:2:2:Daemon:/sbin:

Results in a systematically indexed map of the file. Some samples are show below to illustrate the
pattern.

array_name[0][0] at spaced

array_name[0][1] x

array_name[0][2] 25

array_name[0][3] 25

array_name[0][4] Batch jobs daemon

array_name[0][5] /var/spool/atjobs

array_name[0][6] /bin/bash

array_name[1][0] duplicate

array_name[1][1] x

array_name[1][2] 103

array_name[1][3] 105

array_name[1][4] User for Avahi

array_name[1][5] /var/run/avahi-daemon

array_name[1][6] /bin/false

...

Chapter 11: Special functions 413

11.61 Function readstringlist

Synopsis: readstringlist(arg0,arg1,arg2,arg3,arg4) returns type slist

arg0 : File name to read, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Regex matching comments, in the range .*
arg2 : Regex to split data, in the range .*
arg3 : Maximum number of entries to read, in the range 0,99999999999
arg4 : Maximum bytes to read, in the range 0,99999999999

Read and assign a list variable from a file of separated strings
Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

vars:

"mylist" slist => { readstringlist("/tmp/listofstring", "#.*", "\s", 10, 400) };

reports:

Yr2008::

"List entry: $(mylist)";

}

ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.

‘comment’ A regex pattern which specifies comments to be ignored in the file. The comment

field will strip out unwanted patterns from the file being read, leaving unstripped
characters to be split into fields. The regex is unanchored See Section 2.10.4 [Anchored
vs. unanchored regular expressions], page 36. Note that the text is not treated as a
collection of lines, but is read as a single block of maxsize characters, and the regex is
applied to that as a single string.

414 Cfengine reference manual

‘split’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The split regex is also unanchored.

‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

The following example file would be split into a list of the first ten Greek letters - alpha through
kappa.

alpha beta

gamma # This is a comment

delta epsilon zeta

eta

theta

iota

kappa lambda

mu

nu

etc

11.62 Function readtcp

Synopsis: readtcp(arg0,arg1,arg2,arg3) returns type string

arg0 : Host name or IP address of server socket, in the range .*
arg1 : Port number, in the range 0,99999999999
arg2 : Protocol query string, in the range .*
arg3 : Maximum number of bytes to read, in the range 0,99999999999

Connect to tcp port, send string and assign result to variable
Example:

bundle agent example

{

vars:

"my80" string => readtcp("research.iu.hio.no","80","GET /index.php HTTP/1.1$(const.r)$(const.n)Host: research.iu.hio.no$(const.r)$(const.n)$(const.r)$(const.n)",20);

classes:

"server_ok" expression => regcmp(".*200 OK.*\n.*","$(my80)");

Chapter 11: Special functions 415

reports:

server_ok::

"Server is alive";

!server_ok::

"Server is not responding - got $(my80)";

}

‘hostnameip’
The host name or IP address of a tcp socket.

‘port’ The port number to connect to.

‘sendstring’
A string to send to the TCP port to elicit a response

‘maxbytes’ The maximum number of bytes to read in response.

Important note: not all Unix TCP read operations respond to signals for interruption so poorly
formed requests can hang. Always test TCP connections fully before deploying. When matching
multi-line responses, not that regular expressions do not cross newline boundaries.
Notes:

If the send string is empty, no data are sent or received from the socket. Then the function only
tests whether the TCP port is alive and returns an empty variable.

Note that on some systems the timeout mechanism does not seem to successfully interrupt the
waiting system calls so this might hang if you send a query string that is incorrect. This should not
happen, but the cause has yet to be diagnosed.

11.63 Function regarray

Synopsis: regarray(arg0,arg1) returns type class

arg0 : Cfengine array identifier, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : Regular expression, in the range .*

True if arg1 matches any item in the associative array with id=arg2
Example:

body common control

{

416 Cfengine reference manual

bundlesequence => { "testbundle" };

}

###

bundle agent testbundle

{

vars:

"myarray[0]" string => "bla1";

"myarray[1]" string => "bla2";

"myarray[3]" string => "bla";

"myarray" string => "345";

"not" string => "345";

classes:

"ok" expression => regarray("myarray","b.*2");

reports:

ok::

"Found in list";

!ok::

"Not found in list";

}

Notes:

Tests whether an associative array contains elements matching a certain regular expression. The
result is a class.
ARGUMENTS:

‘array_name’
The name of the array, with no ‘$()’ surrounding it, etc.

‘regex’ A regular expression to match the content. The regular expression must match the
complete array element (that is, it is anchored See Section 2.10.4 [Anchored vs. unan-
chored regular expressions], page 36).

11.64 Function regcmp

Synopsis: regcmp(arg0,arg1) returns type class

Chapter 11: Special functions 417

arg0 : Regular expression, in the range .*
arg1 : Match string, in the range .*

True if arg1 is a regular expression matching that matches string arg2
Example:

bundle agent subtest(user)

{

classes:

"invalid" not => regcmp("[a-z]{4}","$(user)");

reports:

!invalid::

"User name $(user) is valid at exactly 4 letters";

invalid::

"User name $(user) is invalid";

}

Notes:

Compares a string to a regular expression.
ARGUMENTS:

‘regex’ A regular expression to match the content. The regular expression must match the
complete content (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored
regular expressions], page 36).

‘string’ Test data for the regular expression.

If there are multiple-lines in the data, it is necessary to code these explicitly, as regular expressions
do not normally match the end of line as a regular character (they only match end of string). You
can do this using either standard regular expression syntax or using the additional features of PCRE
(where (?ms) changes the way that ‘.’, ‘^’ and ‘$’ behave), e.g.

body common control

{

bundlesequence => { "example" };

}

418 Cfengine reference manual

bundle agent example

{

vars:

"x" string => "

NAME: apache2 - Apache 2.2 web server

CATEGORY: application

ARCH: all

VERSION: 2.2.3,REV=2006.09.01

BASEDIR: /

VENDOR: http://httpd.apache.org/ packaged for CSW by Cory Omand

PSTAMP: comand@thor-20060901022929

INSTDATE: Dec 14 2006 16:05

HOTLINE: http://www.blastwave.org/bugtrack/

EMAIL: comand@blastwave.org

STATUS: completely installed

";

classes:

"pkg_installed" expression => regcmp("(.*\n)*STATUS:\s+completely installed\n(.*\n)*",$(x));

"base_is_root" expression => regcmp("(?ms).*^BASEDIR:\s+/$.*", $(x));

reports:

pkg_installed::

"installed";

base_is_root::

"in root";

}

11.65 Function regextract

Synopsis: regextract(arg0,arg1,arg2) returns type class

arg0 : Regular expression, in the range .*
arg1 : Match string, in the range .*
arg2 : Identifier for back-references, in the range [a-zA-Z0-9 $()\[\].]+

True if the regular expression in arg 1 matches the string in arg2 and sets a non-empty array of
backreferences named arg3
Example:

bundle agent testbundle

{

classes:

Chapter 11: Special functions 419

Extract regex backreferences and put them in an array

"ok" expression => regextract(

"xx ([^\s]+) ([^\s]+).* xx",

"xx one two three four xx",

"myarray"

);

reports:

ok::

"ok - \"$(myarray[0])\" = xx + \"$(myarray[1])\" + \"$(myarray[2])\" + .. + xx";

}

Notes:

Arguments:

regex A regular expression containing one or more parenthesized back references. The regular
expression must match the entire string (that is, it is anchored See Section 2.10.4
[Anchored vs. unanchored regular expressions], page 36).

data A string to be matched to the regular expression.

identifier The name of an array which (if there are any back reference matches from the regular
expression) will be populated with the values, in the manner

$(identifier[0]) = entire string

$(identifier[1]) = back reference 1, etc

History: This function was introduced in Cfengine version 3.0.4 (2010)

11.66 Function registryvalue

Synopsis: registryvalue(arg0,arg1) returns type string

arg0 : Windows registry key, in the range .*
arg1 : Windows registry value-id, in the range .*

Returns a value for an MS-Win registry key,value pair
Example:

bundle agent reg

{

vars:

420 Cfengine reference manual

"value" string => registryvalue("HKEY_LOCAL_MACHINE\SOFTWARE\Cfengine AS\Cfengine","value3");

reports:

windows::

"Value extracted: $(value)";

}

Notes:

This function applies only to Windows based systems. it reads a data field for the value named
in the second argument, which lies within the registry key given by the first argument.

11.67 Function regline

Synopsis: regline(arg0,arg1) returns type class

arg0 : Regular expression, in the range .*
arg1 : Filename to search, in the range .*

True if the regular expression in arg1 matches a line in file arg2
Example:

bundle agent testbundle

{

files:

"/tmp/testfile" edit_line => test;

}

##

bundle edit_line test

{

classes:

"ok" expression => regline(".*XYZ.*","$(edit.filename)");

reports:

ok::

Chapter 11: Special functions 421

"File $(edit.filename) has a line with \"XYZ\" in it";

}

Notes:

Note that the regular expression must match an entire line of the file in order to give a true
result. This function is useful for edit_line applications, where one might want to set a class for
detecting the presence of a string which does not exactly match one being inserted. e.g.

bundle edit_line upgrade_cfexecd

{

classes:

Check there is not already a crontab line, not identical to

the one proposed below...

"exec_fix" not => regline(".*cf-execd.*","$(edit.filename)");

insert_lines:

exec_fix::

"0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/cfengine/bin/cf-execd -F";

reports:

exec_fix::

"Added a 5 minute schedule to crontabs";

}

11.68 Function reglist

Synopsis: reglist(arg0,arg1) returns type class

arg0 : Cfengine list identifier, in the range @[(][a-zA-Z0-9]+[)]
arg1 : Regular expression, in the range .*

True if the regular expression in arg2 matches any item in the list whose id is arg1
Example:

422 Cfengine reference manual

vars:

"nameservers" slist => {

"128.39.89.10",

"128.39.74.16",

"192.168.1.103"

};

classes:

"am_name_server" expression => reglist("@(nameservers)",escape("$(sys.ipv4[eth0])"));

Notes:

Matches a list of test strings to a regular expression. In the example above, the IP address in
$(sys.ipv4[eth0]) must be escaped, because if not, the dot (‘.’) characters in the IP address
would be interpreted as regular expression "match any" characters.
ARGUMENTS:

‘list’ The list of strings to test with the regular expression.

‘regex’ The scalar regular expression string. The regular expression must match the entire
string (that is, it is anchored See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

11.69 Function regldap

Synopsis: regldap(arg0,arg1,arg2,arg3,arg4,arg5,arg6) returns type class

arg0 : URI, in the range .*
arg1 : Distinguished name, in the range .*
arg2 : Filter, in the range .*
arg3 : Record name, in the range .*
arg4 : Search scope policy, in the range subtree,onelevel,base
arg5 : Regex to match results, in the range .*
arg6 : Security level, in the range none,ssl,sasl

True if the regular expression in arg6 matches a value item in an ldap search
Example:

classes:

"found" expression => regldap(

"ldap://ldap.example.org",

"dc=cfengine,dc=com",

"(sn=User)",

Chapter 11: Special functions 423

"uid",

"subtree",

"jon.*",

"none"

);

Notes:

� �
(class) regldap(uri,dn,filter,name,scope,regex,security)

 	
This function retrieves a single field from all matching LDAP records identified by the search

parameters and compares it to a regular expression. If there is a match, true is returned else false.
ARGUMENTS:

‘uri’ String value of the ldap server. e.g. "ldap://ldap.cfengine.com.no"

‘dn’ Distinguished name, an ldap formatted name built from components, e.g.
"dc=cfengine,dc=com".

‘filter’ String filter criterion, in ldap search, e.g. "(sn=User)".

‘name’ String value, the name of a single record to be retrieved, e.g. uid.

‘scope’ Menu option, the type of ldap search, from the specified root. May take values:
subtree

onelevel

base

‘regex’ A regular expression string to match to the results of an LDAP search. The regular
expression must match the entire named field (that is, it is anchored See Section 2.10.4
[Anchored vs. unanchored regular expressions], page 36). If any item matches the
regex, the result will be true.

‘security’ Menu option indicating the encryption and authentication settings for communication
with the LDAP server. These features might be subject to machine and server capa-
bilites.

none

ssl

sasl

11.70 Function remotescalar

Synopsis: remotescalar(arg0,arg1,arg2) returns type string

arg0 : Variable identifier, in the range [a-zA-Z0-9 $()\[\].]+
arg1 : Hostname or IP address of server, in the range .*
arg2 : Use enryption, in the range true,false,yes,no,on,off

424 Cfengine reference manual

Read a scalar value from a remote cfengine server
Example:

vars:

"remote" string => remotescalar("test_scalar","127.0.0.1","yes");

Notes:

Cfengine caches the value of this variable, so that, if the network is unavailable, the last known
value will be used. Hence use of this function is fault tolerant. Care should be taken in attempting
to access remote variables that are not available, as the repeated connections needed to resolve the
absence of a value can lead to undesirable behaviour. As a general rule, users are recommended to
refrain from relying on the availability of network resources.� �
(string) remotescalar(resource handle,host/IP address,encrypt);

 	
This function downloads a string from a remote server, using the promise handle as a variable

identifier. Availability: Enterprise editions of Cfengine only.
ARGUMENTS:

‘resource handle’
The name of the promise on the server side

‘host or IP address’
The location of the server on which the resource resides.

‘encrypt’ Whether to encrypt the connection to the server.
true

yes

false

no

Note that this function assumes that you have already performed a successful key exchange
between systems, (e.g. using either a remote copy or cf-runagent connection). It contains no
mechanism for trust establishment and will fail if there is no trust relationship pre-established.

11.71 Function remoteclassesmatching

Synopsis: remoteclassesmatching(arg0,arg1,arg2,arg3) returns type class

arg0 : Regular expression, in the range .*
arg1 : Server name or address, in the range .*
arg2 : Use encryption, in the range true,false,yes,no,on,off
arg3 : Return class prefix, in the range [a-zA-Z0-9 $()\[\].]+

Chapter 11: Special functions 425

Read persistent classes matching a regular expression from a remote cfengine server and add them
into local context with prefix
Example:

"succeeded" expression => remoteclassesmatching("regex","server","yes","myprefix");

Notes:

This function is only available in Enterprise versions of Cfengine (Nova, Constellation, etc).
This function contacts a remote cf-serverd and requests access to defined persistent classes on

that system. These must be granted access to by making an access promise with resource_type

set to context.
The return value is true (sets the class) if communication with the server was successful and

classes are populated in the current bundle with a prefix of your choosing. The arguments are:

Regular expression
This should match a list of persistent classes of be returned from the server, if the
server is willing, i.e. has granted access to them.

Server The name or IP address of the remote server.

Encryption Boolean value, whether or not to encrypt communication.

Prefix A string to be added to the returned classes, e.g. if the server defines a persistent
class ‘alpha’, then this would generate a private class in the current bundle called
‘myprefix_alpha’.

Note that this function assumes that you have already performed a successful key exchange
between systems, (e.g. using either a remote copy or cf-runagent connection). It contains no
mechanism for trust establishment and will fail if there is no trust relationship pre-established.

11.72 Function returnszero

Synopsis: returnszero(arg0,arg1) returns type class

arg0 : Fully qualified command path, in the range "?(([a-zA-Z]:\\.*)|(/.*))
arg1 : Shell encapsulation option, in the range useshell,noshell

True if named shell command has exit status zero
Example:

body common control

{

bundlesequence => { "example" };

426 Cfengine reference manual

}

###

bundle agent example

{

classes:

"my_result" expression => returnszero("/usr/local/bin/mycommand","noshell");

reports:

!my_result::

"Command failed";

}

Notes:

This is the complement of execresult, but it returns a class result rather than the output of
the command.

11.73 Function rrange

Synopsis: rrange(arg0,arg1) returns type rrange [real,real]

arg0 : Real number, in the range -9.99999E100,9.99999E100
arg1 : Real number, in the range -9.99999E100,9.99999E100

Define a range of real numbers for cfengine internal use
Example:

?

Notes:

This is not yet used.

11.74 Function selectservers

Synopsis: selectservers(arg0,arg1,arg2,arg3,arg4,arg5) returns type int

Chapter 11: Special functions 427

arg0 : The identifier of a cfengine list of hosts or addresses to contact, in the range @[(][a-zA-Z0-
9]+[)]

arg1 : The port number, in the range 0,99999999999
arg2 : A query string, in the range .*
arg3 : A regular expression to match success, in the range .*
arg4 : Maximum number of bytes to read from server, in the range 0,99999999999
arg5 : Name for array of results, in the range [a-zA-Z0-9 $()\[\].]+

Select tcp servers which respond correctly to a query and return their number, set array of names

Example:

body common control

{

bundlesequence => { "test" };

}

###

bundle agent test

{

vars:

"hosts" slist => { "slogans.iu.hio.no", "eternity.iu.hio.no", "nexus.iu.hio.no" };

"fhosts" slist => { "www.cfengine.com", "www.cfengine.org" };

"up_servers" int => selectservers("@(hosts)","80","","","100","alive_servers");

"has_favicon" int =>

selectservers(

"@(hosts)", "80",

"GET /favicon.ico HTTP/1.0$(const.n)Host: www.cfengine.com$(const.n)$(const.n)",

"(?s).*OK.*",

"200", "favicon_servers");

classes:

"someone_alive" expression => isgreaterthan("$(up_servers)","0");

"has_favicon" expression => isgreaterthan("$(has_favicon)","0");

reports:

428 Cfengine reference manual

cfengine_3::

"Number of active servers $(up_servers)";

someone_alive::

"First server $(alive_servers[0]) fails over to $(alive_servers[1])";

has_favicon::

"At least $(favicon_servers[0]) has a favicon.ico";

}

Notes:

This function selects all the TCP ports that are active and functioning from an ordered list and
builds an array of their names. This allows us to select a current list of failover alternatives that are
pretested.

‘hostlist’ A list of host names or IP addresses to attempt to connect to.

‘port’ The port number for the service.

‘sendstr’ An optional string to send to the server to elicit a response. If sendstr is empty, then
no query is sent to the server.

‘regex_on_reply’
If a string is sent, this regex must match the entire resulting reply (that is, the regex is
anchored See Section 2.10.4 [Anchored vs. unanchored regular expressions], page 36).
If there is a multi-line response from the server, special care must be taken to ensure
that you match the newlines, too (note the use of (?s) in the example above, which
allows ‘.’ to also match newlines in the multi-line HTTP response). If regex_on_reply
is empty, then no reply-checking is performed (and any server reply is deemed to be
satisfactory).

‘maxbytesread_reply’
The maximum number of bytes to read as the server’s reply.

‘array_name’
The name of the array to build containing the names of hosts that pass the above tests.
The array is ordered array_name[0],.. etc.

11.75 Function splayclass

Synopsis: splayclass(arg0,arg1) returns type class

arg0 : Input string for classification, in the range .*
arg1 : Splay time policy, in the range daily,hourly

True if the first argument’s time-slot has arrived, according to a policy in arg2

Chapter 11: Special functions 429

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"my_result" expression => splayclass("$(sys.host)$(sys.ipv4)","daily");

reports:

my_result::

"Load balanced class activated";

}

Notes:

The lvalue class evaluates to true if the system clock lies within a scheduled time-interval that
maps to a hash of the first argument (which may be any arbitrary string). Different strings will hash
to different time intervals, and thus one can map different tasks to time-intervals.

This function may be used to distribute a task, typically in multiple hosts, in time over a day or
an hourly period, depending on the policy in the second argument (which must be one of "daily"
or "hourly"). This is useful for copying resources to multiple hosts from a single server, (e.g. large
software updates), when simultaneous scheduling would lead to a bottleneck and/or server overload.

The function is similar to the splaytime feature in cf-execd, except that it allows you to base
the decision on any string-criterion on a given host. The entropy (or string-variation) in the first
argument determines how effectively cfengine will be able to distribute tasks. Cfengine instances
with the same first argument will yield a true result at the same time (and different first argument
will yield a true result at a different time). Thus tasks could be scheduled according to group names
for predictability, or according to IP addresses for distribution across the policy interval.

The times at which the splayclass will be defined depends on the second argument. If the first
argument is "hourly" then the class will be defined for a 5-minute interval every hour (and if the
first argument is "daily", then the class will be defined for one 5-minute interval every day. This

430 Cfengine reference manual

means that splayclass assumes that you are running Cfengine with the default schedule of "every
5 minutes". If you change the executor schedule control variable, you may prevent the splayclass
from ever being defined (that is, if the hashed 5-minute interval that is selected by the splayclass is
a time when you have told Cfengine not to run).

11.76 Function splitstring

Synopsis: splitstring(arg0,arg1,arg2) returns type slist

arg0 : A data string, in the range .*
arg1 : Regex to split on, in the range .*
arg2 : Maximum number of pieces, in the range 0,99999999999

Convert a string in arg1 into a list of max arg3 strings by splitting on a regular expression in arg2
Example:

bundle agent test

{

vars:

"split1" slist => splitstring("one:two:three",":","10");

"split1" slist => splitstring("one:two:three",":","1");

"split3" slist => splitstring("alpha:xyz:beta","xyz","10");

reports:

linux::

"split1: $(split1)"; # will list "one", "two", and "three"

"split2: $(split2)"; # will list "one" and "two:three"

"split3: $(split3)"; # will list "alpha:" and ":beta"

}

Notes:

Returns a list of strings from a string.
ARGUMENTS:

‘string’ The string to be split.

‘regex’ A regex pattern which is used to parse the field separator(s) to split up the file into
items. The regex is unanchored, See Section 2.10.4 [Anchored vs. unanchored regular
expressions], page 36).

Chapter 11: Special functions 431

‘maxent’ The maximum number of splits to perform.

If the maximum number of splits is insufficient to accomodate all entries, the final entry in the
slist that is generated will contain the rest of the unsplit string.

11.77 Function strcmp

Synopsis: strcmp(arg0,arg1) returns type class

arg0 : String, in the range .*
arg1 : String, in the range .*

True if the two strings match exactly

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"same" expression => strcmp("test","test");

reports:

same::

"Strings are equal";

!same::

"Strings are not equal";

}

Notes:

432 Cfengine reference manual

11.78 Function sum

Synopsis: sum(arg0) returns type real

arg0 : A list of arbitrary real values, in the range [a-zA-Z0-9 $()\[\].]+

Return the sum of a list of reals

Example:

body common control

{

bundlesequence => { "test" };

}

##############################

bundle agent test

{

vars:

"adds_to_six" ilist => { "1", "2", "3" };

"six" real => sum("adds_to_six");

"adds_to_zero" rlist => { "1.0", "2", "-3e0" };

"zero" real => sum("adds_to_zero");

reports:

cfengine_3::

"six is $(six), zero is $(zero)";

}

Because $(six) and $(zero) are both real numbers, the report that is generated will be:

six is 6.000000, zero is 0.000000

Notes:

Of course, you could easily combine sum with readstringarray or readreallist, etc. to collect
summary information from a source external to Cfengine.

History: Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

This function might be used for simple ring computation.

11.79 Function translatepath

Synopsis: translatepath(arg0) returns type string

arg0 : Unix style path, in the range "?(([a-zA-Z]:\\.*)|(/.*))

Translate path separators from Unix style to the host’s native

Chapter 11: Special functions 433

Example:

body common control

{

bundlesequence => { "test" };

}

##############################

bundle agent test

{

vars:

"inputs_dir" string => translatepath("$(sys.workdir)/inputs");

reports:

windows::

"The path has backslashes: $(inputs_dir)";

!windows::

"The path has slashes: $(inputs_dir)";

}

Notes:

Takes a string argument with slashes as path separators and translate these to the native format
for path separators on the host. For example translatepath("a/b/c") would yield "a/b/c" on Unix
platforms, but "a\b\c" on Windows.

Be careful when using this function in combination with regular expressions, since backslash is
also used as escape character in regex’s. For example, in the regex ‘dir/.abc’, the dot represents
the regular expression "any character", while in the regex ‘dir\.abc’, the backslash-dot represents
a literal dot character.

11.80 Function usemodule

Synopsis: usemodule(arg0,arg1) returns type class

arg0 : Name of module command, in the range .*
arg1 : Argument string for the module, in the range .*

Execute cfengine module script and set class if successful
Example:

434 Cfengine reference manual

body common control

{

any::

bundlesequence => {

test

};

}

###

bundle agent test

{

classes:

returns $(user)

"done" expression => usemodule("getusers","");

commands:

"/bin/echo promiser text" args => "test $(user)";

}

Notes:

Modules must reside in ‘WORKDIR/modules’ but no longer require a special naming convention.

ARGUMENTS:

‘Module name’
The name of the module without its leading path, since it is assuemed to be in the
registered modules directory.

‘Argument string’
Any command link arguments to pass to the module.

11.81 Function userexists

Synopsis: userexists(arg0) returns type class

arg0 : User name or identifier, in the range .*

True if user name or numerical id exists on this host

Chapter 11: Special functions 435

Example:

body common control

{

bundlesequence => { "example" };

}

###

bundle agent example

{

classes:

"ok" expression => userexists("root");

reports:

ok::

"Root exists";

!ok::

"Root does not exist";

}

Notes:

Checks whether the user is in the password database for the current host. The argument must
be a user name or user id.

436 Cfengine reference manual

Chapter 12: Special Variables 437

12 Special Variables

12.1 Variable context const

Cfengine defines a number of variables for embedding unprintable values or values with special
meanings in strings.

12.1.1 Variable const.dollar

reports:

some::

This will report: The value of $(const.dollar) is $

"The value of $(const.dollar)(const.dollar) is $(const.dollar)";

This will report: But the value of \$(dollar) is \$(dollar)

"But the value of \$(dollar) is \$(dollar)";

12.1.2 Variable const.endl

reports:

cfengine_3::

"A newline with either $(const.n) or with $(const.endl) is ok";

"But a string with \n in it does not have a newline!";

12.1.3 Variable const.n

reports:

cfengine_3::

"A newline with either $(const.n) or with $(const.endl) is ok";

"But a string with \n in it does not have a newline!";

438 Cfengine reference manual

12.1.4 Variable const.r

reports:

cfengine_3::

"A carriage return character is $(const.r)";

12.1.5 Variable const.t

reports:

cfengine_3::

"A report with a$(const.t)tab in it";

12.2 Variable context edit

This context ‘edit’ is used to access information about editing promises during their execution.
It is context dependent and not universally meaningful or available. For example:
bundle agent testbundle

{

files:

"/tmp/testfile"

edit_line => test;

}

#

bundle edit_line test

{

classes:

"ok" expression => regline(".*mark.*","$(edit.filename)");

reports:

Chapter 12: Special Variables 439

ok::

"File matched $(edit.filename)";

}

$(edit.filename)

This variable points to the filename of the file currently making an edit promise. If the file has
been arrived at through a search, this could be different from the ‘files’ promiser.

12.2.1 Variable edit.filename

This variable points to the filename of the file currently making an edit promise. If the file has
been arrived at through a search, this could be different from the ‘files’ promiser.

12.3 Variable context match

Each time cfengine matches a string, these values are assigned to a special variable context
$(match.n). The fragments can be referred to in the remainder of the promise. There are two
places where this makes sense. One is in pattern replacement during file editing, and the other is in
searching for files.

Consider the examples below:

bundle agent testbundle

{

files:

"/home/mark/tmp/(cf[23])_(.*)"

create => "true",

edit_line => myedit("second $(match.2)");

but more specifically...

"/home/mark/tmp/cf3_(test)"

create => "true",

edit_line => myedit("second $(match.1)");

}

12.3.1 Variable match.0

440 Cfengine reference manual

A string matching the complete regular expression whether or not back-references were used in
the pattern.

12.4 Variable context mon

The variables discovered by cf-monitord are placed in this monitoring context. Monitoring
variables are expected to be ephemeral properties, rapidly changing.

In enterprise versions of cfengine, custom defined monitoring targets also become variables in
this context, named by the handle of the promise that defined them.

12.4.1 Variable mon.value users

Observational measure collected every 2.5 minutes from cf-monitord, description: Users with active

processes.

12.4.2 Variable mon.av users

Observational measure collected every 2.5 minutes from cf-monitord, description: Users with active

processes.

12.4.3 Variable mon.dev users

Observational measure collected every 2.5 minutes from cf-monitord, description: Users with active

processes.

12.4.4 Variable mon.value rootprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum privileged

system processes.

12.4.5 Variable mon.av rootprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum privileged

system processes.

12.4.6 Variable mon.dev rootprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum privileged

system processes.

12.4.7 Variable mon.value otherprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum

non-privileged process.

12.4.8 Variable mon.av otherprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum

non-privileged process.

Chapter 12: Special Variables 441

12.4.9 Variable mon.dev otherprocs

Observational measure collected every 2.5 minutes from cf-monitord, description: Sum

non-privileged process.

12.4.10 Variable mon.value diskfree

Observational measure collected every 2.5 minutes from cf-monitord, description: Free disk on /

partition.

12.4.11 Variable mon.av diskfree

Observational measure collected every 2.5 minutes from cf-monitord, description: Free disk on /

partition.

12.4.12 Variable mon.dev diskfree

Observational measure collected every 2.5 minutes from cf-monitord, description: Free disk on /

partition.

12.4.13 Variable mon.value loadavg

Observational measure collected every 2.5 minutes from cf-monitord, description: % kernel load

utilization.

12.4.14 Variable mon.av loadavg

Observational measure collected every 2.5 minutes from cf-monitord, description: % kernel load

utilization.

12.4.15 Variable mon.dev loadavg

Observational measure collected every 2.5 minutes from cf-monitord, description: % kernel load

utilization.

12.4.16 Variable mon.value netbiosns in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (in).

12.4.17 Variable mon.av netbiosns in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (in).

12.4.18 Variable mon.dev netbiosns in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (in).

12.4.19 Variable mon.value netbiosns out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (out).

442 Cfengine reference manual

12.4.20 Variable mon.av netbiosns out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (out).

12.4.21 Variable mon.dev netbiosns out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

lookups (out).

12.4.22 Variable mon.value netbiosdgm in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (in).

12.4.23 Variable mon.av netbiosdgm in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (in).

12.4.24 Variable mon.dev netbiosdgm in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (in).

12.4.25 Variable mon.value netbiosdgm out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (out).

12.4.26 Variable mon.av netbiosdgm out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (out).

12.4.27 Variable mon.dev netbiosdgm out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

datagrams (out).

12.4.28 Variable mon.value netbiosssn in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (in).

12.4.29 Variable mon.av netbiosssn in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (in).

12.4.30 Variable mon.dev netbiosssn in

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (in).

Chapter 12: Special Variables 443

12.4.31 Variable mon.value netbiosssn out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (out).

12.4.32 Variable mon.av netbiosssn out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (out).

12.4.33 Variable mon.dev netbiosssn out

Observational measure collected every 2.5 minutes from cf-monitord, description: netbios name

sessions (out).

12.4.34 Variable mon.value irc in

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(in).

12.4.35 Variable mon.av irc in

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(in).

12.4.36 Variable mon.dev irc in

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(in).

12.4.37 Variable mon.value irc out

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(out).

12.4.38 Variable mon.av irc out

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(out).

12.4.39 Variable mon.dev irc out

Observational measure collected every 2.5 minutes from cf-monitord, description: IRC connections

(out).

12.4.40 Variable mon.value cfengine in

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (in).

12.4.41 Variable mon.av cfengine in

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (in).

444 Cfengine reference manual

12.4.42 Variable mon.dev cfengine in

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (in).

12.4.43 Variable mon.value cfengine out

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (out).

12.4.44 Variable mon.av cfengine out

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (out).

12.4.45 Variable mon.dev cfengine out

Observational measure collected every 2.5 minutes from cf-monitord, description: cfengine connec-

tions (out).

12.4.46 Variable mon.value nfsd in

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(in).

12.4.47 Variable mon.av nfsd in

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(in).

12.4.48 Variable mon.dev nfsd in

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(in).

12.4.49 Variable mon.value nfsd out

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(out).

12.4.50 Variable mon.av nfsd out

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(out).

12.4.51 Variable mon.dev nfsd out

Observational measure collected every 2.5 minutes from cf-monitord, description: nfs connections

(out).

12.4.52 Variable mon.value smtp in

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(in).

Chapter 12: Special Variables 445

12.4.53 Variable mon.av smtp in

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(in).

12.4.54 Variable mon.dev smtp in

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(in).

12.4.55 Variable mon.value smtp out

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(out).

12.4.56 Variable mon.av smtp out

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(out).

12.4.57 Variable mon.dev smtp out

Observational measure collected every 2.5 minutes from cf-monitord, description: smtp connections

(out).

12.4.58 Variable mon.value www in

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(in).

12.4.59 Variable mon.av www in

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(in).

12.4.60 Variable mon.dev www in

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(in).

12.4.61 Variable mon.value www out

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(out).

12.4.62 Variable mon.av www out

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(out).

12.4.63 Variable mon.dev www out

Observational measure collected every 2.5 minutes from cf-monitord, description: www connections

(out).

446 Cfengine reference manual

12.4.64 Variable mon.value ftp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(in).

12.4.65 Variable mon.av ftp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(in).

12.4.66 Variable mon.dev ftp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(in).

12.4.67 Variable mon.value ftp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(out).

12.4.68 Variable mon.av ftp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(out).

12.4.69 Variable mon.dev ftp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ftp connections

(out).

12.4.70 Variable mon.value ssh in

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(in).

12.4.71 Variable mon.av ssh in

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(in).

12.4.72 Variable mon.dev ssh in

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(in).

12.4.73 Variable mon.value ssh out

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(out).

12.4.74 Variable mon.av ssh out

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(out).

Chapter 12: Special Variables 447

12.4.75 Variable mon.dev ssh out

Observational measure collected every 2.5 minutes from cf-monitord, description: ssh connections

(out).

12.4.76 Variable mon.value wwws in

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(in).

12.4.77 Variable mon.av wwws in

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(in).

12.4.78 Variable mon.dev wwws in

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(in).

12.4.79 Variable mon.value wwws out

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(out).

12.4.80 Variable mon.av wwws out

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(out).

12.4.81 Variable mon.dev wwws out

Observational measure collected every 2.5 minutes from cf-monitord, description: wwws connections

(out).

12.4.82 Variable mon.value icmp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(in).

12.4.83 Variable mon.av icmp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(in).

12.4.84 Variable mon.dev icmp in

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(in).

12.4.85 Variable mon.value icmp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(out).

448 Cfengine reference manual

12.4.86 Variable mon.av icmp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(out).

12.4.87 Variable mon.dev icmp out

Observational measure collected every 2.5 minutes from cf-monitord, description: ICMP packets

(out).

12.4.88 Variable mon.value udp in

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams (in).

12.4.89 Variable mon.av udp in

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams (in).

12.4.90 Variable mon.dev udp in

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams (in).

12.4.91 Variable mon.value udp out

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams

(out).

12.4.92 Variable mon.av udp out

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams

(out).

12.4.93 Variable mon.dev udp out

Observational measure collected every 2.5 minutes from cf-monitord, description: UDP dgrams

(out).

12.4.94 Variable mon.value dns in

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests (in).

12.4.95 Variable mon.av dns in

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests (in).

12.4.96 Variable mon.dev dns in

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests (in).

12.4.97 Variable mon.value dns out

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests

(out).

Chapter 12: Special Variables 449

12.4.98 Variable mon.av dns out

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests

(out).

12.4.99 Variable mon.dev dns out

Observational measure collected every 2.5 minutes from cf-monitord, description: DNS requests

(out).

12.4.100 Variable mon.value tcpsyn in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions (in).

12.4.101 Variable mon.av tcpsyn in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions (in).

12.4.102 Variable mon.dev tcpsyn in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions (in).

12.4.103 Variable mon.value tcpsyn out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions

(out).

12.4.104 Variable mon.av tcpsyn out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions

(out).

12.4.105 Variable mon.dev tcpsyn out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP sessions

(out).

12.4.106 Variable mon.value tcpack in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (in).

12.4.107 Variable mon.av tcpack in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (in).

12.4.108 Variable mon.dev tcpack in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (in).

12.4.109 Variable mon.value tcpack out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (out).

12.4.110 Variable mon.av tcpack out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (out).

450 Cfengine reference manual

12.4.111 Variable mon.dev tcpack out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP acks (out).

12.4.112 Variable mon.value tcpfin in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (in).

12.4.113 Variable mon.av tcpfin in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (in).

12.4.114 Variable mon.dev tcpfin in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (in).

12.4.115 Variable mon.value tcpfin out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (out).

12.4.116 Variable mon.av tcpfin out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (out).

12.4.117 Variable mon.dev tcpfin out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP finish (out).

12.4.118 Variable mon.value tcpmisc in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (in).

12.4.119 Variable mon.av tcpmisc in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (in).

12.4.120 Variable mon.dev tcpmisc in

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (in).

12.4.121 Variable mon.value tcpmisc out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (out).

12.4.122 Variable mon.av tcpmisc out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (out).

12.4.123 Variable mon.dev tcpmisc out

Observational measure collected every 2.5 minutes from cf-monitord, description: TCP misc (out).

12.4.124 Variable mon.value webaccess

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver hits.

12.4.125 Variable mon.av webaccess

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver hits.

Chapter 12: Special Variables 451

12.4.126 Variable mon.dev webaccess

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver hits.

12.4.127 Variable mon.value weberrors

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver errors.

12.4.128 Variable mon.av weberrors

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver errors.

12.4.129 Variable mon.dev weberrors

Observational measure collected every 2.5 minutes from cf-monitord, description: Webserver errors.

12.4.130 Variable mon.value syslog

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(Syslog).

12.4.131 Variable mon.av syslog

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(Syslog).

12.4.132 Variable mon.dev syslog

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(Syslog).

12.4.133 Variable mon.value messages

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(messages).

12.4.134 Variable mon.av messages

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(messages).

12.4.135 Variable mon.dev messages

Observational measure collected every 2.5 minutes from cf-monitord, description: New log entries

(messages).

12.4.136 Variable mon.value temp0

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

0.

12.4.137 Variable mon.av temp0

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

0.

452 Cfengine reference manual

12.4.138 Variable mon.dev temp0

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

0.

12.4.139 Variable mon.value temp1

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

1.

12.4.140 Variable mon.av temp1

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

1.

12.4.141 Variable mon.dev temp1

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

1.

12.4.142 Variable mon.value temp2

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

2.

12.4.143 Variable mon.av temp2

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

2.

12.4.144 Variable mon.dev temp2

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

2.

12.4.145 Variable mon.value temp3

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

3.

12.4.146 Variable mon.av temp3

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

3.

12.4.147 Variable mon.dev temp3

Observational measure collected every 2.5 minutes from cf-monitord, description: CPU Temperature

3.

12.4.148 Variable mon.value cpu

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

(all).

Chapter 12: Special Variables 453

12.4.149 Variable mon.av cpu

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

(all).

12.4.150 Variable mon.dev cpu

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

(all).

12.4.151 Variable mon.value cpu0

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

0.

12.4.152 Variable mon.av cpu0

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

0.

12.4.153 Variable mon.dev cpu0

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

0.

12.4.154 Variable mon.value cpu1

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

1.

12.4.155 Variable mon.av cpu1

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

1.

12.4.156 Variable mon.dev cpu1

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

1.

12.4.157 Variable mon.value cpu2

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

2.

12.4.158 Variable mon.av cpu2

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

2.

12.4.159 Variable mon.dev cpu2

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

2.

454 Cfengine reference manual

12.4.160 Variable mon.value cpu3

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

3.

12.4.161 Variable mon.av cpu3

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

3.

12.4.162 Variable mon.dev cpu3

Observational measure collected every 2.5 minutes from cf-monitord, description: %CPU utilization

3.

12.5 Variable context sys

System variables are derived from cfengine’s automated discovery of system values. They are
provided as variables in order to make automatically adaptive rules for configuration, e.g.

files:

any::

"$(sys.resolv)"

create => "true",

edit_line => doresolv("@(this.list1)","@(this.list2)"),

edit_defaults => reconstruct;

The above rule requires no class specification because the variable itself is class-specific.

12.5.1 Variable sys.arch

The variable gives the kernel’s short architecture description.

arch = x86_64

12.5.2 Variable sys.cdate

The date of the system in canonical form, i.e. in the form of a class.

cdate = Sun_Dec__7_10_39_53_2008_

Chapter 12: Special Variables 455

12.5.3 Variable sys.cf agent

A variable containing the path to the cfengine agent cf-agent on the platform you are using.

body executor control

{

exec_command => "$(sys.cf_twin) -f failsafe.cf && $(sys.cf_agent)";

}

12.5.4 Variable sys.cf execd

A variable containing the path to the cfengine executor cf-execd on the platform you are using.

commands:

"$(sys.cf_execd)";

12.5.5 Variable sys.cf hub

History : Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

reports:

cfengine_3::

"The hub path is $(sys.cf_hub)";

The path of the cf-hub program.

12.5.6 Variable sys.cf key

A variable containing the path to the cfengine key generator cf-key on the platform you are
using.

commands:

"$(sys.cf_key)";

456 Cfengine reference manual

12.5.7 Variable sys.cf know

A variable containing the path to the cfengine knowledge agent cf-know on the platform you are
using.

commands:

"$(sys.cf_know) -f ./build_docs.cf -sg";

12.5.8 Variable sys.cf monitord

A variable containing the path to the cfengine monitoring daemon cf-monitord on the platform
you are using.

commands:

restart_monitord::

"$(sys.cf_monitord)";

12.5.9 Variable sys.cf promises

A variable containing the path to the cfengine syntax analyxer cf-promises on the platform
you are using.

classes:

"syntax_ok" expression => returnszero("$(sys.cf_promises)");

12.5.10 Variable sys.cf report

reports:

cfengine_3::

"The reporter path is $(sys.cf_report)";

The path of the cf-report program.

Chapter 12: Special Variables 457

12.5.11 Variable sys.cf runagent

This variable is used for completeness, but it is unlikely to be called from within cfengine. It
contains the full path to the interactive progam cf-runagent.

12.5.12 Variable sys.cf serverd

A variable containing the path to the cfengine server daemon cf-serverd on the platform you
are using.
commands:

restart_serverd::

"$(sys.cf_serverd)";

12.5.13 Variable sys.cf twin

A variable containing the path to the cfengine agent’s twin cf-twin on the platform you are
using. A twin is simply a second copy of the agent in Cfengine’s work directory ‘bin’ area, used
during upgrades and cases where modification of the cf-agent binary could be attempted (this is
not allowed on some platforms, such as Windows).
body executor control

{

exec_command => "$(sys.cf_twin) -f failsafe.cf && $(sys.cf_agent)";

}

12.5.14 Variable sys.cf version

The variable gives the version of the running Cfengine Community Edition.

cf_version = 3.0.5

12.5.15 Variable sys.class

This variable contains the name of the hard-class category for this host, i.e. its top level operating
system type classification.

458 Cfengine reference manual

class = linux

12.5.16 Variable sys.date

The date of the system as a text string.

date = Sun Dec 7 10:39:53 2008

12.5.17 Variable sys.domain

The domain name as divined by cfengine. If the DNS is in use, it could be possible to derive
the domain name from its DNS regisration, but in general there is no way to discover this value
automatically. The common control body permits the ultimate specification of this value.

domain = example.org

12.5.18 Variable sys.expires

reports:

nova::

"License expires $(sys.expires)";

12.5.19 Variable sys.exports

The location of the system NFS exports file.

exports = /etc/exports

exports = /etc/dfs/dfstab

12.5.20 Variable sys.fqhost

The fully qualified name of the host. In order to compute this value properly, the domain name
must be defined.

Chapter 12: Special Variables 459

fqhost = host.example.org

12.5.21 Variable sys.fstab

The location of the system filesystem (mount) table.

fstab = /etc/fstab

12.5.22 Variable sys.host

The name of the current host, according to the kernel. It is undefined whether this is qualified
or unqualified with a domain name.

host = myhost

12.5.23 Variable sys.interface

The assumed (default) name of the main system interface on this host.

interface = eth0

12.5.24 Variable sys.ipv4

All four octets of the IPv4 address of the first system interface.
Note:

If your system has a single ethernet interface, ‘$(sys.ipv4)’ will contain your IPv4 address.
However, if your system has multiple interfaces, then ‘$(sys.ipv4)’ will simply be the IPv4 ad-
dress of the first interface in the list that has an assigned address; See Section 12.5.25 [Variable
sys.ipv4[interface name]], page 459, for details on obtaining the IPv4 addresses of all interfaces on
a system.

12.5.25 Variable sys.ipv4[interface name]

The full IPv4 address of the system interface named as the associative array index, e.g.
‘$(ipv4[le0])’ or ‘$(ipv4[xr1])’.

460 Cfengine reference manual

If the IPv4 address on the interfaces are

le0 = 192.168.1.101

xr1 = 10.12.7.254

#

Then the octets of all interfaces are accessable as an associative array

ipv4_1[le0] = 192

ipv4_2[le0] = 192.168

ipv4_3[le0] = 192.168.1

ipv4[le0] = 192.168.1.101

ipv4_1[xr1] = 10

ipv4_2[xr1] = 10.12

ipv4_3[xr1] = 10.12.7

ipv4[xr1] = 10.12.7.254

Note:

The list of interfaces may be acquired with ‘getindices("sys.ipv4")’ (or from any of the other
associative arrays). Only those interfaces which are marked as "up" and have an IP address will be
listed.

12.5.26 Variable sys.ipv4 1[interface name]

The first octet of the IPv4 address of the system interface named as the associative array index,
e.g. ‘$(ipv4_1[le0])’ or ‘$(ipv4_1[xr1])’, See Section 12.5.25 [Variable sys.ipv4[interface name]],
page 459.

12.5.27 Variable sys.ipv4 2[interface name]

The first two octets of the IPv4 address of the system interface named as the associative
array index, e.g. ‘$(ipv4_2[le0])’ or ‘$(ipv4_2[xr1])’, See Section 12.5.25 [Variable
sys.ipv4[interface name]], page 459.

12.5.28 Variable sys.ipv4 3[interface name]

The first three octets of the IPv4 address of the system interface named as the associative
array index, e.g. ‘$(ipv4_3[le0])’ or ‘$(ipv4_3[xr1])’, See Section 12.5.25 [Variable
sys.ipv4[interface name]], page 459.

12.5.29 Variable sys.key digest

Contains the unique identifier of the current host.

Chapter 12: Special Variables 461

reports:

cfengine_3_1::

"My digest is $(sys.key_digest)";

12.5.30 Variable sys.long arch

The long architecture name for this system kernel. This name is sometimes quite unwieldy but
can be useful for logging purposes.

long_arch = linux_x86_64_2_6_22_19_0_1_default__1_SMP_2008_10_14_22_17_43__0200

12.5.31 Variable sys.maildir

The name of the system email spool directory.

maildir = /var/spool/mail

12.5.32 Variable sys.nova version

The variable gives the version of the running Cfengine Nova Edition.

nova_version = 1.1.3

12.5.33 Variable sys.os

The name of the operating system according to the kernel.

os = linux

12.5.34 Variable sys.ostype

Another name for the operating system.

462 Cfengine reference manual

ostype = linux_x86_64

12.5.35 Variable sys.policy hub

History: Was introduced in version 3.1.0b1,Nova 2.0.0b1 (2010)

reports:

"Policy hub is $(sys.policy_hub)";

12.5.36 Variable sys.release

The kernel release of the operating system.

release = 2.6.22.19-0.1-default

12.5.37 Variable sys.resolv

The location of the system resolver file.

resolv = /etc/resolv.conf

12.5.38 Variable sys.uqhost

The unqualified name of the current host. See also sys.fqhost.

uqhost = myhost

12.5.39 Variable sys.windir

On the Windows version of Cfengine Nova, this is the path to the Windows directory of this
system.

windir = C:\WINDOWS

Chapter 12: Special Variables 463

12.5.40 Variable sys.winprogdir

On the Windows version of Cfengine Nova, this is the path to the program files directory of the
system.

winprogdir = C:\Program Files

12.5.41 Variable sys.winprogdir86

On 64 bit Windows versions of Cfengine Nova, this is the path to the 32 bit (x86) program files
directory of the system.

winprogdir86 = C:\Program Files (x86)

12.5.42 Variable sys.winsysdir

On the Windows version of Cfengine Nova, this is the path to the Windows system directory.

winsysdir = C:\WINDOWS\system32

12.5.43 Variable sys.workdir

The location of the Cfengine work directory and cache. For the system privileged user this is
normally:

workdir = /var/cfengine

For non-privileged users it is in the user’s home directory:

workdir = /home/user/.cfagent

On the Windows version of Cfengine Nova, it is normally under program files (the directory
name may change with the language of Windows):

workdir = C:\Program Files\Cfengine

464 Cfengine reference manual

12.6 Variable context this

This context ‘this’ is used to access information about promises during their execution. It is
context dependent and not universally meaningful or available, but provides a context for variables
where one is needed (such as when passing the value of a list variable into a parameterized edit_line

promise from a file promise). For example:
bundle agent resolver(s,n)

{

files:

"$(sys.resolv)"

create => "true",

edit_line => doresolv("@(this.s)","@(this.n)"),

edit_defaults => reconstruct;

}

$(this.filename)

This variable reveals the name of the file in which the current promise is defined.
$(this.handle)

This variable points to the promise handle of the currently handled promise; it is useful for
referring to the intention in log messages.
$(this.line)

This variable reveals the line number in the file at which the current promise is defined.
$(this.promiser)

The special variable $(this.promiser) is used to refer to the current value of the promiser itself.
This is useful in files promises, for instance when using pattern matching or depth_search that
implicitly match multiple objects. In that case, $(this.promiser) refers to the currently identified
file that makes the promise. For example:
bundle agent find666

{

files:

"/home"

file_select => world_writeable,

transformer => "/bin/echo DETECTED $(this.promiser)",

depth_search => recurse("inf");

"/etc/.*"

file_select => world_writeable,

transformer => "/bin/echo DETECTED $(this.promiser)";

}

body file_select world_writeable

{

search_mode => { "o+w" };

file_result => "mode";

Chapter 12: Special Variables 465

}

466 Cfengine reference manual

Chapter 13: Logs and records 467

13 Logs and records

Cfengine writes numerous logs and records to its private workspace, referred to as ‘WORKDIR’. This
chapter makes some brief notes about these files. Cfengine approaches monitoring and reporting
from the viewpoint of scalability so there is no default centralizatio of reporting information, as
this is untenable for more than a few hundred hosts. Instead, in the classic cfengine way, every
host is reponsible for its own data. Solutions for centralization and netwide reporting will be given
elsewhere.

The filenames referred to in this section are all relative to the cfengine work directory ‘WORKDIR’.

13.1 Embedded Databases

The embedded databases can be viewed and printed using the reporting tool cf-report.

Their file extensions will vary based on which library is used to implement them; either Tokyo
Cabinet (.tcdb), Quick Database Manager (.qdbm), or Berkeley DB (.db). Converting one database
format to another is not handled by Cfengine, but there exist external tools meant for that purpose.

‘cf_Audit.tcdb’
A compressed database of auditing information. This file grows very large is auditing
is switched on. By default, only minor information about cfengine runs are recorded.
This file should be archived and deleted regularly to avoid choking the system.

‘cf_lastseen.tcdb’
A database of hosts that last contacted this host, or were contacted by this host which
includes the times at which they were last observed.

‘cf_classes.tcdb’
A database of classes that have been defined on the current host, including their relative
frequences, scaled like a probability.

‘checksum_digests.tcdb’
The database of hash values used in cfengine’s change management functions.

‘performance.tcdb’
A database of last, average and deviation times of jobs recorded by cf-agent. Most
promises take an immeasurablely short time to check, but longer tasks such as command
execution and file copying are measured by default. Other checks can be instrumented
by setting a measurement_class in the action body of a promise.

‘stats.tcdb’
A database of external file attributes for change management functionality.

‘state/cf_lock.tcdb’
A database of active and inactive locks and their expiry times. Deleting this database
will reset all lock protections in cfengine.

‘state/history.tcdb’
Enterprise level versions of cfengine maintain this long-term trend database.

468 Cfengine reference manual

‘state/cf_observations.tcdb’
This database contains the current state of the observational history of the host as
recorded by cf-monitord.

‘state/promise_compliance.tcdb’
Enterprise cfengine (Nova and above) database of individual promise compliance his-
tory. The database is approximate because promise references can change as policy is
edited. It quickly approaches accuracy as a policy goes unchanged for more than a day.

‘state/cf_state.tcdb’
A database of persistent classes active on this current host.

‘state/nova_measures.tcdb’
Enterprise cfengine (Nova and above) database of custom measurables.

‘state/nova_static.tcdb’
Enterprise cfengine (Nova and above) database of static system discovery data.

13.2 Text logs

‘promise_summary.log’
A time-stamped log of the percentage fraction of promises kept after each run.

‘cf3.HOSTNAME.runlog’
A time-stamped log of when each lock was released. This shows the last time each
individual promise was verified.

‘cfagent.HOSTNAME.log’
Although ambiguously named (for historical reasons) this log contains the current list
of setuid/setgid programs observed on the system. Cfengine warns about new additions
to this list. This log has been deprecated.

‘cf_value.log’
A time stamped log of the business value estimated from the execution of the automa-
tion system.

‘cf_notkept.log’
A list of promises, with handles and comments, that were not kept. Nova enterprise
versions only.

‘cf_repaired.log’
A list of promises, with handles and comments, that were repaired. Nova enterprise
versions only.

‘reports/*’
Enterprise versions of cfengine use this directory as a default place for outputting
reports.

‘reports/class_notes’
Class data in csv format for export to CMDB.

‘state/file_change.log’
A time-stamped log of which files have experienced content changes since the last
observation, as determined by the hashing algorithms in cfengine.

Chapter 13: Logs and records 469

‘state/nova_*.tcdb’
Enterprise level cfengine’s use these data for storing custom system measurements.

‘state/vars.out’
Enterprise level versions of cfengine use this log to communicate variable data.

‘state/*_measure.log’
Enterprise level versions of cfengine maintain user-defined logs based on specifically
promised observations of the system.

13.3 Reports in outputs

The ‘outputs’ directory contains a time-stamped list of outputs generated by cf-agent. These are
collected by cf-execd and are often E-mailed as reports. However, not all hosts have an E-mail
capability or are online, so the reports are kept here. Reports are not tidied automatically, so you
should delete these files after a time to avoid a build up.

13.4 Additional reports in commcerical cfengine versions

13.5 State information

The cfengine components keep their current process identifier number in ‘pid files’ in the work
directory: e.g.
cf-execd.pid

cf-serverd.pid

Most other state data refer to the running condition of the host and are generated by cf-monitord

(cfenvd in earlier versions of cfengine).

‘state/env_data’
This file contains a list of currently discovered classes and variable values that charac-
terize the anomaly alert environment. They are altered by the monitor daemon.

‘state/all_classes’
A list of all the classes that were defined the last time that cfengine was run.

‘state/cf_*’
All files that begin with this prefix refer to cached data that were observed by the
monitor daemon, and may be used by cf-agent in reports with showstate.

470 Cfengine reference manual

	Cfengine 3.1.0 -- Getting started
	Software components
	cf-agent
	cf-execd
	cf-know*
	cf-monitord
	cf-promises
	cf-runagent
	cf-serverd
	cf-report
	cf-key
	cf-hub

	Core concepts
	A renewed cfengine
	Installation
	Syntax, identifiers and names
	The work directory
	Cfengine hard classes
	Global and local classes
	Filenames and paths
	Upgrading from cfengine 2
	Testing as a non-privilieged user
	The `bare necessities' of a cfengine 3
	Familiarizing yourself
	Remote access troubleshooting
	Server connection
	Key exchange
	Time windows (races)
	Other users than root
	Encryption

	A simple crash course in concepts
	Rules are promises
	Best practice for writing promises
	Containers
	When and where are promises made?
	Types in cfengine 3
	Datatypes in cfengine 3
	Variable expansion in cfengine 3
	Scalar variable expansion
	List variable substitution and expansion
	Special list value cf_null
	Arrays in cfengine 3

	Normal ordering
	Agent normal ordering
	Server normal ordering
	Monitor normal ordering
	Knowledge normal ordering

	Loops and lists in cfengine 3
	Pattern matching and referencing
	Runaway change warning
	Commenting lines
	Regular expressions in paths
	Anchored vs. unanchored regular expressions
	Special topics on Regular Expressions

	Distributed discovery
	Developer structures

	How to run cfengine 3 examples
	A complete configuration
	promises.cf
	site.cf
	update.cf
	failsafe.cf
	What should a failsafe and update file contain?
	Recovery from errors in the configuration
	Recovery from errors in the software

	Control promises
	common control promises
	bundlesequence
	ignore_missing_bundles
	ignore_missing_inputs
	inputs
	version
	lastseenexpireafter
	output_prefix
	domain
	require_comments
	host_licenses_paid
	syslog_host
	syslog_port
	fips_mode

	agent control promises
	abortclasses
	abortbundleclasses
	addclasses
	agentaccess
	agentfacility
	auditing
	binarypaddingchar
	bindtointerface
	hashupdates
	childlibpath
	checksum_alert_time
	defaultcopytype
	dryrun
	editbinaryfilesize
	editfilesize
	environment
	exclamation
	expireafter
	files_single_copy
	files_auto_define
	hostnamekeys
	ifelapsed
	inform
	intermittency
	max_children
	maxconnections
	mountfilesystems
	nonalphanumfiles
	repchar
	default_repository
	secureinput
	sensiblecount
	sensiblesize
	skipidentify
	suspiciousnames
	syslog
	track_value
	timezone
	default_timeout
	verbose

	server control promises
	cfruncommand
	maxconnections
	denybadclocks
	allowconnects
	denyconnects
	allowallconnects
	trustkeysfrom
	allowusers
	dynamicaddresses
	skipverify
	logallconnections
	logencryptedtransfers
	hostnamekeys
	auditing
	bindtointerface
	serverfacility
	port
	keycacheTTL

	monitor control promises
	forgetrate
	monitorfacility
	histograms
	tcpdump
	tcpdumpcommand

	runagent control promises
	hosts
	port
	force_ipv4
	trustkey
	encrypt
	background_children
	max_children
	output_to_file
	timeout

	executor control promises
	splaytime
	mailfrom
	mailto
	smtpserver
	mailmaxlines
	schedule
	executorfacility
	exec_command

	knowledge control promises
	build_directory
	document_root
	generate_manual
	graph_directory
	graph_output
	html_banner
	html_footer
	id_prefix
	manual_source_directory
	query_engine
	query_output
	sql_type
	sql_database
	sql_owner
	sql_passwd
	sql_server
	sql_connection_db
	style_sheet
	view_projections

	reporter control promises
	aggregation_point
	auto_scaling
	build_directory
	csv2xml
	error_bars
	html_banner
	html_embed
	html_footer
	query_engine
	reports
	report_output
	style_sheet
	time_stamps

	hub control promises
	export_zenoss
	hub_schedule

	Bundles of common
	vars promises
	string
	int
	real
	slist
	ilist
	rlist
	policy

	classes promises
	or
	and
	xor
	dist
	expression
	not

	reports promises
	friend_pattern
	intermittency
	lastseen
	printfile (compound body)
	report_to_file
	showstate

	* promises
	action (compound body)
	classes (compound body)
	ifvarclass
	handle
	depends_on
	comment

	Bundles of agent
	commands promises in agent
	args
	contain (compound body)
	module

	databases promises in agent
	database_server (compound body)
	database_type
	database_operation
	database_columns
	database_rows
	registry_exclude

	environments promises in agent
	environment_host
	environment_interface (compound body)
	environment_resources (compound body)
	environment_state
	environment_type

	files promises in agent
	acl (compound body)
	changes (compound body)
	copy_from (compound body)
	create
	delete (compound body)
	depth_search (compound body)
	edit_line
	edit_xml
	edit_defaults (compound body)
	file_select (compound body)
	link_from (compound body)
	move_obstructions
	pathtype
	perms (compound body)
	rename (compound body)
	repository
	touch
	transformer

	* promises in edit_line
	select_region (compound body)

	delete_lines promises in edit_line
	delete_select (compound body)
	not_matching

	insert_lines promises in edit_line
	expand_scalars
	insert_type
	insert_select (compound body)
	location (compound body)
	whitespace_policy

	field_edits promises in edit_line
	edit_field (compound body)

	replace_patterns promises in edit_line
	replace_with (compound body)

	interfaces promises in agent
	tcp_ip (compound body)

	methods promises in agent
	usebundle

	outputs promises in agent
	output_level
	promiser_type

	packages promises in agent
	package_architectures
	package_method (compound body)
	package_policy
	package_select
	package_version

	processes promises in agent
	process_count (compound body)
	process_select (compound body)
	process_stop
	restart_class
	signals

	services promises in agent
	service_policy
	service_dependencies
	service_method (compound body)

	storage promises in agent
	mount (compound body)
	volume (compound body)

	Bundles of server
	access promises in server
	Access Example
	admit
	deny
	maproot
	ifencrypted
	resource_type

	roles promises in server
	authorize

	Bundles of knowledge
	topics promises in knowledge
	association (compound body)
	comment

	occurrences promises in knowledge
	represents
	representation
	web_root
	path_root

	inferences promises in knowledge
	precedent
	qualifier

	Bundles of monitor
	measurements promises in monitor
	stream_type
	data_type
	history_type
	units
	match_value (compound body)

	Special functions
	Introduction to functions
	Functions listed by return value
	Functions which return class
	Functions which return (i,r,s)list
	Functions which return int
	Functions which return (i,r)range
	Functions which return real
	Functions which return string

	Functions which fill arrays
	Functions which read ``large'' data
	Functions which read arrays
	Functions which read disk data
	Functions which read from a remote-cfengine
	Functions which read classes
	Functions which read command output
	Functions which read the environment
	Functions which read files
	Functions which read LDAP data
	Functions which read from the network
	Functions which read the Windows registry
	Functions which read (i,r,s)lists
	Functions which read strings

	Functions which look at file metadata
	Functions which look at variables
	Functions involving date or time
	Functions which work with or on regular expressions

	Function accessedbefore
	Function accumulated
	Function ago
	Function canonify
	Function changedbefore
	Function classify
	Function classmatch
	Function countclassesmatching
	Function countlinesmatching
	Function diskfree
	Function escape
	Function execresult
	Function fileexists
	Function filesexist
	Function getenv
	Function getfields
	Function getgid
	Function getindices
	Function getuid
	Function getusers
	Function grep
	Function groupexists
	Function hash
	Function hashmatch
	Function host2ip
	Function hostinnetgroup
	Function hostrange
	Function hostsseen
	Function hubknowledge
	Function iprange
	Function irange
	Function isdir
	Function isexecutable
	Function isgreaterthan
	Function islessthan
	Function islink
	Function isnewerthan
	Function isplain
	Function isvariable
	Function join
	Function lastnode
	Function laterthan
	Function ldaparray
	Function ldaplist
	Function ldapvalue
	Function now
	Function on
	Function peers
	Function peerleader
	Function peerleaders
	Function product
	Function randomint
	Function readfile
	Function readintarray
	Function readintlist
	Function readrealarray
	Function readreallist
	Function readstringarray
	Function readstringarrayidx
	Function readstringlist
	Function readtcp
	Function regarray
	Function regcmp
	Function regextract
	Function registryvalue
	Function regline
	Function reglist
	Function regldap
	Function remotescalar
	Function remoteclassesmatching
	Function returnszero
	Function rrange
	Function selectservers
	Function splayclass
	Function splitstring
	Function strcmp
	Function sum
	Function translatepath
	Function usemodule
	Function userexists

	Special Variables
	Variable context const
	Variable const.dollar
	Variable const.endl
	Variable const.n
	Variable const.r
	Variable const.t

	Variable context edit
	Variable edit.filename

	Variable context match
	Variable match.0

	Variable context mon
	Variable mon.value_users
	Variable mon.av_users
	Variable mon.dev_users
	Variable mon.value_rootprocs
	Variable mon.av_rootprocs
	Variable mon.dev_rootprocs
	Variable mon.value_otherprocs
	Variable mon.av_otherprocs
	Variable mon.dev_otherprocs
	Variable mon.value_diskfree
	Variable mon.av_diskfree
	Variable mon.dev_diskfree
	Variable mon.value_loadavg
	Variable mon.av_loadavg
	Variable mon.dev_loadavg
	Variable mon.value_netbiosns_in
	Variable mon.av_netbiosns_in
	Variable mon.dev_netbiosns_in
	Variable mon.value_netbiosns_out
	Variable mon.av_netbiosns_out
	Variable mon.dev_netbiosns_out
	Variable mon.value_netbiosdgm_in
	Variable mon.av_netbiosdgm_in
	Variable mon.dev_netbiosdgm_in
	Variable mon.value_netbiosdgm_out
	Variable mon.av_netbiosdgm_out
	Variable mon.dev_netbiosdgm_out
	Variable mon.value_netbiosssn_in
	Variable mon.av_netbiosssn_in
	Variable mon.dev_netbiosssn_in
	Variable mon.value_netbiosssn_out
	Variable mon.av_netbiosssn_out
	Variable mon.dev_netbiosssn_out
	Variable mon.value_irc_in
	Variable mon.av_irc_in
	Variable mon.dev_irc_in
	Variable mon.value_irc_out
	Variable mon.av_irc_out
	Variable mon.dev_irc_out
	Variable mon.value_cfengine_in
	Variable mon.av_cfengine_in
	Variable mon.dev_cfengine_in
	Variable mon.value_cfengine_out
	Variable mon.av_cfengine_out
	Variable mon.dev_cfengine_out
	Variable mon.value_nfsd_in
	Variable mon.av_nfsd_in
	Variable mon.dev_nfsd_in
	Variable mon.value_nfsd_out
	Variable mon.av_nfsd_out
	Variable mon.dev_nfsd_out
	Variable mon.value_smtp_in
	Variable mon.av_smtp_in
	Variable mon.dev_smtp_in
	Variable mon.value_smtp_out
	Variable mon.av_smtp_out
	Variable mon.dev_smtp_out
	Variable mon.value_www_in
	Variable mon.av_www_in
	Variable mon.dev_www_in
	Variable mon.value_www_out
	Variable mon.av_www_out
	Variable mon.dev_www_out
	Variable mon.value_ftp_in
	Variable mon.av_ftp_in
	Variable mon.dev_ftp_in
	Variable mon.value_ftp_out
	Variable mon.av_ftp_out
	Variable mon.dev_ftp_out
	Variable mon.value_ssh_in
	Variable mon.av_ssh_in
	Variable mon.dev_ssh_in
	Variable mon.value_ssh_out
	Variable mon.av_ssh_out
	Variable mon.dev_ssh_out
	Variable mon.value_wwws_in
	Variable mon.av_wwws_in
	Variable mon.dev_wwws_in
	Variable mon.value_wwws_out
	Variable mon.av_wwws_out
	Variable mon.dev_wwws_out
	Variable mon.value_icmp_in
	Variable mon.av_icmp_in
	Variable mon.dev_icmp_in
	Variable mon.value_icmp_out
	Variable mon.av_icmp_out
	Variable mon.dev_icmp_out
	Variable mon.value_udp_in
	Variable mon.av_udp_in
	Variable mon.dev_udp_in
	Variable mon.value_udp_out
	Variable mon.av_udp_out
	Variable mon.dev_udp_out
	Variable mon.value_dns_in
	Variable mon.av_dns_in
	Variable mon.dev_dns_in
	Variable mon.value_dns_out
	Variable mon.av_dns_out
	Variable mon.dev_dns_out
	Variable mon.value_tcpsyn_in
	Variable mon.av_tcpsyn_in
	Variable mon.dev_tcpsyn_in
	Variable mon.value_tcpsyn_out
	Variable mon.av_tcpsyn_out
	Variable mon.dev_tcpsyn_out
	Variable mon.value_tcpack_in
	Variable mon.av_tcpack_in
	Variable mon.dev_tcpack_in
	Variable mon.value_tcpack_out
	Variable mon.av_tcpack_out
	Variable mon.dev_tcpack_out
	Variable mon.value_tcpfin_in
	Variable mon.av_tcpfin_in
	Variable mon.dev_tcpfin_in
	Variable mon.value_tcpfin_out
	Variable mon.av_tcpfin_out
	Variable mon.dev_tcpfin_out
	Variable mon.value_tcpmisc_in
	Variable mon.av_tcpmisc_in
	Variable mon.dev_tcpmisc_in
	Variable mon.value_tcpmisc_out
	Variable mon.av_tcpmisc_out
	Variable mon.dev_tcpmisc_out
	Variable mon.value_webaccess
	Variable mon.av_webaccess
	Variable mon.dev_webaccess
	Variable mon.value_weberrors
	Variable mon.av_weberrors
	Variable mon.dev_weberrors
	Variable mon.value_syslog
	Variable mon.av_syslog
	Variable mon.dev_syslog
	Variable mon.value_messages
	Variable mon.av_messages
	Variable mon.dev_messages
	Variable mon.value_temp0
	Variable mon.av_temp0
	Variable mon.dev_temp0
	Variable mon.value_temp1
	Variable mon.av_temp1
	Variable mon.dev_temp1
	Variable mon.value_temp2
	Variable mon.av_temp2
	Variable mon.dev_temp2
	Variable mon.value_temp3
	Variable mon.av_temp3
	Variable mon.dev_temp3
	Variable mon.value_cpu
	Variable mon.av_cpu
	Variable mon.dev_cpu
	Variable mon.value_cpu0
	Variable mon.av_cpu0
	Variable mon.dev_cpu0
	Variable mon.value_cpu1
	Variable mon.av_cpu1
	Variable mon.dev_cpu1
	Variable mon.value_cpu2
	Variable mon.av_cpu2
	Variable mon.dev_cpu2
	Variable mon.value_cpu3
	Variable mon.av_cpu3
	Variable mon.dev_cpu3

	Variable context sys
	Variable sys.arch
	Variable sys.cdate
	Variable sys.cf_agent
	Variable sys.cf_execd
	Variable sys.cf_hub
	Variable sys.cf_key
	Variable sys.cf_know
	Variable sys.cf_monitord
	Variable sys.cf_promises
	Variable sys.cf_report
	Variable sys.cf_runagent
	Variable sys.cf_serverd
	Variable sys.cf_twin
	Variable sys.cf_version
	Variable sys.class
	Variable sys.date
	Variable sys.domain
	Variable sys.expires
	Variable sys.exports
	Variable sys.fqhost
	Variable sys.fstab
	Variable sys.host
	Variable sys.interface
	Variable sys.ipv4
	Variable sys.ipv4[interface_name]
	Variable sys.ipv4_1[interface_name]
	Variable sys.ipv4_2[interface_name]
	Variable sys.ipv4_3[interface_name]
	Variable sys.key_digest
	Variable sys.long_arch
	Variable sys.maildir
	Variable sys.nova_version
	Variable sys.os
	Variable sys.ostype
	Variable sys.policy_hub
	Variable sys.release
	Variable sys.resolv
	Variable sys.uqhost
	Variable sys.windir
	Variable sys.winprogdir
	Variable sys.winprogdir86
	Variable sys.winsysdir
	Variable sys.workdir

	Variable context this

	Logs and records
	Embedded Databases
	Text logs
	Reports in outputs
	Additional reports in commcerical cfengine versions
	State information

