Cfengine Reference Manual

Auto generated, self-healing knowledge
for version 3.0.0b5

cfengine.com

Copyright (© 2008 Cfengine AS

Chapter 1: Cfengine 3.0.0b5 Basics 1

1 Cfengine 3.0.0b5 Basics

Cfengine is a suite of programs for integrated autonomic management of either individual or
networked computers. It has existed as as software suite since 1993 and is published under the
GNU Public Licence. This document represents cfengine version 3.0.0 of cfengine, which is a radical
departure from earlier versions.

Cfengine 3 has been changed to be both a more powerful tool and a much simpler tool. Cfengine
3 is not backwards compatible with the cfengine 2 configuration language, but it interoperates with
cfengine 2 so that it is "run-time compatible". This means that you can change over to version 3
slowly, with low risk and at your own speed.

With cfengine 3 you can install, configure and maintain computers using powerful hands-free
tools. You can also integrate knowledge management and diagnosis into the processes.

Cfengine differs from most management systems in being
Open software (GPL).
Lightweight and generic.

e Non-reliant on a working network to function correctly.

Capable of making each and every host autonomous
Cfengine 3 consists of a number of components:
cf-agent Active agent
cf-execd Scheduler
cf-graph Graph data extractor
cf-know Knowledge modelling agent

cf-monitord
Passive monitoring agent

cf-promises
Promise validator

cf-runagent
Remote run agent

cf-serverd
Server agent

cf-report Self-knowledge extractor

The starred components are new. The daemon formally called cfenvd i previous versions of
cfengine is now called cf-monitord.

Unlike previous versions of cfengine, which had no consistent model for its features, you can
recognize everything in cfengine 3 from just a few concepts.

Promise A statement about the state we desire to maintain</td>

Promise bundles
A collection of promises</td>

2 Cfengine reference manual (version 3.0.0b5)

Promise bodies
A part of a promise which details and constrains its nature</td>

Data types An interpretation of a scalar value: string, integer or real number</td>

Variables ~ An association of the form "LVALUE represents RVALUE", where rval may be a scalar
value or a list of scalar values

Functions Built-in parameterized rvalues

Classes Cfengine’s boolean classifiers that describe context

If you have used cfengine before then the most visible part of cfengine 3 will be its new language
interface. Although it has been clear for a long time that the organically grown language used
in cfengines 1 and 2 developed many problems, it was not immediately clear exactly what would
be better. It has taken years of research to simplify the successful features of cfengine to a single
overarching model. To understand the new cfengine, it is best to set aside any preconceptions
about what cfengine is today. Cfengine 3 is a genuine "next generation" effort, which is will be a
springboard into the future of system management.

1.1 Why change the language?

Many attempts at improving the user interface of cfengine have been proposed but none of them
have been sufficiently impressive to make the change worthwhile before now. Some have gone in
for an Object Oriented approach, but this imposes a hierarchical model that does not fit cfengine’s
autonomous peer model. The main goal in changing the language is to simplify and improve the
robustness and functionality without sacrificing the basic freedoms and concepts. Concepts such as
explicit loops and and tests have long been banished from cfengine and proposals to reintroduce them
have been dismissed — something better is needed. The difficulty, of course is to provide a genuine
simplification and improvement that is robust and lasting: this requires a deep understanding of the
problem.

Cfengine 3’s new language is a direct implementation of a model developed at Oslo University
College over the past four years, known colloquially as "promise theory". Promises were originally
introduced by Mark Burgess as a way to talk about cfengine’s model of autonomy and have since
become a powerful way of modelling cooperative systems. Cfengine 3 is a generic implementation
of the language of promises that allows all of the aspects of configuration management to be unified
under a single umbrella.

Why talk about promises instead of simply talking about changes? After all, the trend in business
and I'T management today is to talk about Change Management, e.g. in the IT Infrastructure Library
(ITIL) terminology. This comes from a long history of process management thinking. But we are
not really interested in change — we are interested in being in a state where we don’t need to make
any changes. In other words we want to be able to promise that the system is correct, verify this
and only make changes if our promises are not kept.

To put it another way, cfengine is not really a change management system, it is a maintenance
system. Maintenance is the process of making small changes or corrections to a model. A "model"
is just another word for a template or a specification of how we want the system to work. Cfengine’s
model is based on the idea of promises, which means that it focuses on what is stable and lasting
about a system — not about what is changing.

This is an important philosophical shift. It means we are focused mainly on what is right and
not on what is wrong. By saying what "right" is (the ideal state of our system) we are focussed on

Chapter 1: Cfengine 3.0.0b5 Basics 3

the actual behaviour. If we focus too much on the changes, i.e. the differences between now and the
future, we might forget to verify that what we assume is working now in fact works.

Models that talk about change management tend to forget that after every change there is a
litany of incidents during which it is necessary to repair the system or return it to its intended state.
But if we know what we have promised, it is easy to verify whether the promise is kept. This means
that it is the promises about how the system should be that are most important, not the actual
changes that are made in order to keep them.

1.2 Testing as a non-privilieged user

One of the practical advantages of cfengine is that you can test it without the need for root or
administrator privileges. This is recommended for all new users of cfengine 3.

Cfengine operates with the notion of a work-directory. The default work directory for the
root user is ‘/var/cfengine’ (except on Debian Linux and various derivatives which prefer
‘/var/lib/cfengine’). For any other user, the work directory lies in the user’s home directory,
named ‘~/.cfagent’. Cfengine prefers you to keep certain files here. You should not resist this
too strongly or you will make unnecessary trouble for yourself. The decision to have this ‘known
directory’ was made to simplify a lot of configuration.

To test cfengine as an ordinary user, do the following:
e Compile and make the software.

e Copy the binaries into the work directory:

host$ mkdir -p ~/.cfagent/inputs
host$ mkdir -p ~/.cfagent/bin
host$ cd src

host$ cp cf-* ~/.cfagent/bin
host$ cd ../inputs

host$ cp *.cf ~/.cfagent/inputs

You can test the software and play with configuration files by editing the basic get-started files
directly in the ‘7/.cfagent/inputs’ directory. For example, try the following:
host$ ~/.cfagent/bin/cf-promises
host$ ~/.cfagent/bin/cf-promises --verbose
This is always the way to start checking a configuration in cfengine 3. If a configuration does
not pass this check/test, you will not be allowed to use it, and ‘cf-agent’ will look for the file
‘failsafe.cf’.
Notice that the cfengine 3 binaries have slightly different names than the cfengine 2 binaries.
They all start with the ‘cf-’ prefix.
host$ ~/.cfagent/bin/cf-agent

1.3 The bear necessities of a cfengine 3

IR
#

The starting point for every configuration

#
I

body common control

{

any::

4 Cfengine reference manual (version 3.0.0b5)

bundlesequence => { "testbundle" };

}

L S S S s s s s s s
bundle agent testbundle

{

}

If you try to process this using the cf-promises command, you will see something like this:
atlas$ ~/LapTop/Cfengine3/trunk/src/cf-promises -f ./unit_null_config.cf
cf3:./unit_null_config.cf:21,1: syntax error, near token '}

Summarizing promises as text to ./unit_null_config.cf.txt
Summarizing promises as html to ./unit_null_config.cf.html

Examine the two files produced:
cat ./unit_null_config.cf.txt
firefox ./unit_null_config.cf.html

Here is the simplest ‘Hello world’ program in cfengine 3:

body common control
{
bundlesequence => { "test" };

}

bundle agent test
{

reports:

Yr2008: :
"Hello world";

1.4 Familiarizing yourself

To familiarize yourself with cfengine 3, type or paste in the following example text:
HHHHHHH G R B HF SRR R SRR H
#
Simple test execution
#
HHEHFHFHHHHRHEHEHFRF R EHEH R HGRFRR R #

body common control
{
bundlesequence => { "testbundle" };

}

HEFHH B R B R R R R R

Chapter 1: Cfengine 3.0.0b5 Basics 5

bundle agent testbundle

{
vars:
"size" int => "46k";
"rand" int => randomint("33","$(size)");
commands :
"/bin/echo Hello"
additional args that do not become path of $(this.promiser)
args => "world - $(size)/$(rand)",
contain => standard,
classes => mydefine("followup","alert");
followup::
"/bin/1s"
contain => standard;
reports:
alert::
"What happened?";
}

HHHHH BB R R R R R R R

body contain standard

{
exec_owner => "mark";
useshell => "true";

}
HHEHFHHRHEEEE R

body classes mydefine(class,alert)

{
on_change => { "$(class)" };
on_failure => { "$(alert)" };
}

If you are familiar with cfengine’s history, this will look quite strange to you, but fear not.

This example shows all of the main features of cfengine: bundles, bodies, control, variables, and
promises. To the casual eye it might look complex, but that is because it is explicit about all of the
details. Fortunately it is easy to hide many of these details to make the example simpler without
sacrificing any functionality.

6 Cfengine reference manual (version 3.0.0b5)

The first thing to try with this example is to verify it — did we make any mistakes? Are there
any inconsistencies? To do this we use the new cfengine program cf-promises. Let’s assume that
you typed this into a file called ‘test.cf’ in the current directory.

cf-promises -f ./test.cf

If all is well, typing this command shows no output. Try now running the command with verbose

output.
cf-agent -f ./test.cf -v

Now you see a lot of information
Reference time set to Sat Aug 2 11:26:06 2008

cf3 Cfengine - 3.0.0

Free Software Foundation 1994-

Donated by Mark Burgess, Oslo University College, Norway

cf3 --------— "7
cf3 Host name is: atlas

cf3 Operating System Type is linux

cf3 Operating System Release is 2.6.22.18-0.2-default

cf3 Architecture = x86_64

cf3 Using internal soft-class linux for host linux

cf3 The time is now Sat Aug 2 11:26:06 2008

cf3 —~——-——————- ittty
cf3 Additional hard class defined as: 64_bit

cf3 Additional hard class defined as: linux_2_6_22_18_0_2_default

cf3 Additional hard class defined as: linux_x86_64

cf3 Additional hard class defined as: linux_x86_64_2_6_22_18_0_2_default

cf3 GNU autoconf class from compile time: compiled_on_linux_gnu

cf3 Interface 1: lo

cf3 Trying to locate my IPv6 address

cf3 Looking for environment from cfenvd...

cf3 Unable to detect environment from cfMonitord

Loading persistent classes

Loaded persistent memory

cf3 > Parsing file ./test.cf

Agent’s basic classified context

Defined Classes = (any Saturday Hrll Min26 Min25_30 Q2 Hr11_Q2 Day2
August Yr2008 linux atlas 64_bit linux_2_6_22_18_0_2_default x86_64

linux_x86_64 linux_x86_64_2_6_22_18_0_2_default

linux_x86_64_2_6_22_18_0_2_default__1_SMP_2008_06_09_13_53_20__0200

compiled_on_linux_gnu net_iface_lo)
Negated Classes = ()

Installable classes = ()
cf3 Wrote expansion summary to promise_output_common.html
cf3 Inputs are valid

The last two lines of this are of interest. Each time a component of cfengine 3 parses a number
of promises, it summarizes the information in an HTML file called generically promise_output_

Chapter 1: Cfengine 3.0.0b5 Basics 7

component-type.html. In this case the cf-promises command represents all possible promises, by
the type "common". You can view this output file in a suitable web browser to see exactly what
cfengine has understood by the configuration. The output looks something like this:

Cfengine reference manual (version 3.0.0b5)

Chapter 2: A simple crash course in concepts 9

2 A simple crash course in concepts

2.1 Rules are promises

Everything in cfengine 3 can be interpreted as a promise. Promises can be made about all kinds
of different subjects, from file attributes, to the execution of commands, to access control decisions
and knowledge relationships.

This simple but powerful idea allows a very practical uniformity in cfengine syntax. There is only
one grammatical form for statements in the language that you need to know and it looks generically
like this:

type:
classes::
"promiser" -> { "promiseel", "promisee2", ... }

attribute_1 => value_1,
attribute_2 => value_2,

attribute_n => value_n;

We speak of a promiser (the abstract object making the promise), the promisee is the abstract object
to whom the promise is made, and them there is a list of associations that we call the ‘body’ of the
promise, which together with the promiser-type tells us what it is all about.

Not all of these elements are necessary every time. Some promises contain a lot of implicit
behaviour. In other cases we might want to be much more explicit. For example, the simplest
promise looks like this:

commands :

"/bin/echo hello world";

This promise has default attributes for everything except the ‘promiser’; i.e. the command string
that promises to execute. A more complex promise contains many attributes:

files:
"/home/mark/tmp/test_plain" -> "system blue team",

comment => "This comment follows the rule for knowledge integration",
perms => users("@(usernames)"),
create => "true";

The list of promisees is not used by cfengine except for documentation, just as the comment
attribute (which can be added to any promise) has no actual function other than to provide more
information to the user in error tracing and auditing.

You see several kinds of object in this example. All literal strings (e.g. "true") in cfengine
3 must be quoted. This provides absolute consistency and makes type-checking easy and error-
correction powerful. All function-like objects (e.g. users("..")) are either builtin special functions
or parameterized templates which contain the ‘meat’ of the right hand side.

10 Cfengine reference manual (version 3.0.0b5)

2.2 Containers

Cfengine allows you to group multiple promise statements into containers called bundles.

bundle agent identifier

{

commands:

"/bin/echo These commands are a silly way to use cfengine";
"/bin/ls -1";
"/bin/echo But they illustrate a point";

Bundles serve two purposes: they allow us to collect related promises under a single heading,
like a subroutine, and they allow us to mix configuration for different parts of cfengine in the same
file. The type of a bundle is the name of the component of cfengine for which it is intended.

For instance, we can make a self-contained example agent-server configuration by labelling the

bundles:

#
Not a complete example
#

bundle agent testbundle

{

files:
"/home/mark/tmp/testcopy"
copy_from => mycopy ("/home/mark/LapTop/words","127.0.0.1"),
perms => system,
depth_search => recurse("inf");
}

#

bundle server access_rules

{
access:
"/home/mark/LapTop"
admit => { "127.0.0.1" };
}

Another type of container in cfengine 3 is a ‘body’ part. Body parts exist to hide complex
parameter information in reusable containers. The right hand side of some attribute assignments
use body containers to reduce the amount of in-line information and preserve readability. You
cannot choose where to use bodies: either they are used or they are not used for a particular kind

Chapter 2: A simple crash course in concepts 11

of attribute. What you can choose, however, is the name and number of parameters for the body;
and you can make as many of them as you like: For example:

body copy_from mycopy(from,server)

{
source => "$(from)";
servers => { "$(server)" };

copy_backup => "true";
special_class::

purge => "true";

}

Notice also that classes can be used in bodies as well as parameters so that you can hide envi-
ronmental adaptations in these bodies also. The classes used here are effectively ANDed with the
classes under which the calling promise is defined.

2.3 Types in cfengine 3

A key difference in cfengine 3 compared to earlier versions is the presence of data types. Data types
are a mechanism for associating values and checking consistency in a language. Once again, there
is a simple pattern to types in cfengine.

The principle is very simple: types exist in order to match like a plug-socket relationship. In the
examples above, you can see two places where types are used to match templates:

e Matching bundles to components:

bundle TYPE name # matches TYPE to running agent
{
}

e Match bodies templates to lvalues in 1values => rvalue constraints:

body TYPE name # matches TYPE => name in promise
{
}

Check these by identifying the words ‘agent’ and ‘copy_from’ in the examples above. Types are
there to make configuration more robust.

12

Cfengine reference manual (version 3.0.0b5)

Chapter 3: How to run cfengine 3 examples 13

3 How to run cfengine 3 examples

These instructions assume that you have all of your configuration in a single test file, such as the
example in the distriution directory ‘tests/units’.

1. Test the file as a non-privileged user first, if you can.

2. Always verify syntax first with cf-promises. This requires no privileges. An cf-agent will
not execute a configuration that has not passed this test.

host$ cf-promises -f ./inputfile.cf

3. Run the examples like this, e.g.

host$ src/cf-promises -f ./tests/units/unit_server_copy_localhost.cf
host$ src/cf-serverd -f ./tests/units/unit_server_copy_localhost.cf
host$ src/cf-agent -f ./tests/units/unit_server_copy_localhost.cf

Running cf-agent in verbose mode provides detailed information about the state of the systems

promises.
Outcome of version 1.2.3: Promises observed to be kept 99%,
Promises repaired 1%, Promises not repaired 0%

The logfile ‘WORKDIR/promise.log’ contains the summary of these reports with timestamps.
This is the simplest kind of high level audit record of the system.

14

Cfengine reference manual (version 3.0.0b5)

Chapter 4: A complete configuration 15

4 A complete configuration

To illustrate a complete configuration for agents and daemons, consider the following example. Note
how an existing user of cfengine 2 can integrate this with cfengine 2.

HEFHHAFHHAHHH B R AR SHH R R R R R

#

The starting point for every configuration

#

HEFHHAFHHAHHH SRR H R R R R R R R R R

body common control

{

any::
bundlesequence => { "update", "cfengine2", "main" };

inputs => { "update.cf", "templates.cf" };
}

HEHSHHBHHH B H R AR R R R R

body executor control

{
splaytime => "1";
mailto => "cfengine@example.org";

}

body agent control
{
domain => "example.org";

}
HEFHHHFHHAHHHHHFH R BB AR B R R R

bundle agent main

{
processes:
"cfenvd" process_count => running("cfenvd");
"cfservd" process_count => running("cfservd");
commands :

"/usr/sbin/ntpdate ntpserver.domain.tld" contain => silent;

16

start_cfserv::
"/var/cfengine/bin/cfservd";

start_cfenvd::
"/var/cfengine/bin/cfenvd -H -T";

files:

"/cfengine" perms => sys_public;
"/etc/passwd" perms

changes

=> sys_public,
=> tripwire;

"/var/cfengine/outputs"
delete => tidy,
file_select => age("3"),
depth_search => recurse("inf");

"/home/backup/remotehost"
copy_from => remotehost,

depth_search => infin,
action => longjob;

Cfengine reference manual (version 3.0.0b5)

HEHFHH B H B R R R R

bundle agent cfengine?2

{

commands :

"/var/cfengine/bin/cfagent";

B S

body copy_from remotehost

{

source => "/iu/remotehost";

Chapter 4: A complete configuration

servers => { "remotehost.example.org" };
copy_backup => "false";
purge => "false";
type_check => "true";

}
HEHFHH B H B H R R R R

body depth_search infin

{
depth => "inf";
}

body action longjob

{

ifelapsed => "480";
expireafter => "480";
background => "true";

}

The template file looks like this:

LT s s s s s s s s s s s s s S s s S s s S S S S s s
#

Our re-usable library / bag of tricks

#
B s s s s s s

body action parallelize

{

background => "false";

}
HAFHHHFHH AR H AR R R R R

body perms synapses

{
mode => "0644";
owners => { "mark" };

}
B s s s s s
body perms sys_public

{
mode => "0644";

18 Cfengine reference manual (version 3.0.0b5)

owners => { "root" };

}
HHGHEHSHFHFHHRHEHEH SR G RFRF R H GRS HFR G R H SRR SRR RS
body process_count running(s)

{

match_range => "1,10"; # or irange("1","10");
out_of_range_define => { "$(s)_out_of_control" };

}

HEFH R R

body changes tripwire

{

hash => "best";
report_changes => '"content";
update => "yes";

}

B R e

body contain silent
{
no_output => "true";
}

HAEFHHAFHHBHHH B H R AR SHR R R R RS

body depth_search recurse(d)
{

depth => "$(d)";

}

HERFHHHHH R R R R R

body delete tidy

{

dirlinks => "delete";
rmdirs => "false";
}

HESH R

Chapter 4: A complete configuration 19

body file_select age(d)

{

mtime => irange(ago(0,0,$(d),0,0,0) ,now);
file_result => "mtime";

}

4.1 What should a failsafe file contain?

The ‘failsafe.cf’ file is to make sure that your system can upgrade gracefully to new versions even
when mistakes are made.

As a general rule:
e Upgrade the software first, then add new features to the configuration.
e Never use advanced features in the failsafe file.
A cfengine configuration will fail-over to the failsafe configuration if it is unable to read or parse
the contents successfully. That means that any new features you try in a configuration will cause a

fail-over, because the parser will not be able to interpret the new features until the software itself
has been updated.

4.2 Recovery from errors in the configuration
The ‘failsafe.cf’ file should be able to download the latest master configuration from source

always.

HF
#

failsafe.cf

#
it

body common control

{

bundlesequence => { "update" };

3

s s s s s s s s s S S s
bundle agent update

{

files:

"/var/cfengine/inputs"

perms => system,

20 Cfengine reference manual (version 3.0.0b5)

copy_from => mycopy("/home/mark/cfengine-inputs","localhost"),
depth_search => recurse("inf");

"/var/cfengine/bin"
perms => system,

copy_from => mycopy("/usr/local/sbin","localhost"),
depth_search => recurse("inf");

HEHSHH B H B R R R R

body perms system

{

mode => "0700";

}

HERHHHHHE R R R
body depth_search recurse(d)

{

depth => "$(d)";

}

HASH R

body file_select cf3_files

{

leaf_name => { "cf-.x" };

file_result => "leaf_name";

}
HERHHHHH R R R R

body copy_from mycopy(from,server)

{

source => "$(from)";

servers => { "$(server)" , "failover.domain.tld" };
#backup => "true";

#trustkey => "true";

encrypt => "true";

Chapter 4: A complete configuration 21

4.3 Recovery from errors in the software

The update should optionally include an update of software so that a single failover from a config-
uration that is ‘too new’ for the software will still correct itself once the new software is available.

IR
#

update.cf

#
I R

bundle agent update

{

files:

"/var/cfengine/inputs"
perms => system("600"),
copy_from => mycopy("/home/mark/cfengine-inputs","localhost"),
depth_search => recurse("inf");

"/var/cfengine/bin"
perms => system("700"),
copy_from => mycopy("/usr/local/sbin","localhost"),

file_select => cf3_files,
depth_search => recurse("inf");

HEHSFHHBHHH B HH A H R R

body perms system(p)
{

mode => "$(p)";

}

HERFHHHHH R R R R R

body file_select cf3_files

22 Cfengine reference manual (version 3.0.0b5)

{

leaf_name => { "cf-.x" };

file_result => "leaf_name";

}
HEHSHH B H B R R R R R R

body copy_from mycopy(from,server)

{
source => "$(from)";
compare => "digest";

}

Chapter 5: Control promises 23

5 Control promises

While promises to configure your system are entirley user-defined, the details of the operational
behaviour of the cfengine software is of course hard-coded. You can still configure the details of
this behaviour using the control promise bodies. Control behaviour is defined in bodies because the
actual promises are fixed and you only change their details within sensible limits.

Note that in cfengine’s previous versions, the control part of the configuration contained a
mixture of internal control parameters and user definitions. There is now a cleaner separation in
cfengine. User defined behaviour requires a promise, and must therefore be defined in a bundle.

Below is a list of the control parameters for the different components (agents an daemons) of the
cfengine software.

5.1 common control promises

(R

body common control

{

inputs => {
"update.cf",
"library.cf"

}}

bundlesequence => {
update ("policy_host.domain.t1ld"),
"main" s
"cfengine2"

};

output_prefix => "cfengine>";
version => "1.2.3";

}

= /)

the common control body refers to those promises that are hard-coded into all the components of
cfengine, and therefore affect the behaviour of all the components.

5.1.1 bundlesequence

Type: slist

Allowed input range: .*

Synopsis: List of promise bundles to verify in order

Example:

24 Cfengine reference manual (version 3.0.0b5)

body common control

{

#..

bundlesequence => {
update("policy_host.domain.tld"),

"main",
"cfengine2"
}

}

Notes:

The bundlesequence determines whether compiled bundles will be executed and in what order
they will be executed. The list refers to the names of bundles which might be parameterized
function-like objects.

5.1.2 inputs

Type: slist

Allowed input range: . *

Synopsis: List of filenames to parse for promises

Example:

body common control

{

inputs => {
"update.cf",
"library.cf"
};

}

Notes:

5.1.3 version

Type: string

Allowed input range: (arbitrary string)

Synopsis: Scalar version string for this configuration

Example:

Chapter 5: Control promises

body common control

{

version => "1.2.3";

}

Notes:

The version string is used in error messages and reports.

5.1.4 lastseenexpireafter

Type: int

Allowed input range: 0,99999999999

Synopsis: Number of minutes after which last-seen entries are purged
Example:

Notes:

body common control

{

lastseenexpireafter => "72";

}

5.1.5 output_prefix

Type: string

Allowed input range: (arbitrary string)
Synopsis: The string prefix for standard output
Example:

body common control
{
output_prefix => "my_cf3";

}

Notes:

5.1.6 domain

Type: string

26 Cfengine reference manual (version 3.0.0b5)

Allowed input range: .*
Synopsis: Specify the domain name for this host
Example:

body common control
{
domain => "example.org";

}

Notes:

There is no standard, universal or reliable way of determining the DNS domain name of a host,
so it can be set explicitly to simplify discovery and name-lookup.

5.2 agent control promises

~
body agent control
{
123_456_789::

domain => "mydomain.com";
123_456_789_111::

auditing => "true";
any::

fullencryption => "true";

Settings describing the details of the fixed behavioural promises made by cf-agent. For example:

5.2.1 maxconnections

Type: int

Allowed input range: 0,99999999999

Synopsis: Maximum number of outgoing connections to cf-serverd
Example:

Chapter 5: Control promises 27

body agent control
{

maxconnections => "1000";

}

Notes:

Watch out for kernel limitations for maximum numbers of open file descriptors which can limit
this.
5.2.2 abortclasses
Type: slist
Allowed input range: .*
Synopsis: A list of classes which if defined lead to termination of cf-agent

Example:

body agent control

{

abortclasses => { "danger", "should_not_continue" };

}

Notes:

A list of classes that cf-agent will watch out for. If any of these classes becomes defined, it
will cause the current execution of cf-agent to be aborted. This may be used for validation, for
example.

5.2.3 abortbundleclasses

Type: slist

Allowed input range: .*

Synopsis: A list of classes which if defined lead to termination of current bundle

Example:

This example shows how to use the feature to validate input to a method bundle.

body common control

28 Cfengine reference manual (version 3.0.0b5)

bundlesequence => { "testbundle" I};
version => "1.2.3";

}
HHGHEHFHFHFEHEH SRS HFHF R RS
body agent control

{

abortbundleclasses => { "invalid" };

T

B R S

bundle agent testbundle

{
vars:
"userlist" slist => { "xyz", "mark", "jeang", "jonhenrik", "thomas", "eben" };
methods:
"any" usebundle => subtest("$(userlist)");
b

HEFHHH R R R R

bundle agent subtest(user)

{
classes:
"invalid" not => regcmp("[a-z] [a-z] [a-z] [a-z]","$(user)");
reports:
linvalid::
"User name $(user) is valid at 4 letters";
}

Notes:

Chapter 5: Control promises 29

A list of classes that cf-agent will watch out for. If any of these classes becomes defined, it will
cause the current bundle to be aborted. This may be used for validation, for example.

5.2.4 addclasses

Type: slist

Allowed input range: .*

Synopsis: A list of classes to be defined always in the current context

Example:

Add classes adds global, literal classes. The only predicates available during the control section
are hard-classes.

any::
addclasses => { "My_Organization" }
solaris::

addclasses => { "some_solaris_alive", "running_on_sunshine" };

Notes:

Another place to make global aliases for system hardclasses. Classes here are added ungeuivocally
to the system. If classes are used to predicate definition, then they must be defined in terms of global
hard classes.

5.2.5 agentaccess

Type: slist

Allowed input range: .*

Synopsis: A list of user names allowed to execute cf-agent

Example:

agentaccess => { "mark", "root", "sudo" };

Notes:

A list of user names that will be allowed to attempt execution of the current configuration. This
is mainly a sanity check rather than a security measure.

30 Cfengine reference manual (version 3.0.0b5)

5.2.6 agentfacility
Type: (menu option)

Allowed input range:

LOG_USER

LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4
LOG_LOCALS5
LOG_LOCAL6
LOG_LOCAL7

Synopsis: The syslog facility for cf-agent

Example:

agentfacility => "LOG_USER";

Notes:

Sets the agent’s syslog facility level. See the manual pages for syslog.

5.2.7 auditing

Type: (menu option)
Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false flag to activate the cf-agent audit log

Example:

body agent control
{

auditing => "true";

}

Chapter 5: Control promises 31

Notes:

If this is set, cfengine will perform auditing on promises in the current configuration. This means
that all details surrounding the verification of the current promise will be recorded in the audit
database. The database may be inspected with cf-report, or cfshow in cfengine 2.

5.2.8 binarypaddingchar

Type: string

Allowed input range: (arbitrary string)

Synopsis: Character used to pad unequal replacements in binary editing

Example:

body agent control

{

binarypaddingchar => "$(const.0)";
}

Notes:

When editing binary files, it can be dangerous to replace a text string with one that is longer
or shorter as byte references and jumps would be destroyed. Cfengine will therefore not allow
replacements that are larger in size than the original, but shorter strings can be padded out to the
same length.

5.2.9 bindtointerface

Type: string

Allowed input range: . *

Synopsis: Use this interface for outgoing connections

Example:

bindtointerface => "192.168.1.1";

Notes:

On multi-homed hosts, the server and client can bind to a specific interface for server traffic.
The IP address of the interface must be given as the argument, not the device name.

32 Cfengine reference manual (version 3.0.0b5)

5.2.10 hashpurge
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false whether stored hashes for non-existent files should be removed

Example:

body agent control
{
hashpurge => "true";

}

Notes:

Looking for files that are not present relative to the change management database also provides
warnings about file deletions.

5.2.11 hashupdates

Type: (menu option)
Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false whether stored hashes are updated when change is detected in source

Example:

body agent control
{
hashupdates => "true";

}

Chapter 5: Control promises 33

Notes:

If ‘true’ the stored reference value is updated as soon as a warning message has been given. As
most changes are benign (package updates etc) this is a common setting.

5.2.12 childlibpath

Type: string

Allowed input range: .*

Synopsis: LD_LIBRARY _PATH for child processes

Example:

body agent control

{
childlibpath => "/usr/lcoal/lib:/usr/local/gnu/lib";
}

Notes:

This string may be used to set the internal LD_LIBRARY_PATH environment of the agent.

5.2.13 defaultcopytype
Type: (menu option)

Allowed input range:

mtime

atime

ctime

digest

hash

binary
Synopsis: (null)

Example:

body agent control

{

#...

defaultcopytype => "digest";
}

34 Cfengine reference manual (version 3.0.0b5)

Notes:

Sets the global default policy for comparing source and image in copy transactions.

5.2.14 dryrun
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: All talk and no action mode

Example:

body agent control
{
dryrun => "true";

}

Notes:

If set in the configuration, cfengine makes no changes to a system, only reports what it needs to
do.

5.2.15 editbinaryfilesize

Type: int

Allowed input range: 0,99999999999

Synopsis: Integer limit on maximum binary file size to be edited

Example:

body agent control
{
edibinaryfilesize => "10M";

}

Chapter 5: Control promises 35

Notes:

The limit on editing binary files should generally be higher than for text files. Note the use of
units allowed in the integer type.

5.2.16 editfilesize

Type: int

Allowed input range: 0,99999999999

Synopsis: Integer limit on maximum text file size to be edited

Example:

body agent control

{
editfilesize => "120k";
}

Notes:

The global setting for the file-editing safety-net. Note the use of special units is allowed.

5.2.17 exclamation
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false print exclamation marks during security warnings

Example:

body agent control
{
exclamation => "false";

}

36 Cfengine reference manual (version 3.0.0b5)

Notes:

This affects only the output format of warnings.

5.2.18 expireafter

Type: int

Allowed input range: 0,99999999999

Synopsis: Global default for time before on-going promise repairs are interrupted

Example:

body action example
{

ifelapsed => "120";
expireafter => "240";
}

Notes:

The locking time after which cfengine will attempt to kill and restart its attempt to keep a
promise.

5.2.19 files_single_copy

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of filenames to be watched for multiple-source conflicts

Example:

body agent control

{

single_copy => { "/etc/.*", "/special/file" };
}

Notes:

This list of regular expressions will ensure that files matching the patterns of the list are never
copied from more than one source during a single run of cf-agent. This may be considered a
protection against accidential overlap of copies from diverse remote sources, or as a first-come-first-
served disambiguation tool for lazy-evaluation of overlapping file-copy promises.

Chapter 5: Control promises 37

5.2.20 files_auto_define

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of filenames to define classes if copied

Example:

body agent control

{

files_auto_define => { "/etc/syslog\.c.*", "/etc/passwd" };
}

Notes:

Classes are automatically defined by the files that are copied. The file is named according to
the prefixed ‘canonization’ of the file name. Canonization means that non-identifier characters are

converted into underscores. Thus ‘/etc/passwd’ would canonize to

_etc_passwd’. The prefix
‘auto_’ is added to clarify the origin of the class. Thus in the example the copying of ‘/etc/passwd’

would lead to the class ‘auto__etc_passwd’ being defined automatically.

5.2.21 fullencryption

Type: (menu option)
Allowed input range:

true
false
yes
no
on
off
Synopsis: Full encryption mode in server connections, includes directory listings

Example:

body agent control
{
fullencryption => "true";

}

Notes:

38 Cfengine reference manual (version 3.0.0b5)

If true this encrypts all levels of the queries to the server during file transfers. The default is to
not encrypt all aspects, since this can slow down transfer and basically only contributes to global
warming for most users.

5.2.22 hostnamekeys
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false label ppkeys by hostname not IP address

Example:

body agent control
{

hostnamekeys => "true";

}

Notes:

Client side choice to base key associations on host names rather than IP address. This is useful
for hosts with dynamic addresses.

5.2.23 ifelapsed
Type: int
Allowed input range: 0,99999999999

Synopsis: Global default for time that must elapse before promise will be rechecked

Example:

#local

body action example

{
ifelapsed => "120";
expireafter => "240";

}

Chapter 5: Control promises 39

global

body agent control

{
ifelapsed => "120";
}

Notes:

This overrides the global settings. Promises which take a long time to verify should usually
be protected with a long value for this parameter. This serves as a resource ‘spam’ protection.
A cfengine check could easily run every 5 minutes provided resource intensive operations are not
performed on every run. Using time classes like Hr12 etc., is one part of this strategy; using
ifelapsed is another which is not tied to a specific time.

5.2.24 inform
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false set inform level default

Example:

body agent control
{
inform => "true";

}

Notes:

Equivalent to or overrides the command line option ‘-I’. Sets the default output level ‘perma-
nently’ within the class context indicated.

5.2.25 lastseen

Type: (menu option)

40 Cfengine reference manual (version 3.0.0b5)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false record last observed time for all client-server connections (true)
Example:
reports:
"Comment"

lastseen => "10";

Notes:

After this time (hours) has passed, references to the external peer will be purged from this host’s
database.

5.2.26 lastseenexpireafter

Type: int

Allowed input range: 0,99999999999

Synopsis: Time in days after which non-responsive last-seen hosts are purged
Example:

Notes:

body common control

{

lastseenexpireafter => "72";

}

5.2.27 mountfilesystems

Type: (menu option)
Allowed input range:

Chapter 5: Control promises

true
false
yes
no
on
off
Synopsis: true/false mount any filesystems promised

Example:

body agent control
{

mountfilesystems => "true";

}

Notes:

Issues the generic command to mount file systems defined in the file system table.

5.2.28 nonalphanumfiles
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false warn about filenames with no alphanumeric content

Example:

body agent control
{

nonalphanumericfiles => "true";

}

Notes:

This test is applied in all recursive/depth searches.

41

42 Cfengine reference manual (version 3.0.0b5)

5.2.29 repchar

Type: string

Allowed input range: .

Synopsis: The character used to canonize pathnames in the file repository

Example:

body agent control
{
repchar => "_";

}

Notes:

5.2.30 default_repository

Type: string

Allowed input range: [/\].*

Synopsis: Path to the default file repository

Example:

body agent control
{
default_respository => "/var/cfengine/repository";

}

Notes:

If defined the default repository is the location where versions of files altered by cfengine are
stored. This should be understood in relation to the policy for ‘backup’ in copying, editing etc. If
the backups are time-stamped, this becomes effective a version control repository.

5.2.31 secureinput

Type: (menu option)

Allowed input range:

true
false
yes
no

Chapter 5: Control promises

on
off

Synopsis: true/false check whether input files are writable by unauthorized users

Example:

body agent control
{

secureinput => "true";

}

Notes:

If this is set, the agent will not accept an input file that is not owned by a privileged user.

5.2.32 sensiblecount

Type: int

Allowed input range: 0,99999999999

Synopsis: Minimum number of files a mounted filesystem is expected to have

Example:

body agent control
{

sensiblecount => "20";

}

Notes:

5.2.33 sensiblesize

Type: int

Allowed input range: 0,99999999999

Synopsis: Minimum number of bytes a mounted filesystem is expected to have

Example:

body agent control
{

sensiblesize => "20K";

43

44 Cfengine reference manual (version 3.0.0b5)

Notes:

5.2.34 skipidentify

Type: int

Allowed input range: (arbitrary string)

Synopsis: Do not send IP /name during server connection because address resolution is broken

Example:

body control agent
{
skipidentify => "true";

}

Notes:

Hosts that are not registered in DNS cannot supply reasonable credentials for a secondary con-
firmation of their identity to a cfengine server. This causes the agent to ignore its missing DNS
credentials.

5.2.35 suspiciousnames

Type: slist

Allowed input range: List of names to warn about if found during any file search
Synopsis: (null)

Example:

body agent control
{
suspiciousnames => { ".mo", "1rk3", "rootkit" I};

}

Notes:

If cfengine sees these names during recursive (depth) file searches it will warn about them.

Chapter 5: Control promises

5.2.36 syslog
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false switches on output to syslog at the inform level

Example:

body agent example
{
syslog => "true";

}

Notes:

5.2.37 timezone

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of allowed timezones this machine must comply with

Example:

body agent control

{
timezone => { "MET", "CET", "GMT+1" };
}

Notes:

5.2.38 default_timeout

Type: int
Allowed input range: 0,99999999999

Synopsis: Maximum time a network connection should attempt to connect

45

46 Cfengine reference manual (version 3.0.0b5)

Example:

body agent control
{

default_timeout => "10";
}

Notes:

The time is in seconds. It is not a guaranteed number, since it depends on system behaviour.
under Linux, the kernel version plays a role, since not all system calls seem to respect the signals.

5.2.39 verbose
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off

Synopsis: true/false switches on verbose standard output

Example:

control agent control

{
verbose => "true";

}

Notes:

5.3 server control promises

Chapter 5: Control promises 47

-

body server control

{
allowconnects => { "127.0.0.1" , "::1" , ".*.example.org" I};
allowallconnects => { "127.0.0.1" , "::1" , ".*.example.org" };

Uncomment me under controlled circumstances
#trustkeysfrom => { "127.0.0.1" , "::1" , ".x_ example.org" };
}

\

Server controls are mainly about determining access policy for the connection protocol: i.e. access
to the server itself. Access to specific files must be granted in addition.

5.3.1 cfruncommand

Type: string

Allowed input range: [/\].*

Synopsis: Path to the cf-agent command or cf-execd wrapper for remote execution

Example:

body server control

{
#..
cfruncommand => "/var/cfengine/bin/cf-agent";

}

Notes:

It is normal for this to point to the location of cf-agent but it could also point to the cf-execd,
or even another program at your own risk.

5.3.2 maxconnections

Type: int

Allowed input range: 0,99999999999

Synopsis: Maximum number of connections that will be accepted by cf-serverd

Example:

body agent control
{

48 Cfengine reference manual (version 3.0.0b5)

maxconnections => "1000";

}

Notes:

Watch out for kernel limitations for maximum numbers of open file descriptors which can limit
this.

5.3.3 denybadclocks

Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false accept connections from hosts with clocks that are out of sync

Example:

body server body

{
#..
denybadclocks => "true";

}

Notes:

A possible form of attack on the fileserver is to request files based on time by setting the clocks
incorrectly. This option prevents connections from clients whose clocks are drifting too far from the
server clock. This serves as a warning about clock asynchronization and also a protection against
Denial of Service attempts based on clock corruption.

5.3.4 allowconnects

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames that may connect to the server port

Example:

Chapter 5: Control promises 49

allowconnects => {
"127.0.0.1" ,
"o,
"2001.10.%"
"host.domain.t1ld",
"host [0-9]+\.domain.com"

};

Notes:

If a client’s identity matches an entry in this list it is granted to permission to send data to the
server port. Clients who are not in this list may not connect or send data to the server.

5.3.5 denyconnects

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames that may NOT connect to the server port

Example:

body server control

{

denyconnects => { "badhost.domain.evil" };
}

Notes:

Hosts or IP addresses that are explicitly denied access. This should only be used in special
circumstances. One should never grant generic access to everything and then deny special cases.
Since the default server behaviour is to grant no access to anything, this list is unnecessary unless
you have already granted access to some set of hosts using a generic pattern, to which you intend
to make an exception.

5.3.6 allowallconnects
Type: slist
Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames that may have more than one connection to the server port

Example:

allowallconnects => {
"127.0.0.1" ,

50 Cfengine reference manual (version 3.0.0b5)

n . 1|| ,

"2001.10.%"
"host.domain.tld",

"host [0-9]+\ .domain.com"

};

Notes:

This list of regular expressions matches hosts that are allowed to connect an umlimited number
of times up to the maximum connection limit. Without this, a host may only connect once (which is
a very strong constraint, as the host must wait for the TCP FIN_WAIT to expire before reconnction
can be attempted).

In cfengine 2 this corresponds to AllowMultipleConnectionsFrom.

5.3.7 trustkeysfrom

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames from whom we accept public keys on trust

Example:

body server control

{
trustkeysfrom => {"hosts.*", "192.168.*"};
}

Notes:

If connecting clients’ public keys have not already been trusted, this allows us to say ‘yes’ to
accepting the keys on trust. Normally this should be an empty list except in controlled circumstances.

5.3.8 allowusers

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of usernames who may execute requests from this server

Example:

allowusers => { "cfengine", "root" };

Chapter 5: Control promises 51

Notes:

The usernames listed in this list are those asserted as public key identities during client-server
connections. These may or may not correspond to system identities on the server-side system.

5.3.9 dynamicaddresses

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames for which the IP/name binding is expected to change

Example:

body server control

{
dynamicaddresses => { "dhcp_.*" };

}

Notes:

The addresses or hostnames here are expected to have non-permanent address-name bindings,
we must therefor work harder to determine whether hosts credentials are trusted by looking for
existing public keys in files that do not match the current hostname or IP.

5.3.10 skipverify

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of IPs or hostnames for which we expect no DNS binding and cannot verify

Example:

body server control

{

skipverify => { "special_host.*", "192.168.%" };
}

Notes:

Server side decision to ignore requirements of DNS identity confirmation.

5.3.11 logallconnections

Type: (menu option)

52 Cfengine reference manual (version 3.0.0b5)

Allowed input range:

true

false

yes

no

on

off
Synopsis: true/false causes the server to log all new connections to syslog
Example:

body server control

{

logallconnections => "true";

}

Notes:

If set, the server will record connection attempts in syslog.

5.3.12 logencryptedtransfers

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off
Synopsis: true/false log all successful transfers required to be encrypted
Example:

body server control
{
logencryptedtransfers => "true";

}

Notes:

Chapter 5: Control promises 53

If true the server will log all transfers of files which the server requires to encrypted in order to
grant access (see ifencrypted) to syslog. These files are deemed to be particularly sensitive.

5.3.13 hostnamekeys
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false store keys using hostname lookup instead of IP addresses

Example:

body agent control
{

hostnamekeys => "true";

}

Notes:

Client side choice to base key associations on host names rather than IP address. This is useful
for hosts with dynamic addresses.

5.3.14 auditing
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false activate auditing of server connections

Example:

body agent control

54 Cfengine reference manual (version 3.0.0b5)

{
auditing => "true";

}

Notes:

If this is set, cfengine will perform auditing on promises in the current configuration. This means
that all details surrounding the verification of the current promise will be recorded in the audit
database. The database may be inspected with cf-report, or cfshow in cfengine 2.

5.3.15 bindtointerface

Type: string

Allowed input range: (arbitrary string)

Synopsis: IP of the interface to which the server should bind on multi-homed hosts

Example:

bindtointerface => "192.168.1.1";

Notes:

On multi-homed hosts, the server and client can bind to a specific interface for server traffic.
The IP address of the interface must be given as the argument, not the device name.

5.3.16 serverfacility

Type: (menu option)

Allowed input range:

LOG_USER

LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4
LOG_LOCALS
LOG_LOCAL6
LOG_LOCAL7

Synopsis: Menu option for syslog facility level

Example:

Chapter 5: Control promises 55

body server control

{
serverfacility => "LOG_USER";

}
Notes:

See syslog notes.

5.4 monitor control promises

body monitor control()

{

#version => "1.2.3.4";

threshold => "0.3";

forgetrate => "0.7";

histograms => "true";

tcpdump => "false";

tcpdumpcommand => "/usr/sbin/tcpdump -i ethl -n -t -v";

}

The system defaults will be sufficient for most users. This configurability potential will be a key
to developing the integrated monitoring capabilities of cfengine however.

5.4.1 forgetrate

Type: real
Allowed input range: 0,1
Synopsis: Decimal fraction [0,1] weighting of new values over old in 2d-average computation

Example:

body monitor control
{

threshold => "0.3";
forgetrate => "0.7";
histograms => "true";

}

56 Cfengine reference manual (version 3.0.0b5)

Notes:

Configurable settings for the machine-learning algorithm that tracks system behaviour. This is
only for expert users. This parameter effectively determines (together with the monitoring rate)
how quickly cfengine forgets its previous history.

5.4.2 monitorfacility
Type: (menu option)

Allowed input range:

LOG_USER

LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4
LOG_LOCALS
LOG_LOCAL6
LOG_LOCAL7

Synopsis: Menu option for syslog facility

Example:

body monitor control

{
monitorfacility => "LOG_USER";

}

Notes:

See notes for syslog.

5.4.3 histograms
Type: (menu option)

Allowed input range:

true
false
yes
no

on

Chapter 5: Control promises 57

off
Synopsis: true/false store signal histogram data

Example:

body monitor control
{
histograms => "true";

}

Notes:

This is like the ‘-H’ option to cfenvd in cfengine 2. It causes cfengine to learn the conformally
transformed distributions of fluctuations about the mean.

5.4.4 tcpdump
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false use tepdump if found

Example:

body monitor control
{
tcpdump => "true";

}

Notes:

Interface with TCP stream if possible.

5.4.5 tcpdumpcommand

Type: string
Allowed input range: [/\].*

58 Cfengine reference manual (version 3.0.0b5)

Synopsis: Path to the tcpdump command on this system
Example:

body monitor control

{

tcpdumpcommand => "/usr/sbin/tcpdump -i ethl";
}

Notes:

If this is defined, the monitor will try to interface with the TCP stream and monitor generic
package categories for anomalies.

5.5 runagent control promises

-

body runagent control

{
default port is 5308

hosts => { "127.0.0.1:5308", "eternity.iu.hio.no:80", "slogans.iu.hio.no" };

#output_to_file => "true";

}
N

The most important parameter here is the list of hosts that the agent will poll for connections.
This is easily read in from a file list, however when doing so always have a stable input source that
does not depend on the network (including a database or directory service) in any way: introducing
such dependencies makes configuration brittle.

5.5.1 hosts

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of host or IP addresses to attempt connection with

Example:

body runagent control

{

Chapter 5: Control promises 59

networkl::
hosts => { "hostl.example.org", "host2", "host3" };

network2::
hosts => { "hostl.example.com", "host2", "host3" };
T

Notes:

The complete list of contactable hosts. The values may be either numerical IP addresses or DNS

names, optionally suffixed by a
cfengine port 5308 is assumed.

and a port number. If no port number is given, the default

5.5.2 port

Type: int

Allowed input range: 1024,99999
Synopsis: Default port for cfengine server

Example:

body copy_from example

{
portnumber => "5308";
}

Notes:

The standard or registered port number is tcp/5308. Cfengine does not presently use its registered
udp port with the same number, but this could change in the future.

5.5.3 force_ipv4
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false force use of ipv4 in connection

60 Cfengine reference manual (version 3.0.0b5)

Example:

body copy_from example
{
force_ipv4 => "true";

}

Notes:

IPv6 should be harmless to most users unless you have a partially or misconfigured setup.

5.5.4 trustkey
Type: (menu option)
Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false automatically accept all keys on trust from servers

Example:

body copy_from example
{

trustkey => "true";

}

Notes:

If the server’s public key has not already been trusted, this allows us to accept the key in
automated key-exchange.

5.5.5 encrypt
Type: (menu option)

Allowed input range:

true

Chapter 5: Control promises 61

false

yes

no

on

off
Synopsis: true/false encrypt connections with servers
Example:

body copy_from example

{

servers => { "remote-host.example.org" };
encrypt => "true";

}

Notes:

Client connections are encrypted with using a Blowfish randomly generated session key. The
intial connection is encrypted using the public/private keys for the client and server hosts.

5.5.6 background_children

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off
Synopsis: true/false parallelize connections to servers
Example:

body runagent control
{
background_children => "true";

}

Notes:

Causes the runagent to attempt parallelized connections to the servers.

62 Cfengine reference manual (version 3.0.0b5)

5.5.7 max_children

Type: int

Allowed input range: 0,99999999999

Synopsis: Maximum number of simultaneous connections to attempt

Example:

body runagent control
{
max_children => "10";

}

Notes:

The maximum number of forked background processes allowed when parallelizing connections to
servers.

5.5.8 output_to_file
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to send collected output to file(s)

Example:

body runagent control
{
output_to_file => "true";

}

Notes:

Filenames are chosen automatically and placed in the ‘WORKDIR/outputs/hostname _runagent.out’]

Chapter 5: Control promises 63

5.6 executor control promises

~
body executor control

{

splaytime => "5";

mailto => "cfengine@example.org";
mailfrom => "cfengine@$ (host).example.org";
smtpserver => "localhost";

schedule => { "MinOO_05", "Min30_35" }

}

-

These body settings determine the behaviour of cf-execd, including scheduling times and out-
put capture to ‘WORKDIR/outputs’ and relay via email. Note that the splaytime and schedule
parameters are now coded here rather than (as previously) in the agent.

5.6.1 splaytime

Type: int

Allowed input range: 0,99999999999

Synopsis: Time in minutes to splay this host based on its name hash

Example:

body executor control
{

splaytime => "2";

}

Notes:

A rough rule of thumb for scaling of small updates is set the splay time by:
splaytime = 1 + Number of clients / 50

5.6.2 mailfrom

Type: string

Allowed input range: .*.*

Synopsis: Email-address cfengine mail appears to come from

Example:

64 Cfengine reference manual (version 3.0.0b5)

body executor control

{

mailfrom => "MrCfengineQexample.org";

}

Notes:

5.6.3 mailto

Type: string

Allowed input range: .*.x*

Synopsis: Email-address cfengine mail is sent to

Example:

body executor control
{
mailto => "cfengine_alias@example.org";

}

Notes:

The address to whom email is sent if an smtp host is configured.

5.6.4 smtpserver

Type: string

Allowed input range: .*

Synopsis: Name or IP of a willing smtp server for sending email

Example:

body executor control
{
smtpserver => "smtp.example.org";

}

Notes:

Chapter 5: Control promises 65

This should point to a standard port 25 server without encyption. If you are running secured or
encrypted email then you should run a mail relay on localhost and point this to localhost.

5.6.5 mailmaxlines

Type: int

Allowed input range: 0,1000

Synopsis: Maximum number of lines of output to send by email

Example:

body executor control
{
mailmaxlines => "100";

}

Notes:

This limit prevents anomalously large outputs from clogging up a system administrator’s mail-
box. The output is truncated in the email report, but the complete original transcript is stored
in ‘WORKDIR/outputs/*’ where it can be viewed on demand. A reference to the appropriate file is
given.

5.6.6 schedule

Type: slist

Allowed input range: (arbitrary string)

Synopsis: The class schedule for activating cf-execd

Example:

body executor control

{
schedule => { "Min00_05", "Min05_20", "Min30_35", "Min45_50" };
}

Notes:

The list should contain classes which are visible to the cf-execd daemon. In principle any
defined class will cause the daemon to wake up and schedule the execution of the cf-agent.

5.6.7 executorfacility

Type: (menu option)

66 Cfengine reference manual (version 3.0.0b5)

Allowed input range:

LOG_USER

LOG_DAEMON
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCAL4
LOG_LOCAL5
LOG_LOCAL6
LOG_LOCAL7

Synopsis: Menu option for syslog facility level

Example:

body executor control

{
executorfacility => "LOG_USER";
}

Notes:

See the syslog manual pages.

5.6.8 execcommand

Type: string

Allowed input range: [/\].*

Synopsis: The path to the command executed by default (overriding builtin)

Example:

body executor control
{
execcommand => "/usr/local/sbin/cf-agent";

}

Notes:

The default value for the execcommand is ‘WORKDIR/bin/cf-agent’.

Chapter 5: Control promises 67

5.7 knowledge control promises

(N

body knowledge control

{

build_directory => ".";

sql_database => "my_knowledge";
sql_owner => "db_user";
sql_passwd => ""; # No passwd
sql_type => "mysql";

query_output => "html";

style_sheet => "http://www.example.org/css/style.css";
html_banner =>

n

<1i>Item 1

Item 2

n.
)

These parameters control the way in which knowledge data are stored and retrieved from a
relational database and the output format of the queries.

5.7.1 id_prefix
Type: string
Allowed input range: .*

Synopsis: The LTM identifier prefix used to label topic maps (used for disambiguation in merging)
Example:

body knowledge control
{
id_prefix => "unique_prefix";

}

Notes:

Use to disambiguate indentifiers for a successful merging of topic maps, especially in Linear Topic
Map (LTM) format using third party tools such as Ontopia’s Omnigator.

68 Cfengine reference manual (version 3.0.0b5)

5.7.2 build_directory

Type: string

Allowed input range: .*

Synopsis: The directory in which to generate output files

Example:

body knowledge control

{

#..

build_directory => "/tmp/builddir";
}

Notes:

The directory where all auto-generated textual output is placed by cf-know. This includes
manual generation, ontology and topic map data.

5.7.3 sql_type
Type: (menu option)

Allowed input range:

mysql
postgress
Synopsis: Menu option for supported database type

Example:

body knowledge control

{
sql_type => "mysql";
}

Notes:

5.7.4 sql_database
Type: string
Allowed input range: (arbitrary string)

Synopsis: Name of database used for the topic map

Chapter 5: Control promises

Example:

body knowledge control

{

sql_database => "cfengine_knowledge_db";
3

Notes:

The name of an SQL database for caching knowledge.

5.7.5 sql_owner

Type: string

Allowed input range: (arbitrary string)
Synopsis: User id of sql database user

Example:

body knowledge control
{
sql_owner => "db_owner";

}

Notes:

Part of the credentials for opening the database. This depends on the type of database.

5.7.6 sql_passwd

Type: string

Allowed input range: (arbitrary string)

Synopsis: Embedded password for accessing sql database

Example:

body knowledge control
{
sql_passwd => "";

}

69

70 Cfengine reference manual (version 3.0.0b5)

Notes:

Part of the credentials for connecting to the database server. This is system dependent. If the
server host is localhost a password might not be required.

5.7.7 sql_server

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name or IP of database server (or localhost)

Example:

body knowledge control
{
sql_server => "localhost";

}

Notes:

The host name of IP address of the server. The default is to look on the localhost.

5.7.8 query_output
Type: (menu option)

Allowed input range:

html
text

Synopsis: Menu option for generated output format

Example:

body knowledge control
{
query_output => "html";
b

Notes:

Chapter 5: Control promises 71

5.7.9 query_engine

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of a dynamic web-page used to accept and drive queries in a browser

Example:

body knowledge control
{
query_engine => "http://www.example.org/script.ext";

}

Notes:

When displaying topic maps in HTML format, cf-know will render each topic as a link to this
URL with the new topic as an argument. Thus it is possible to make a dynamic web query by
embedding cfengine in the web page as system call and passing the argument to it.

5.7.10 style_sheet

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of a style-sheet to be used in rendering html output (added to headers)

Example:

body knowledge control

{
style_sheet => "http://www.example.org/css/sheet.css";

}

Notes:

For formatting the HTML generated output of cf-know.

5.7.11 html_banner

Type: string

Allowed input range: (arbitrary string)

Synopsis: HTML code for a banner to be added to rendered html after the header

Example:

72 Cfengine reference manual (version 3.0.0b5)

body knowledge control
{

html_banner => "";

}

Notes:

This content is cited when generating HTML output from the knowledge agent.

5.7.12 graph_output
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false generate png visualization of topic map if possible (requires lib)

Example:

body knowledge control

{
fix/override -g option
graph_output => "true";

}

Notes:

Equivalent to the use of the ‘-g’ option for cf-know.

5.7.13 graph_directory

Type: string

Allowed input range: [/\].*

Synopsis: Path to directory where rendered .png files will be created

Example:

Chapter 5: Control promises 73

body knowledge control

{

graph_directory => "/tmp/output";
}

Notes:

A separate location where the potentially large number of ‘.png’ visualizations of a knowledge
representation are pre-compiled. This feature only works if the necessary graphics libraries are
present.

5.7.14 generate_manual

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off
Synopsis: true/false generate texinfo manual page skeleton for this version
Example:

body knowledge control
{
generate_manual => "true";

}

Notes:

Auto-creates a manual based on the self-documented code. As the promise syntax is extended
the manual self-heals. The resulting manual is generated in Texinfo format, from which all other
formats can be generated.

5.7.15 manual_source_directory
Type: string
Allowed input range: [/\].*

Synopsis: Path to directory where raw text about manual topics is found (defaults to build_directory)
Example:

74 Cfengine reference manual (version 3.0.0b5)

body knowledge control
{

manual_source => "/path/cfengine_manual_commentary";

}

Notes:

This is used in the self-healing documentation. The directory points to a location where the
Texinfo sources for per-section commentary is maintained.

5.8 reporter control promises

body reporter control

{

reports => { "performance", "last_seen", "monitor_history" };
build_directory => "/tmp/nerves";

report_output => "html";

}

Determines a list of reports to write into the build directory. The format may be in text, html
or xml format. The reporter agent cf-report replaces both cfshow and cfenvgraph. It no longer
produces output to the console.

5.8.1 reports
Type: (option list)

Allowed input range:

audit
performance
all_locks
active_locks
hashes

classes
last_seen
monitor_now
monitor_history

Synopsis: A list of reports to generate

Chapter 5: Control promises

Example:

body reporter control
{
reports => { "performance", "classes" };

}

Notes:

A list of report types that can be generated by this agent.

5.8.2 report_output
Type: (menu option)

Allowed input range:

html
text
xml

Synopsis: Menu option for generated output format

Example:

body reporter control

{

report_output => "html";
}

Notes:

Sets the output format of embedded database reports.

5.8.3 build_directory

Type: string

Allowed input range: . *

Synopsis: The directory in which to generate output files
Example:

body knowledge control

(0]

76 Cfengine reference manual (version 3.0.0b5)

{

#..

build_directory => "/tmp/builddir";
}

Notes:

The directory where all auto-generated textual output is placed by cf-know. This includes
manual generation, ontology and topic map data.

5.8.4 auto_scaling

Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false whether to auto-scale graph output to optimize use of space

Example:

body reporter control

{
auto_scaling => "true";

}

Notes:

Automatic scaling is the default.

5.8.5 error_bars
Type: (menu option)

Allowed input range:

true
false
yes
no

Chapter 5: Control promises 7

on
off

Synopsis: true/false whether to generate error bars on graph output

Example:

body reporter control

{

error_bars => "true";

}

Notes:

The default is to produce error bars. Without error bars from cfengine’s machine learning data
there is no way to assess the significance of an observation about the system, i.e. whether it is
normal or anomalous.

5.8.6 time_stamps

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to generate timestamps on the output directory

Example:

body reporter control
{
time_stamps => "true";

}
Notes:
This option is only necessary with the default build directory. This can be used to keep snapshots

of the system but it will result in a lot of storage be consumed. For most purposes cfengine is
programmed to forget the past at a predictable rate and there is no need to override this.

78 Cfengine reference manual (version 3.0.0b5)

5.8.7 query_engine

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of a dynamic web-page used to accept and drive queries in a browser

Example:

body knowledge control
{
query_engine => "http://www.example.org/script.ext";

}

Notes:

When displaying topic maps in HTML format, cf-know will render each topic as a link to this
URL with the new topic as an argument. Thus it is possible to make a dynamic web query by
embedding cfengine in the web page as system call and passing the argument to it.

5.8.8 style_sheet

Type: string

Allowed input range: (arbitrary string)

Synopsis: Name of a style-sheet to be used in rendering html output (added to headers)

Example:

body knowledge control

{
style_sheet => "http://www.example.org/css/sheet.css";

}

Notes:

For formatting the HTML generated output of cf-know.

5.8.9 html_banner

Type: string

Allowed input range: (arbitrary string)

Synopsis: HTML code for a banner to be added to rendered html after the header

Example:

Chapter 5: Control promises

body knowledge control
{
html_banner => "";

}

Notes:

This content is cited when generating HTML output from the knowledge agent.

79

80

Cfengine reference manual (version 3.0.0b5)

Chapter 6: Bundles of common 81

6 Bundles of common

-
bundle common globals
{
vars:

"global_var" string => "value";
classes:

"global_class" expression => "value";
=

Common bundles may only contain the promise types that are common to all bodies. Their main
function is to define cross-component global definitions. Common bundles are observed by every
agent, whereas the agent specific bundle types are ignored by components other than the intended
recipient.

6.1 vars promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are listed below.

6.1.1 string

Type: string
Allowed input range: (arbitrary string)

Synopsis: A scalar string

Example:

vars:

"xxx" string => "Some literal string...";

"yyy" string => readfile("/home/mark/tmp/testfile" , "33");

Notes:

82 Cfengine reference manual (version 3.0.0b5)

In cfengine previously lists were represented (as in the shell) using separted scalars, e.g. like the
PATH variable. This design feature turned out to be an error of judgement which has resulted in
much trouble. This is no longer supported in cfengine 3. By keeping lists an independent type many
limitations have been removed.

6.1.2 int

Type: int
Allowed input range: -99999999999,9999999999

Synopsis: A scalar integer

Example:
vars:

"scalar" int => "16k";

"ran" int => randomint (4,88);

"dim_array" int => readstringarray("array_name","/etc/passwd","#["\n]lx*",":",10,4000);[}
Notes:

Integer values may use suffices ‘k’, ‘K’, ‘m’, ‘M’; etc

‘K’ The value multipled by 1000.

‘K’ The value multipled by 1024.

‘m’ The value multipled by 1000 * 1000.

‘W The value multipled by 1024 * 1024.

‘g’ The value multipled by 1000 * 1000 * 1000.

‘G The value multipled by 1024 * 1024 * 1024.

A A percentage between 1 and 100 - mainly for use in a storage context.

The value ‘inf’ may also be used to represent an umlimited positive value.

6.1.3 real

Type: real
Allowed input range: -9.99999E100,9.99999E100
Synopsis: A scalar real number

Example:

vars:

Chapter 6: Bundles of common 83

"scalar" real => "0.5";

Notes:

Real numbers are not used in many places in cfengine, but they are useful for representing
probabilties and performance data.

6.1.4 slist
Type: slist

Allowed input range: (arbitrary string)
Synopsis: A list of scalar strings

Example:
vars:
"xxx" slist => { "literall", "literal2" };
"yyy" slist => {
readstringlist(
"/home/mark/tmp/testlist",
"#[a-zA-Z0-9 1x*",
"[~a-zA-Z0-9]",
15,
4000
)
}
"zzz" slist => { readstringlist("/home/mark/tmp/testlist2","#["\nlx*",",",5,4000) };li
Notes:

6.1.5 ilist

Type: ilist

Allowed input range: -99999999999, 9999999999
Synopsis: A list of integers

Example:

84 Cfengine reference manual (version 3.0.0b5)

vars:
"variable_id"
ilist => { ||10||, ||11u, nqon };

Notes:

Integer lists are lists of strings that are expected to be treated as integers. The typing in cfengine
is dynamic, so the variable types are interchangable.

6.1.6 rlist
Type: rlist
Allowed input range: -9.99999E100,9.99999E100

Synopsis: A list of real numbers

Example:

vars:
"varid" rlist => { "0.1", "0.2", "0.3" };

Notes:

6.1.7 policy
Type: (menu option)

Allowed input range:

free
overridable
constant

Synopsis: The policy for (dis)allowing redefinition of variables

Example:

vars:

"varid" string => "value..."
policy => "constant";

Chapter 6: Bundles of common 85

Notes:

Variables can either be allowed to change their value dynamically (be redefined) or they can be
constant. The use of private variable spaces in cfengine 3 makes it unlikely that variable redefinition
would be necessary in cfengine 3.

6.2 classes promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are listed below.

6.2.1 or

Type: clist

Allowed input range: [a-zA-Z0-9_!&|. O]+
Synopsis: Combine class sources with inclusive OR

Example:

classes:
"compound_test"
or => { classmatch("linux_x86_64_2_6_22.%"), "suse_10_3" };

Notes:

A useful construction for writing expressions that contain special functions.

6.2.2 and

Type: clist
Allowed input range: [a-zA-Z0-9_!&|. O]+
Synopsis: Combine class sources with AND

Example:

classes:

"compound_class" and => { classmatch("host[0-9].*"), "Monday", "Hr02" };

86 Cfengine reference manual (version 3.0.0b5)

Notes:

If an expression contains a mixture of different object types that need to be ANDed together,
this list form is more convenient than providing an expression.

6.2.3 xor

Type: clist

Allowed input range: [a-zA-Z0-9_!&|. O]+
Synopsis: Combine class sources with XOR

Example:

classes:

"another_global" xor => { "any", "linux", "solaris"};

Notes:

6.2.4 dist

Type: rlist

Allowed input range: -9.99999E100,9.99999E100

Synopsis: Generate a probabilistic class distribution (strategy in cfengine 2)

Example:

classes:
"my_dist"
dlSt => { 1110", |I2OII’ II4OII, Il50l| };

Notes:

Assign one exclusive class randomly weighted on a probability distribution. This will generate
the following classes:
my_dist (always)
my_dist_10 (10/120 of the time)
my_dist_20 (20/120 of the time)
my_dist_40 (40/120 of the time)
my_dist_50 (50/120 of the time)

Chapter 6: Bundles of common 87

This was previous called a ‘strategy’ in cfengine 2.

6.2.5 expression

Type: class
Allowed input range: [a-zA-Z0-9_!&|. O]+
Synopsis: Evaluate string expression of classes in normal form

Example:

classes:
"class_name" expression => "solaris|(linux.specialclass)";

Notes:

A way of aliasing class combinations.

6.2.6 not

Type: class
Allowed input range: [a-zA-Z0-9_!&|.()]+
Synopsis: Evaluate the negation of string expression in normal form

Example:

classes:
"others" mnot => "linux|solaris";

Notes:

In file editing, this negates the effect of the promiser-pattern regular expression.

6.3 reports promises

Whereas most promise types are specific to a particular kind of interpretation that requires a
typed interpreter (the bundle type), a number of promises can be made in any kind of bundle since
they are of a generic input/output nature. These are listed below.

6.3.1 lastseen

Type: int

88 Cfengine reference manual (version 3.0.0b5)

Allowed input range: 0,99999999999
Synopsis: Integer time threshold in hours since current peers were last seen, report absence

Example:

reports:
"Comment"

lastseen => "10";

Notes:

After this time (hours) has passed, references to the external peer will be purged from this host’s
database.

6.3.2 intermittency

Type: real
Allowed input range: 0,1
Synopsis: Real number threshold [0,1] of intermittency about current peers, report above

Example:

reports:
"Comment"
intermittency => "0.5";

Notes:

Report on cfengine peers in the neighbourhood watch whose observed irregularity of connection
exceeds 0.5 scaled entropy units, meaning that they show an erratic pattern of connection.

6.3.3 showstate

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of services about which status reports should be reported to standard output

Example:

Chapter 6: Bundles of common

reports:

"Comment"

showstate => {"www_in", "ssh_out", "otherprocs" };

Notes:

The basic list of services is:
‘users’ Users logged in

‘rootprocs’
Privileged system processes

‘otherprocs’
Non-privileged process

‘diskfree’ Free disk on / partition
‘loadavg’ % kernel load utilization

‘netbiosns_in’
netbios name lookups (in)

‘netbiosns_out’
netbios name lookups (out)

‘netbiosdgm_in’
netbios name datagrams (in)

‘netbiosdgm_out’
netbios name datagrams (out)

‘netbiosssn_in’
netbios name sessions (in)

‘netbiosssn_out’
netbios name sessions (out)

‘irc_in’ IRC connections (in)
‘irc_out’ IRC connections (out)

‘cfengine_in’
cfengine connections (in)

‘cfengine_out’
cfengine connections (out)

‘nfsd_in’ nfs connections (in)
‘nfsd_out’ nfs connections (out)

‘smtp_in’ smtp connections (in)

89

90

‘smtp_out’ smtp connections (out)

‘www_in’ www connections (in)
‘www_out’ www connections (out)
‘ftp_in’ ftp connections (in)

‘ftp_out’ ftp connections (out)

‘ssh_in’ ssh connections (in)
‘ssh_out’ ssh connections (out)
‘wwws_in’ wwws connections (in)

‘wwws_out’ wwws connections (out)
‘icmp_in’ ICMP packets (in)
‘icmp_out’ ICMP packets (out)
‘udp_in’ UDP dgrams (in)
‘udp_out’ UDP dgrams (out)
‘dns_in’ DNS requests (in)
‘dns_out’ DNS requests (out)

‘tcpsyn_in’
TCP sessions (in)

‘tcpsyn_out’
TCP sessions (out)

‘tcpack_in’
TCP acks (in)

‘tcpack_out’
TCP acks (out)

‘tecpfin_in’

TCP finish (in)

‘tcpfin_out’
TCP finish (out)

‘tcpmisc_in’
TCP misc (in)

‘tcpmisc_out’
TCP misc (out)

‘webaccess’
Webserver hits

‘weberrors’
Webserver errors

‘syslog’ New log entries (Syslog)

Cfengine reference manual (version 3.0.0b5)

Chapter 6: Bundles of common

‘messages’
‘temp0’
‘templ’
‘temp2’
‘temp3’
‘cpu’
‘cpul’
‘cpul’
‘cpu2’

‘cpud’

New log entries (messages)
CPU Temperature 0

CPU Temperature 1

CPU Temperature 2

CPU Temperature 3
%CPU utilization (all)
%CPU utilization 0
%CPU utilization 1
%CPU utilization 2
%CPU utilization 3

6.3.4 printfile (compound body)

Type: (ext body)

‘number_of_lines’

Type: int
Allowed input range: 0,99999999999
Synopsis: Integer maximum number of lines to print from selected file

Example:

body printfile example
{
number_of_lines => "10";

}

Notes:

‘file_to_print’

Type: string
Allowed input range: [/\].*
Synopsis: Path name to the file that is to be sent to standard output

Example:

body printfile example

{
file_to_print => "/etc/motd";

91

92 Cfengine reference manual (version 3.0.0b5)

number_of_lines => "10";

}

Notes:

Include part of a file in a report.

6.4 * promises in ‘agent’

The generic “*’ promises refer to any promise type in cf-agent. The body attributes described
below can be added to any promise rule in the agent. These promises are of a generic nature and
address matters of a completely general nature — how cfengine behaves as it attempts to keep a

promise.

files:
"/etc/passwd" -> "Security team"

perms => p("644"),
action => justcheck,
comment => "This was decided in internal procedures XYZ123";

6.4.1 action (compound body)
Type: (ext body)

‘action’ Type: (menu option)

Allowed input range:

fix
warn
nop

Synopsis: Whether to repair or report about non-kept promises

Example:

The following example shows a simple use of transaction control, causing the promise
to be verified as a separate background process.

Chapter 6: Bundles of common 93

‘ifelapsed’

body action background

{
background => "true";

}

In the following example, the action includes the definition of a class based on the
actions that were performed.

bundle edit_line MarkNRoot
{
insert_lines:
'pw_loaded::

"/etc/passwd"

insert_type => "file",
action => defineclass("pw_loaded");

delete_lines:
pw_loaded::

"mark.*|root.*" not_matching => "true";

HE R R R

body action defineclass(c)

{

promise_repaired => { "$(c)" };
persist_time => "0";

}

Notes:

The action settings allow general transaction control to be implemented on promise
verification. Action bodies place limits on how often to verify the promise and what
classes to raise in the case that the promise can or cannot be kept.

Type: int
Allowed input range: 0,99999999999

94 Cfengine reference manual (version 3.0.0b5)

Synopsis: Number of minutes before next allowed assessment of promise

Example:

#local

body action example

{
ifelapsed => "120";
expireafter => "240";

3
global

body agent control

{
ifelapsed => "120";
}

Notes:

This overrides the global settings. Promises which take a long time to verify should
usually be protected with a long value for this parameter. This serves as a resource
‘spam’ protection. A cfengine check could easily run every 5 minutes provided resource
intensive operations are not performed on every run. Using time classes like Hr12 etc.,
is one part of this strategy; using ifelapsed is another which is not tied to a specific
time.

‘expireafter’
Type: int
Allowed input range: 0,99999999999
Synopsis: Number of minutes before a repair action is interrupted and retried

Example:

body action example
{

ifelapsed => "120";
expireafter => "240";

}
Notes:

Chapter 6: Bundles of common 95

The locking time after which cfengine will attempt to kill and restart its attempt to
keep a promise.
‘log_string’
Type: string
Allowed input range: (arbitrary string)
Synopsis: A message to be written to the log when the promise is verified

Example:

promise-type:
n 1 n
promiser

attr => "value",
action => log_me("checked $(this.promiser)");

body action log_me(s)
{
log_string => "$(s)";
}

Notes:

‘log_level’
Type: (menu option)

Allowed input range:

inform
verbose
error
log
Synopsis: The reporting level sent to syslog

Example:

body action example
{
log_level => "inform";

}

96 Cfengine reference manual (version 3.0.0b5)

Notes:

Use this as an alternative to auditing to use the syslog mechanism to centralize or
manage messaging from cfengine. A backup of these messages will still be kept in
‘WORKDIR/outputs’ if you are using cf-execd.

‘audit’ Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false switch for detailed audit records of this promise

Example:

body action example

{
...

audit => "true";

}

Notes:

If this is set, cfengine will perform auditing on this specific promise. This means that
all details surrounding the verification of the current promise will be recorded in the

audit database. The database may be inspected with cf-report, or cfshow in cfengine
2.

‘background’
Type: (menu option)

Allowed input range:

true
false
yes
no

on

Chapter 6: Bundles of common 97

off
Synopsis: true/false switch for parallelizing the promise repair

Example:

body action example

{

background => "true";

}

Notes:

If possible, background the verification of the current promise. This is advantageous
only if the verification might take a significant amount of time, e.g. in remote copying
of filesystem/disk scans.

‘report_level’
Type: (menu option)

Allowed input range:

inform
verbose
error
log

Synopsis: The reporting level for standard output

Example:

body action example
{
report_level => "verbose";

}

Notes:

In cfengine 2 one would say ‘inform=true’ or ‘syslog=true’, etc. This replaces these
levels since they act as encapsulating super-sets.

6.4.2 classes (compound body)
Type: (ext body)

98 Cfengine reference manual (version 3.0.0b5)

‘promise_repaired’
Type: slist

Allowed input range: [a-zA-Z0-9_$.]1+
Synopsis: A list of classes to be defined

Example:

body classes example
{
promise_repaired => { "change_happened" };

}

Notes:

If a promise is ‘repaired’ it means that a corrective action had to be taken to keep the
promise.

‘repair_failed’
Type: slist
Allowed input range: [a-zA-Z0-9_$.]1+
Synopsis: A list of classes to be defined

Example:

body classes example
{
repair_failed => { "unknown_error" };

}

Notes:

A promise could not be repaired because the corrective action failed for some reason.
‘repair_denied’

Type: slist

Allowed input range: [a-zA-Z0-9_$.]1+

Synopsis: A list of classes to be defined

Example:

Chapter 6: Bundles of common

body classes example
{
repair_denied => { "permission_failure" };

}

Notes:

A promise could not be kept because access to a key resource was denied.
‘repair_timeout’

Type: slist

Allowed input range: [a-zA-Z0-9_$.]1+

Synopsis: A list of classes to be defined

Example:

body classes example
{
repair_timeout => { "too_slow", "did_not_wait" };

}

Notes:

A promise maintenance repair timed-out waiting for some dependent resource.
‘promise_kept’

Type: slist

Allowed input range: [a-zA-Z0-9_$.]1+

Synopsis: A list of classes to be defined

Example:

body classes example

{

promise_kept => { "success", "kaplah" };
}

Notes:

99

100 Cfengine reference manual (version 3.0.0b5)

This class is set if no action was necessary by cf-agent because the promise concerned
was aready kept without further action required.

‘persist_time’
Type: int
Allowed input range: 0,99999999999
Synopsis: A number of minutes the specified classes should remain active

Example:

body classes example
{
persist_time => "10";

}

Notes:

By default classes are ephemeral entities that disappear when cf-agent terminates.
By setting a persistence time, they can last even when the agent is not running.

‘timer_policy’
Type: (menu option)

Allowed input range:

absolute
reset

Synopsis: Whether a persistent class restarts its counter when rediscovered

Example:

body classes example
{
timer_policy => "reset";

}
Notes:
The in most cases resetting a timer will give a more honest appraisal of which classes

are currently important, but if we want to activate a response of limited duration as a
rare event then an asbolute time limit is useful.

Chapter 6: Bundles of common 101

6.4.3 ifvarclass

Type: string

Allowed input range: (arbitrary string)
Synopsis: Extended classes ANDed with context

Example:

The generic example has the form:
promise-type:
"promiser"

ifvarclass => "$(program) _running| ($(program) _notfound&Hr12)";
A specific example would be:

bundle agent example

{

commands :

any::

"/bin/echo This is linux"

ifvarclass => "linux";

"/bin/echo This is solaris"

ifvarclass => "solaris";

Notes:

9

This is an additional class expression that will be evaluated after the ‘class::’ classes have

selected promises. It is provided in order to enable a channel between variables and classes. The
result is thus the logical AND of the ordinary classes and the variable classes.

This function is provided so that one can form expressions that link variables and classes, e.g.

Check that all components are running

vars:

102 Cfengine reference manual (version 3.0.0b5)

"component" slist => { "cf-monitord", "cf-serverd" };
processes:
"$(component)" restart_class => canonify("start_$(component)");
commands :
"/var/cfengine/bin/$ (component)"
ifvarclass => canonify("start_$(component)");

Notice that the function canonify () is provided to convert a general variable input into a string
composed only of legal characters, using the same algorithm that cfengine uses.

6.4.4 comment

Type: string

Allowed input range: (arbitrary string)

Synopsis: Retained comment about this promise’s real intention

Example:

comment => "This comment follows the data for reference ...",
Notes:

Comments written in code follow the program, they are not merely discarded. They appear in
reports and error messages.

6.5 * promises in ‘edit_line’

The generic “*’ promises refer to any promise type in cf-agent. The body attributes described
below can be added to any promise rule in the agent. These promises are of a generic nature and
address matters of a completely general nature — how cfengine behaves as it attempts to keep a
promise.

files:

"/etc/passwd" -> "Security team"

Chapter 6: Bundles of common 103

perms => p("644"),
action => justcheck,
comment => "This was decided in intermal procedures XYZ123";

6.5.1 select_region (compound body)
Type: (ext body)
‘select_start’
Type: string
Allowed input range: .*
Synopsis: Regular expression matching start of edit region

Example:

body select_region example(x)

{

select_start => "\[$(x)\]1";
select_end => "\[.*\]";

}

Notes:

See also select_end. These delimiters mark out the region of a file to be edited. In
the example, it is assumed that the file has section markes

[section 1]

lines.
lines...

[section 2]

lines
etc..

‘select_end’
Type: string

Allowed input range: .*

Synopsis: Regular expression matches end of edit region from start

104 Cfengine reference manual (version 3.0.0b5)

Example:

body select_region example(x)

{

select_start => "\[$)\]";
select_end => "\[.*\]";

}

Notes:

See also select_start. These delimiters mark out the region of a file to be edited. In
the example, it is assumed that the file has section markes

[section 1]
lines.
lines...
[section 2]

lines
etc. .

Chapter 7: Bundles of agent 105

7 Bundles of agent

(N

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
N J

Agent bundles contain user-defined promises for cf-agent. The types of promises and their
corresponding bodies are detailed below.

7.1 commands promises in ‘agent’

-
commands :
"/path/to/command args"
args => "more args",
contain => contain_body,
module => true/false;
_ J

Command containment allows you to make a ‘sandbox’ around a command, to run it as a non-
privileged user inside an isolated directory tree. Cfengine modules are commands that support a
simple protocol (see below) in order to set additional variables and classes on execution from user

106 Cfengine reference manual (version 3.0.0b5)

defined code. Modules are intended for use as system probes rather than additional configuration
promises.

In cfengine 3 commands and processes have been separated cleanly. Restarting of processes must
be coded as a separate command. This stricter type separation will allow more careful conflict
analysis to be carried out.

Output from commands executed here is quoted inline, but prefixed with the letter ‘Q’ to distin-
guish it from other output, e.g. from reports.

Commands were called shellcommands in cfengine previously. Modules were

NOTE: a common mistake in using cfengine is to embed many shell commands instead of using
the built-in functionality. Use of cfengine internals is preferred as it assures convergence and proper
integrated checking. Extensive use of shell commands will make a cfengine execution very heavy-

weight like other management systems. To minimize the system cost of execution, always use cfengine
internals.

bundle agent example

{
commands :
"/bin/sleep 10"
action => background;
"/bin/sleep"
args => "20",
action => background;
}
7.1.1 args

Type: string
Allowed input range: (arbitrary string)
Synopsis: Alternative string of arguments for the command (concatenated with promiser string)

Example:

commands :

"/bin/echo one"

Chapter 7: Bundles of agent 107

args => "two three";

Notes:

Sometimes it is convenient to separate the arguments to a command from the command itself.
The final arguments are the concatenation with one space. So in the example above the command
would be

/bin/echo one two three

7.1.2 contain (compound body)
Type: (ext body)

‘useshell’ Type: (menu option)

Allowed input range:

true
false
yes
no
on
off

Synopsis: true/false embed the command in a shell environment (true)

Example:

body contain example
{
useshell => "true";

}

Notes:

The default is to use a shell when executing commands, but this has both resource and
security consequences. A shell consumes an extra process and inherits environment
variables, reads commands from files and performs other actions beyond the control
of cfengine. If one does not need shell functionality such as piping through multiple
commands then it is best to manage without it.

‘umask’ Type: (menu option)

Allowed input range:

108 Cfengine reference manual (version 3.0.0b5)

0

7
22
27
72

Synopsis: The umask value for the child process

Example:

body contain example

{
umask => "0O77";

}

Notes:

Sets the internal umask for the process.
‘exec_owner’
Type: string
Allowed input range: (arbitrary string)
Synopsis: The user name or id under which to run the process

Example:

body contain example
{
exec_owner => '"mysql_user";

}

Notes:

This is part of the restriction of privilege for child processes when running cf-agent
as the root user, or a user with privileges.
‘exec_group’
Type: string
Allowed input range: (arbitrary string)
Synopsis: The group name or id under which to run the process

Example:

Chapter 7: Bundles of agent 109

body contain example
{
exec_group => '"nogroup";

}

Notes:

This is part of the restriction of privilege for child processes when running cf-agent
as the root user, or a user with privileges.

‘exec_timeout’
Type: int
Allowed input range: 1,3600
Synopsis: Timeout in seconds for command completion

Example:

body contain example
{
exec_timeout => "30";

}

Notes:

Attempt to time-out after this number of seconds. This cannot be guaranteed as not
all commands are willing to be interrupted in case of failure.
‘chdir’ Type: string
Allowed input range: [/\].*
Synopsis: Directory for setting current/base directory for the process

Example:

body contain example

{
chdir => "/containment/directory";

}

110

‘chroot’

‘preview’

Cfengine reference manual (version 3.0.0b5)

Notes:

This command has the effect of placing the running command into a current working
directory equal to the parameter given, i.e. it works like the ‘cd’ shell command.
Type: string

Allowed input range: [/\].*

Synopsis: Directory of root sandbox for process

Example:

body contain example

{
chroot => "/private/path";
}

Notes:

Sets the path of the directory that will be experienced as the top-most root directory
for the process. In security parlance, this creates a ‘sandbox’ for the process.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false preview command when running in dry-run mode (with -n)

Example:

body contain example
{
preview => "true";

}

Chapter 7: Bundles of agent 111

Notes:

Previewing shell scripts during a dry-run is a potentially misleading activity. It should
only be used on scripts that make no changes to the system. It is cfengine best practice
to never write change-functionality into user-written scripts except as a last resort:
cfengine can apply its safety checks to user defined scripts.

‘no_output’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false discard all output from the command

Example:

body contain example
{
no_output => "true";

}

Notes:

This is equivalent to piping standard output and error to ‘/dev/null’.

7.1.3 module
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to expect the cfengine module protocol

112 Cfengine reference manual (version 3.0.0b5)

Example:

commands :
"/masterfiles/user_script"

module => "true";

Notes:

If true, the module protocol is supported for this script, i.e. it is treated as a user module. A
plug-in module may be written in any language, it can return any output you like, but lines which
begin with a ‘+’ sign are treated as classes to be defined (like ‘~D’), while lines which begin with a ‘=’
sign are treated as classes to be undefined (like ‘-N’). Lines starting with ‘=" are variables/macros
to be defined. Any other lines of output are cited by cfagent, so you should normally make your
module completely silent. Here is an example module written in perl.

#!/usr/bin/perl

#

module:myplugin
#

lots of computation....

if (special-condition)
{
print "+specialclass";

}

Modules inherit the environment variables from cfagent and accept arguments, just as a regular

command does.
#!/bin/sh
#
module:myplugin
#

/bin/echo $*

cf-agent defines the classes as an environment variable so that programs have access to these.

E.g. try the following module:
#!/usr/bin/perl

print "Decoding $ENV{CFALLCLASSES}\n";
@allclasses = split (":","$ENV{CFALLCLASSES}");
while ($c=shift(@allclasses))

{

$classes{$c} = 1;
print "$c is set\n";

Chapter 7: Bundles of agent

Modules define variables in cf-agent by outputting strings of the form

=variablename=value

These variables end up in a context which has the same name as the module.

113

When the

$(allclasses) variable becomes too large to manipulate conveniently, you can access the com-

plete list of currently defined classes in the file ‘/var/cfengine/state/allclasses’.

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
=

Agent bundles contain user-defined promises for cf-agent. The types of promises

corresponding bodies are detailed below.

7.2 files promises in ‘agent’

and their

Files promises are an umbrella concept for all attributes of files. Operations fall basically into

three categories: create, delete and edit.

114 Cfengine reference manual (version 3.0.0b5)

-

files:
"/path/file_object"

perms => perms_body,

’

=

/

Prior to version 3, file promises were scattered into many different types such as files, tidy,
copy, links, etc. These are all parameterized attributes of a single type of promise now, because
the promiser-object of all those matters refers to the same type of object. This greatly simplifies

the matter of detecting promise conflicts.

bundle agent example

{
files:

"/home/mark/tmp" -> "Security team"
changes => lay_a_tripwire,
depth_search => recurse("inf"),
action => background;

}

HERHHHHH R R R R R

body changes lay_a_tripwire

{

hash => "md5";
report_changes => '"content";
update => "yes";

}

7.2.1 file_select (compound body)
Type: (ext body)
‘leaf_name’
Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of regexes that match an acceptable name

Example:

Chapter 7: Bundles of agent 115

‘path_name’

body file_select example

{
leaf_name => { "S[0-9]+[a-zA-Z]+", "K[0-9]+[a-zA-Z]+" };
file_result => "leaf_name";

}

Notes:

This pattern matches only the node name of the file, not its path.

Type: slist
Allowed input range: [/\].*
Synopsis: List of pathnames to match acceptable target

Example:

body file_select example

{
leaf_name => { "prog.pid", "prog.log" };
path_name => { "/etc/.*", "/var/run/.*" };

file_result => "leaf_name.path_name"

}

Notes:

Path name and leaf name can be conveniently tested for separately by use of appropriate
regular expressions.

‘search_mode’

Type: string
Allowed input range: [0-7augorwxst,+-]+
Synopsis: Mode mask for acceptable files

Example:

body file_select example
{

search_mode => "644";

116 Cfengine reference manual (version 3.0.0b5)

Notes:

The mode may be specified in symbolic or numerical form with ‘+’ and ‘-’ constraints.
‘search_size’

Type: irange [int,int]

Allowed input range: 0, inf

Synopsis: Integer range of file sizes

Example:

body file_select example

{

search_size => irange("0","20k");
file_result => "size";

}

Notes:

‘search_owners’
Type: slist
Allowed input range: [a-zA-Z0-9_8$.]1+
Synopsis: List of acceptable user names or ids for the file

Example:

body file_select example

{

search_owners => { "mark", "jeang", "student_.*" };
file_result => "owner";

}

Notes:

A list of regular expressions.

‘search_groups’
Type: slist

Chapter 7: Bundles of agent 117

Allowed input range: [a-zA-Z0-9_$.]1+
Synopsis: List of acceptable group names or ids for the file

Example:

body file_select example

{

search_group => { "users", "special_.x" };
file_result => "group";

}

Notes:

‘ctime’ Type: irange [int,int]
Allowed input range: 0,4026531839
Synopsis: Range of change times (ctime) for acceptable files

Example:

body files_select example

{

ctime => irange(ago(1,0,0,0,0,0),now);
file_result => "ctime";

}

Notes:

The file’s change time refers to both modification of content and attributes such as
permissions.
‘mtime’ Type: irange [int,int]
Allowed input range: 0,4026531839
Synopsis: Range of modification times (mtime) for acceptable files

Example:

body files_select example
{

mtime => irange(ago(1,0,0,0,0,0),now);

118 Cfengine reference manual (version 3.0.0b5)

file_result => "mtime";

}

Notes:

The file’s modification time refers to both modification of content but not other at-
tributes such as permissions.

‘atime’ Type: irange [int,int]
Allowed input range: 0,4026531839
Synopsis: Range of access times (atime) for acceptable files

Example:

body file_select

{

files accessed in the last hour

atime => irange(ago(0,0,0,1,0,0) ,now);
file_result => "atime";
}

body file_select

{

files accessed since 00:00 1st Jan 2000
atime => irange(on(2000,1,1,0,0,0) ,now) ;
file_result => "atime";

}

Notes:

A range of times during which a file was accessed can be specified in a file_select
body. (Like file filters in cfengine 2.)

‘exec_regex’
Type: string
Allowed input range: [/\].*

Synopsis: Matches file if this regular expression matches any full line returned by the
command

Chapter 7: Bundles of agent 119

Example:

body file_select example

{

exec_regex => "SPECIAL_LINE: .x";

exec_program => "/path/test_program $(this.promiser)";
file_result => "exec_program.exec_regex";

}
Notes:
The regular expression must be used in conjuection with the exec_program test. In

this way the program must both return exit status 0 and its output must match the
regular expression.

‘exec_program’

‘filetypes’

Type: string
Allowed input range: [/\].*
Synopsis: Execute this command on each file and match if the exit status is zero

Example:

body file_select example

{

exec_program => "/path/test_program $(this.promiser)";
file_result => "exec_program';

}

Notes:

This is part of the customizable file search criteria. If the user-defined program returns
exit status 0, the file is considered matched.

Type: (option list)

Allowed input range:

plain
reg
symlink
dir

120 Cfengine reference manual (version 3.0.0b5)

socket
fifo
door
char
block

Synopsis: List of acceptable file types from menu choices

Example:

body file_select

{

filetypes => { "plain", "symlink" };
}

Notes:

‘issymlinkto’
Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of regular expressions to match file objects

Example:

body file_select example

{
issymlinkto => { "/etc/["/1*", "/etc/init.d/[a-z0-9]*" };
}

Notes:

A list of regular expressions. If the file is a symbolic link which points to files matched
by one of these expressions, the file will be selected.

‘file_result’
Type: string
Allowed input range: [(leaf_name|path_name|file_types|mode|size|owner|groupl|atime|ctime|mtim
regex|exec_program) [|&!.]*]*
Synopsis: Logical expression combining classes defined by file search criteria

Example:

Chapter 7: Bundles of agent 121

body file_select any_age

{

mtime => irange(ago(1,0,0,0,0,0) ,now);
file_result => "mtime";

}

body file_select pdf_files_ldayold

{
mtime => irange(ago(0,0,1,0,0,0) ,now);

leaf _name => { ".*.pdf" , ".x.fdf" };

file_result => "leaf_name&mtime";

}

Notes:
Sets the criteria for file selection outcome during file searches. The syntax is the same

as for a class expression since the file selection is a classification of the file-search in
the same way that system classes are a classification of the abstact host-search.

7.2.2 copy_from (compound body)

Type: (ext body)

‘source’

‘servers’

Type: string
Allowed input range: [/\].*
Synopsis: Reference source file from which to copy

Example:

body copy_from example
{
source => "/path/to/source";

}

Notes:

For remote copies this refers to the file name on the remote server.
Type: slist
Allowed input range: (arbitrary string)

122 Cfengine reference manual (version 3.0.0b5)

Synopsis: List of servers in order of preference from which to copy

Example:

body copy_from example
{

servers => { "primary.example.org", "secondary.example.org",
"tertiary.other.domain" };

Notes:

The servers are tried in order until one of them succeeds.
‘portnumber’

Type: int

Allowed input range: 1024,99999

Synopsis: Port number to connect to on server host

Example:

body copy_from example

{
portnumber => "5308";

}

Notes:

The standard or registered port number is tcp/5308. Cfengine does not presently use
its registered udp port with the same number, but this could change in the future.

‘copy_backup’
Type: (menu option)

Allowed input range:

true
false
timestamp

Synopsis: Menu option policy for file backup/version control

Example:

Chapter 7: Bundles of agent 123

‘stealth’

‘preserve’

body copy_from example
{
copy_backup => "timestamp";

}

Notes:

Determines whether a backup of the previous version is kept on the system. This
should be viewed in connection with the system repository, since a defined repository
affects the location at which the backup is stored.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to preserve time stamps on copied file

Example:

body copy_from example
{
stealth => "true";

}

Notes:

Preserves file access and modification times on the promiser files.
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

124 Cfengine reference manual (version 3.0.0b5)

Synopsis: true/false whether to preserve file permissions on copied file

Example:

body copy_from example
{
preserve => "true";

}

Notes:

Whether or not the copy preserves the permissions on the source files.
‘linkcopy_patterns’

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of patterns matching symbolic links that should be replaced with copies

Example:

body copy_from mycopy (from)

{
source => "$(from)";
linkcopy_patterns => { ".*" };
}

Notes:

The pattern matches the last node filename (i.e. without the absolute path).
‘copylink_patterns’

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of patterns matching files that should be linked instead of copied

Example:

body copy_from example
{

Chapter 7: Bundles of agent 125

‘compare’

‘link_type’

copylink_patterns => { "special_nodel", "other_node.*" };

}

Notes:

The matches are performed on the last node of the filename, i.e. the file without its
path.
Type: (menu option)

Allowed input range:

atime
mtime
ctime
digest
hash
Synopsis: Menu option policy for comparing source and image file attributes

Example:

body copy_from example

{
compare => "digest";

}

Notes:

The default copy method is ‘mtime’ (modification time), meaning that the source file
is copied to the destination (promiser) file, if the source file has been modified more
recently than the destination.

Type: (menu option)

Allowed input range:

symlink
hardlink
relative
absolute
none

Synopsis: Menu option for type of links to use when copying

126 Cfengine reference manual (version 3.0.0b5)

Example:

body link_from example
{

link_type => "hard";

}

Notes:

What kind of link should be used to link files. Users are advised to be wary of ‘hard
links’ (see Unix manual pages for the ‘In’ command). The behaviour of non-symbolic
links is often precarious and unpredictable.

‘type_check’
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false compare file types before copying and require match

Example:

body copy_from example
{
type_check => "false";
}

Notes:

File types at source and destination should normally match in order for updates to
overwrite them. This option allows this checking to be switched off.

‘force_update’
Type: (menu option)

Allowed input range:

Chapter 7: Bundles of agent

127

true
false
yes
no

on
off

Synopsis: true/false force copy update always

Example:

body copy_from example

{

force_update => "true";

}

Notes:

Warning: this is a non-convergent operation. Although the end point might stabilize

in content, the operation will never quiesce. Use of this feature is not recommended

except in exceptional circumstances since it creates a busy-dependency. If the copy is
a network copy, the system will be disturbed by network disruptions.

‘force_ipv4’

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false force use of ipv4 on ipv6 enabled network

Example:

body copy_from example

{

force_ipv4d => "true";

}

128

‘copy_size’

‘trustkey’

Cfengine reference manual (version 3.0.0b5)

Notes:

IPv6 should be harmless to most users unless you have a partially or misconfigured
setup.

Type: irange [int,int]
Allowed input range: 0, inf
Synopsis: Integer range of file sizes that may be copied

Example:

body copy_from example

{

copy_size => irange("0","50000") ;
}

Notes:

The use of the irange function is optional. Ranges may also be specified as a comma
separated numbers.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false trust public keys from remote server if previously unknown

Example:

body copy_from example
{
trustkey => "true";

}

Chapter 7: Bundles of agent 129

‘encrypt’

‘verify’

Notes:

If the server’s public key has not already been trusted, this allows us to accept the key
in automated key-exchange.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false use encrypted data stream to connect to remote host

Example:

body copy_from example
{
servers => { "remote-host.example.org" };
encrypt => "true";

}

Notes:

Client connections are encrypted with using a Blowfish randomly generated session
key. The intial connection is encrypted using the public/private keys for the client and
server hosts.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false verify transferred file by hashing after copy (resource penalty)

Example:

130

‘purge’

‘check_root’

Cfengine reference manual (version 3.0.0b5)

body copy_from example
{
verify => "true";

}

Notes:

This is a highly resource intensive option, not recommended for large file transfers.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false purge files on client that do not match files on server when
depth_search

Example:

body copy_from example
{
purge => "true";

}

Notes:

Purging files is a potentially dangerous matter during a file copy it implies that any
promiser (destination) file which is not matched by a source will be deleted. Since there
is no source, this means the file will be irretrievable. Great care should be exercised
when using this feature.

Type: (menu option)

Allowed input range:

true
false
yes

Chapter 7: Bundles of agent 131

‘findertype’

no
on
off

Synopsis: true/false check permissions on the root directory when depth_search

Example:

body copy_from example
{

check_root => "true";

}

Notes:

When copying files recursively (by depth search), this flag determines whether the
permissions of the root directory should be set from the root of the source. The default
is to check only copied file objects and subdirectories within this root (false).

Type: (menu option)

Allowed input range:

MacO0SX
Synopsis: Menu option for default finder type on MacOSX

Example:

body copy_from example

{
findertype => "MacOSX";
b

Notes:

This applies only to the Macintosh OSX variants.

7.2.3 link_from (compound body)

Type: (ext body)

‘source’

Type: string
Allowed input range: (arbitrary string)

132

‘link_type’

Cfengine reference manual (version 3.0.0b5)

Synopsis: The source file to which the link should point

Example:

body copy_from example
{
source => "/path/to/source";

}

Notes:

For remote copies this refers to the file name on the remote server.

Type: (menu option)

Allowed input range:

symlink
hardlink
relative
absolute
none

Synopsis: The type of link used to alias the file

Example:

body link_from example
{

link_type => "hard";

}

Notes:

What kind of link should be used to link files. Users are advised to be wary of ‘hard
links’ (see Unix manual pages for the ‘1n’ command). The behaviour of non-symbolic
links is often precarious and unpredictable.

‘copy_patterns’

Type: slist
Allowed input range: (arbitrary string)
Synopsis: A set of patterns that should be copied ansd synchronized instead of linked

Chapter 7: Bundles of agent 133

Example:

body link_from example

{

copy_patterns => { "special_nodel", "/path/special_node2" };
¥

Notes:

During the linking of files, it is sometimes useful to buffer changes with an actual copy,
especially if the link is to an emphemeral file system. This list of patterns matches
files that arise during a linking policy. A positive match means that the file should be
copied and updated by modification time.

‘when_no_source’
Type: (menu option)

Allowed input range:

force
delete
nop
Synopsis: Behaviour when the source file to link to does not exist

Example:

body link_from example
{
when_no_file => "force";

}

Notes:

If we try to create a link to a file that does not exist a link, how should cfengine
respond? The options are to force the creation to a file that does not (yet) exist, delete
any existing link, or do nothing.

‘link_children’
Type: (menu option)

Allowed input range:

134

Cfengine reference manual (version 3.0.0b5)

true
false
yes
no
on
off

Synopsis: true/false whether to link all directory’s children to source originals

Example:

body link_from example
{

link_children => "true";

}

Notes:

If the promiser is a directory, instead of copying the children, link them to the source.

‘when_linking children’

Type: (menu option)

Allowed input range:

override_file
if_no_such_file

Synopsis: Policy for overriding existing files when linking directories of children

Example:

body link_from example
{
when_linking children => "if_no_such_file";

}

Notes:

The options refer to what happens if the directory exists already and is already partially
populated with files. If the directory being copied from contains a file with the same
name as that of a link to be created, we must decide whether to override the existing
destination object with a link or simply omit the automatic linkage for files that already

Chapter 7: Bundles of agent 135

exist. The latter case can be used to make a copy of one directory with certain fields
overridden.

7.2.4 perms (compound body)

Type: (ext body)

‘mode’ Type: string
Allowed input range: [0-7augorwxst,+-]1+
Synopsis: File permissions (like posix chmod)

Example:

body perms example

mode => "at+rx,o+w";

}

Notes:

The mode string may be symbolic or numerical, like chmod.
‘owners’ Type: slist

Allowed input range: [a-zA-Z0-9_8$.]1+

Synopsis: List of acceptable owners or user ids, first is change target

Example:

body perms example

{
owners => { "mark", "wwwrun", "jeang" };

}

Notes:

The first user is the reference value that cfengine will set the file to if none of the list
items matches the true state of the file.
‘groups’ Type: slist
Allowed input range: [a-zA-Z0-9_$.]1+
Synopsis: List of acceptable groups of group ids, first is change target

136

‘rxdirs’

‘bsdflags’

Cfengine reference manual (version 3.0.0b5)

Example:

body perms example
{
groups => { "users", "administrators" };

}

Notes:

The first named group is the list is the defaul that will be configured if the file does
not match an element of the list.
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false add execute flag for directories if read flag is set

Example:

body perms rxdirs
{
rxdirs => "false";

}

Notes:

Default behaviour is to set the ‘x’ flag on directories automatically if the ‘r’ flag is
specified when specifying multiple files in a single promise.
Type: (option list)

Allowed input range:

arch
archived
dump

Chapter 7: Bundles of agent 137

opaque
sappnd
sappend
schg
schange
simmutable
sunlnk
sunlink
uappnd
uappend
uchg
uchange
uimmutable
uunlnk
uunlink

Synopsis: List of menu options for bsd file system flags to set

Example:

body perms example

{

#..

bsdflags => { "uappnd",'"uchg","uunlnk","nodump",
"opaque", "sappnd", "schg","sunlnk" };

Notes:

The free BSD Unices and MacOSX have additional filesystem flags which can be set.
Refer to the BSD chflags documentation for this.

7.2.5 changes (compound body)
Type: (ext body)

‘hash’ Type: (menu option)

Allowed input range:

mdb
shal
best

Synopsis: Hash files for change detection

138 Cfengine reference manual (version 3.0.0b5)

Example:

body changes example

{
hash => "mdb";
}

Notes:

The best option cross correlates the best two available algorithms known in the
OpenSSL library.

‘report_changes’
Type: (menu option)

Allowed input range:

content
nomne

Synopsis: Specify criteria for change warnings

Example:

body changes example
{
report_changes => '"content";

}

Notes:

Files can change in permissions and contents, i.e. external or internal attributes.

‘update’ Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Chapter 7: Bundles of agent 139

Synopsis: Update hash values immediately after change warning

Example:

body changes example

{
update => "true";

}

Notes:

File hashes should be updated as soon as a change is registered so that multiple warn-
ings are not given about a single change.

7.2.6 delete (compound body)

Type: (ext body)

‘dirlinks’

‘rmdirs’

Type: (menu option)

Allowed input range:

delete

tidy

keep
Synopsis: Menu option policy for dealing with symbolic links to directories during
deletion
Example:

body delete example
{

dirlinks => "keep";

}

Notes:

Links to directories are normally removed just like any other link or file objects. By
keeping directory links, you preserve the logical directory structure of the file system.

Type: (menu option)

Allowed input range:

140 Cfengine reference manual (version 3.0.0b5)

true
false
yes
no

on
off

Synopsis: true/false whether to delete empty directories during recursive deletion

Example:

body delete example
{
rmdirs => "true";

}

Notes:

When deleting files recursively from a base directory, should we delete empty directories
also, or keep the directory structure intact?

7.2.7 rename (compound body)
Type: (ext body)

‘newname’ Type: string
Allowed input range: (arbitrary string)
Synopsis: The desired name for the current file

Example:

body rename example(s)
{
newname => "$(s)";

}

Notes:

‘disable_suffix’
Type: string
Allowed input range: (arbitrary string)
Synopsis: The suffix to add to files when disabling (.cfdisabled)

Chapter 7: Bundles of agent 141

‘disable’

‘rotate’

Example:

body rename example

{

disable => "true";
disable_suffix => ".nuked";

}

Notes:

To make disabled files in a particular manner, use this string suffix. The default value
is ‘.cf-disabled’.
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false automatically rename and remove permissions

Example:

body rename example

{
disable => "true";
disable_suffix => ".nuked";

}

Notes:

Disabling a file means making is impotent in the context in which it has an effect. For
executables this means preventing execution, for an information file it means making
the file unreadable.

Type: int

Allowed input range: 0,99

Synopsis: Maximum number of file rotations to keep

142 Cfengine reference manual (version 3.0.0b5)

Example:

body rename example

{
rotate => "4";

}

Notes:

Used for log rotation.
‘disable_mode’
Type: string
Allowed input range: [0-7augorwxst,+-]+
Synopsis: The permissions to set when a file is disabled

Example:

body rename example

{
disable_mode => "0600";

}

Notes:

To disable an executable it is not enough to rename it, you should also remove the
executable flag.

7.2.8 repository

Type: string

Allowed input range: [/\].*

Synopsis: Name of a repository for versioning

Example:

files:

"/path/file"

Chapter 7: Bundles of agent 143

copy_from => source,
repository => "/var/cfengine/repository";

Notes:

A local repository for this object, overrides the default.

7.2.9 edit_line
Type: (ext bundle) (Separate Bundle)

7.2.10 edit_xml

Type: (ext bundle) (Separate Bundle)

7.2.11 edit_defaults (compound body)
Type: (ext body)
‘edit_backup’

Type: (menu option)

Allowed input range:

true
false
timestamp
rotate

Synopsis: Menu option for backup policy on edit changes

Example:

body edit_defaults example
{
edit_backup => "timestamp";

}

Notes:

‘max_file_size’
Type: int
Allowed input range: 0,99999999999
Synopsis: Do not edit files bigger than this number of bytes

Example:

144 Cfengine reference manual (version 3.0.0b5)

body edit_defaults example
{
max_file_size => "50K";

}

Notes:

A local, per-file sanity check to make sure the file editing is sensible.
‘empty_file_before_editing’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: Baseline memory model of file to zero/empty before commencing promised
edits

Example:

body edit_defaults example
{
empty_file_before_editing => "true";

}

Notes:

Emptying a file before reconstructing its contents according to a fixed recipe allows an
ordered procedure to be convergent.

7.2.12 depth_search (compound body)
Type: (ext body)
‘include_dirs’

Type: slist

Allowed input range: .*

Synopsis: List of regexes of directory names to include in depth search

Chapter 7: Bundles of agent 145

Example:

body depth_search example
{
include_dirs => { "subdirl", "subdir2", "pattern.*" };

}

Notes:

This is the complement of exclude_dirs.
‘exclude_dirs’
Type: slist
Allowed input range: .*
Synopsis: List of regexes of directory names NOT to include in depth search

Example:

body depth_search

{

no dot directories
exclude_dirs => { "\..x" };

}

Notes:

Directory names are treated specially when searching recursively through a file system.

‘include_basedir’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false include the start/root dir of the search results

146

‘depth’

‘xdev’

Cfengine reference manual (version 3.0.0b5)

Example:

body depth_search example
{

include_basedir => "true";

}

Notes:

When checking files recursively (with depth_search) the promiser is a directory. This
parameter determines whether that initial directory should be considered part of the
promise or simply a boundary which marks the edge of the search. If true, the promiser
directory will also promise the same attributes as the files inside it.

Type: int
Allowed input range: 0,99999999999
Synopsis: Maximum depth level for search

Example:

body depth_search example

{
depth => "inf";
}

Notes:

This was previous called ‘recurse’ in earlier versions of cfengine. Note that the value
‘inf’ may be used for an unlimited value.

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false exclude directories that are on different devices

Chapter 7: Bundles of agent 147

Example:

body depth_search example
{

xdev => "true";

}

Notes:

‘traverse_links’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false traverse symbolic links to directories (false)

Example:

body depth_search example
{

traverse_links => "true";

}

Notes:

If this is true, cf-agent will treat symbolic links to directories as if they were directo-
ries. Normally this is considered a potentially dangerous assumption and links are not
traversed.

‘rmdeadlinks’
Type: (menu option)

Allowed input range:

true
false

148 Cfengine reference manual (version 3.0.0b5)

yes
no
on
off

Synopsis: true/false remove links that point to nowhere

Example:

body depth_search example
{

rmdeadlinks => "true";

}

Notes:

If we find links that point to non-existence files, should we delete them or keep them?

7.2.13 touch
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to touch time stamps on file

Example:

files:
"/path/file"

touch => "true";

Notes:

Chapter 7: Bundles of agent 149

7.2.14 create
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to create non-existing file

Example:

files:

"/path/plain_file"

create => "true";
"/path/dir/."
create => "true";
Notes:

Directories are created by using the /.’ to signify a directory type. Note that, if no permissions
are specified, mode 600 is chosen for a file, and mode 755 is chosen for a directory. If you cannot
accept these defaults, you should specify permissions.

7.2.15 move_obstructions
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether to move obstructions to file-object creation

150 Cfengine reference manual (version 3.0.0b5)

Example:

files:
"/tmp/testcopy"

copy_£from => mycopy("/tmp/source"),
move_obstructions => "true",
depth_search => recurse("inf");

Notes:

If we have promised to make file ‘X’ a link, but it already exists as a file, or vice-versa, or if a
file is blocking the creation of a directory etc, then normally cfengine will report an error. If this is
set, existing objects will be moved aside to allow the system to heal without intervention. Files and
directories are saved/renamed, but symbolic links are deleted.

7.2.16 transformer
Type: string
Allowed input range: [/\].*

Synopsis: Shell command (with full path) used to transform current file

Example:

"/home/mark/tmp/testcopy"

file_select => pdf_files,
transformer => "/usr/bin/gzip $(this.promiser),
depth_search => recurse("inf");

Notes:

A command to execute on finding a file.

7.2.17 pathtype
Type: (menu option)

Allowed input range:

literal
regex

Chapter 7: Bundles of agent 151

Synopsis: Menu option for interpreting promiser file object

Example:

files:
"/var/.*/1ib"

pathtype => "regex", #default
perms => system;

"/var/.*/1ib"

pathtype => "literal",
system;

Il
\

perms

Notes:

If the keyword literal is invoked, a path looking like a regular expression will be treated as a
literal string. Thus in the example, one case implies an iteration over all files/directories matching
the regular expression, while the other means a single literal object with a name composed of dots
and stars.

7.2.18 acl (compound body)

Type: (ext body)

‘acl_method’
Type: (menu option)

Allowed input range:

append
prepend
set

Synopsis: Editing method for access control list

Example:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy
Notes:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy

‘acl_type’ Type: (menu option)

152 Cfengine reference manual (version 3.0.0b5)

Allowed input range:

solaris
linux
ntfs
afs

Synopsis: Access control list type for the affected file system

Example:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy
Notes:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy
‘acl_entry’

Type: slist

Allowed input range: . *

Synopsis: Native settings for access control entry

Example:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy
Notes:

Fill me in (/home/mark/LapTop/CfengineProjects/CompanyDocuments/trunk /Cfengine3Reference /bodyy

7.3 insert_lines promises in ‘edit_line’

This promise is part of the line-editing model. It inserts lines into the file at a specified location.
The location is determined by body-attributes. The promise object referred to can be a literal line
of a file-reference from which to read lines.

(N

insert_lines:
"literal line or file reference"

location => location_body,

ooy

Chapter 7: Bundles of agent 153

body common control

{

any::

bundlesequence => {
example

};

g
bundle agent example

{

files:
"/var/spool/cron/crontabs/root"

edit_line => addline;

Lo s s s s s s s s s S s s S s s S s s S s s
For the library
R S s g

bundle edit_line addline

{

insert_lines:

"0,5,10,15,20,25,30,35,40,45,50,55 * * * * /var/cfengine/bin/cf-execd -F";

By parameterizing the editing bundle, one can make generic and reusable editing bundles.

7.3.1 location (compound body)
Type: (ext body)

‘select_line_matching’
Type: string
Allowed input range: .*

Synopsis: Regular expression for matching file line location

154 Cfengine reference manual (version 3.0.0b5)

Example:

body location example
{

select_line_matching => "“Expression match.* whole line$";

}

Notes:

The ‘°$’ are not necessary, just remember that the expression must match a whole line,
not a fragment within a line.

‘before_after’
Type: (menu option)

Allowed input range:

before
after

Synopsis: Menu option, point cursor before of after matched line

Example:

body location append

{
#...
before_after => "before";

}

Notes:

Determines whether an edit will occur before or after the currently matched line.
‘first_last’
Type: (menu option)

Allowed input range:

first
last

Synopsis: Menu option, choose first or last occurrence of match in file

Chapter 7: Bundles of agent 155

Example:

body location example

{
first_last => "last";

}

Notes:

In multiple matches, decide whether the first or last occurrence of the matching pattern
in the case affected by the change. In principle this could be generalized to more cases
but this seems like a fragile quality to evaluate, and only these two cases are deemed
of reproducible significance.

7.3.2 insert_type

Type: (menu option)
Allowed input range:

literal
string
file
Synopsis: Type of object the promiser string refers to (default literal)

Example:

body insert_lines example

{
insert_type => "file";

}

Notes:

The default is to treat the promiser as a literal string. This is used to tell cfengine that the string
is non-literal and should be interpreted as a filename from which to import lines.

7.3.3 insert_select (compound body)

Type: (ext body)

‘insert_if_startwith_from_list’
Type: slist

Allowed input range: .*

156

Cfengine reference manual (version 3.0.0b5)

Synopsis: Insert line if it starts with a string in the list

Example:

body insert_select example
{
insert_if_startwith_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The list contains literal strings to search for in an secondary file (not the main file
being edited). If the string is found as the first characters (at the start) of a line in
the file, that line from the secondary file will be inserted at the present location in the
primary file.

‘insert_if_not_startwith_from_list’

Type: slist
Allowed input range: .*
Synopsis: Insert line if it DOES NOT start with a string in the list

Example:

body insert_select example
{
insert_if_not_startwith_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The complement of insert_if_startwith_from_list.

‘insert_if_match_from_list’

Type: slist
Allowed input range: . *
Synopsis: Insert line if it fully matches a regex in the list

Example:

body insert_select example

Chapter 7: Bundles of agent 157

{
insert_if_match_from_list => { ".*find_.*_1.%", " *find_.*_2.%" };

}

Notes:

The list contains regular expressions to search for in an secondary file (not the main
file being edited). If the regex matches a complete line of the file, that line from the
secondary file will be inserted at the present location in the primary file.

‘insert_if_not_match_from_list’
Type: slist
Allowed input range: .*Insert line if it DOES NOT fully match a regex in the
list
Synopsis: (null)

Example:

body insert_select example

{
insert_if_not_match_from_list => { ".*xfind_.*_1.%", " *xfind_.*_2.%" };

}

Notes:

The complement of insert_if_match_from_list.
‘insert_if_contains_from_list’

Type: slist

Allowed input range: .*

Synopsis: Insert line if a regex in the list match a line fragment

Example:

body insert_select example
{
insert_if_contains_from_list => { "find_me_1", "find_me_2" };

}

Notes:

158 Cfengine reference manual (version 3.0.0b5)

The list contains literal strings to search for in an secondary file (not the main file
being edited). If the string is found in a line of the file, that line from the secondary
file will be inserted at the present location in the primary file.

‘insert_if_not_contains_from_list’
Type: slist
Allowed input range: .*
Synopsis: Insert line if a regex in the list DOES NOT match a line fragment

Example:

body insert_select example
{
insert_if_not_contains_from_list => { "find_me_1", "find_me_2" };

}

Notes:

The complement of insert_if_contains_from_list.

7.3.4 expand_scalars

Type: (menu option)
Allowed input range:

true

false

yes

no

on

off
Synopsis: Expand any unexpanded variables
Example:

body insert_lines example
{

insert_type => "file";
expand_scalars => "true";

}

Notes:

Chapter 7: Bundles of agent 159

A way of incorporating templates with variable expansion into file operations. Variables should
be named and scoped appropriately for the bundle in which this promise is made.

In cfengine 2 editfiles this was called ‘ExpandVariables’.

7.4 field_edits promises in ‘edit_line’

Certain types of text file (e.g. the ‘passwd’ and ‘group’ files in Unix) are tabular in nature, with
field separators (e.g. ‘:” or *,’). This promise assumes a parameterizable model for editing the fields
of such files, using a regular expression to separate major fields and a character to separate sub-
fields. First you match the line with a regular expression, then a field_edits body describes the
separators for fields and one level of sub-fields, along with policies for editing these fields, ordering
the items within them etc.

-
field_edits:

"regex matching line"

edit_field => body;

bundle agent example

{
vars:
"userset" slist => { "one-x", "two-x", "three-x" };
files:
"/tmp/passwd"
create => "true",
edit_line => SetUserParam("mark","6","/set/this/shell");
"/tmp/group"
create => "true",
edit_line => AppendUserParam("root","4","@(userset)");
}

HAFHHAFHH B R H R AR R R R

bundle edit_line SetUserParam(user,field,val)

160 Cfengine reference manual (version 3.0.0b5)

{
field_edits:

"$(user) . *"
Set field of the file to parameter

edit_field => col(":","$(field)","$(val)","set");

HEFHHHFHH AR H AR R R R

bundle edit_line AppendUserParam(user,field,allusers)
{

vars:
"yval" slist => { @(allusers) };
field_edits:
"$(user) . x"
Set field of the file to parameter

edit_field => col(":","$(field)","$(val)","alphanum");

HHHSH R
Bodies
S S

body edit_field col(split,col,newval,method)

{

field_separator => "$(split)";
select_field => "$(col)";
value_separator => ",";
field_value => "$(newval)";
field_operation => "$(method)";
extend_fields => "true";

}

Chapter 7: Bundles of agent 161

Field editing allows us to edit tabular files in a unique way, adding and removing data from
addressable fields. The ‘passwd’ and ‘group’ files are classic examples of tabular files, but there are
many ways to use this feature, e.g. edit a string

VARIABLE="one two three"

View this line as a tabular line separated by ‘"’ and with sub-separator given by the space.

7.4.1 edit_field (compound body)
Type: (ext body)
‘field_separator’
Type: string
Allowed input range: .*
Synopsis: The regular expression used to separate fields in a line

Example:

body edit_field example
{
field_separator => ":";

}

Notes:

Most tabular files are separated by simple characters, but by allowing a general regular
expression one can make creative use of this model to edit all kinds of line-based text
files.

‘select_field’
Type: int
Allowed input range: 0,99999999999
Synopsis: Integer index of the field required 1..n

Example:

body field_edits example
{

select_field => "5";

b

Notes:

162 Cfengine reference manual (version 3.0.0b5)

Numering starts from 1 not from 0.
‘value_separator’
Type: string
Allowed input range: ~.$
Synopsis: Character separator for subfields inside the selected field

Example:

body field_edit example

{

value_separator => ", ";

}

Notes:

For example, elements in the group file are separated by ‘:’, but the lists of users in

these fields are separated by *,’.
‘field_value’

Type: string

Allowed input range: .*

Synopsis: Set field value to a fixed value

Example:

body edit_field example(s)
{
field_value => "$(s)";

}

Notes:

Set a field to a constant value, e.g. reset the value to a constant default, empty the
field, or set it fixed list.

‘field_operation’
Type: (menu option)

Allowed input range:

prepend

Chapter 7: Bundles of agent 163

append
alphanum
delete
set

Synopsis: Menu option policy for editing subfields

Example:

body edit_field example
{
field_operation => "append";

}

Notes:

The method by which to edit a field in multi-field/column editing of tabular files.

‘extend_fields’

Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false add new fields at end of line if necessary to complete edit

Example:

body edit_field example
{

extend_fields => "true";

}

Notes:

Blank fields in a tabular file can be eliminated or kept depending in this setting. If in
doubt, set this to true.

164 Cfengine reference manual (version 3.0.0b5)

‘allow_blank_fields’
Type: (menu option)

Allowed input range:

true
false
yes
no
on
off
Synopsis: true/false allow blank fields in a line (do not purge)

Example:

body edit_field example

{
...
allow_blank_fields => "true";

}

Notes:

When editing a file using the field or column model, blank fields, especially at the start
and end are generally discarded. If this is set to true, cfengine will retain the blank
fields and print the appropriate number of field separators.

7.5 replace_patterns promises in ‘edit_line’

This promise refers to arbitrary text patterns in a file. The pattern is expressed as a regular
expression and must be compatible with the default model for regular expressions on your system.
The default model is PCRE (Perl Compatible Regular Expressions) if available.

e N

replace_patterns:

"search pattern"

replace_with => replace_body,

“ey

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_replace_patterns_example.texinfo)[j

Chapter 7: Bundles of agent 165

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_replace_patterns_notes.texinfo)Jj

7.5.1 replace_with (compound body)
Type: (ext body)
‘replace_value’
Type: string
Allowed input range: .*
Synopsis: Value used to replace regular expression matches in search

Example:

body replace_with example(s)
{
replace_value => "$(s)";

}

Notes:

‘occurrences’
Type: (menu option)

Allowed input range:

all
first

Synopsis: Menu option to replace all occurrences or just first

Example:

body replace_with example
{

occurrences => "first";

}

Notes:

A policy for string replacement.

166 Cfengine reference manual (version 3.0.0b5)

7.6 delete_lines promises in ‘edit_line’

This promise assures that certain lines matching regular expression patterns exactly will not be
present in a text file. If the lines are found, the default promise is to remove them.

bundle edit_line example

{

delete_lines:

"olduser.*";

7.6.1 not_matching
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false negate match criterion

Example:

delete_lines:
edit /etc/passwd

"mark.*|root.*" not_matching => "true";

Notes:

The negation of an expression (for convenience).

Chapter 7: Bundles of agent 167

7.6.2 delete_select (compound body)
Type: (ext body)
‘delete_if_startwith_from_list’
Type: slist
Allowed input range: .*
Synopsis: Delete line if it starts with a string in the list

Example:

body delete_select example(s)

{
delete_if_startwith_from_list => { @(s) };
}

Notes:

Delete lines from a file if they begin with the sub-strings listed.
‘delete_if _not_startwith_from_list’

Type: slist

Allowed input range: .*

Synopsis: Delete line if it DOES NOT start with a string in the list

Example:

body delete_select example(s)

{
delete_if_not_startwith_from_list => { @(s) };
}

Notes:

Delete lines from a file unless they start with the sub-strings in the list given.
‘delete_if _match_from_list’

Type: slist

Allowed input range: .*

Synopsis: Delete line if it fully matches a regex in the list

Example:

168

Cfengine reference manual (version 3.0.0b5)

body delete_select example(s)

{
delete_if_match_from_list => { @(s) };
}

Notes:

Delete lines from a file if they completely match the regular expressions listed.

‘delete_if_not_match_from_list’

Type: slist
Allowed input range: .*
Synopsis: Delete line if it DOES NOT fully match a regex in the list

Example:

body delete_select example(s)

{
delete_if_not_match_from_list => { @(s) };
}

Notes:

Delete lines from a file unless they fully match regular expressions in the list.

‘delete_if_contains_from_list’

Type: slist
Allowed input range: .*
Synopsis: Delete line if a regex in the list match a line fragment

Example:

body delete_select example(s)
{

delete_if_contains_from_list => { @(s) };

}

Notes:

Chapter 7: Bundles of agent 169

Delete lines from a file if they contain the sub-strings listed.
‘delete_if _not_contains_from_list’
Type: slist
Allowed input range: .*
Synopsis: Delete line if a regex in the list DOES NOT match a line fragment

Example:

body delete_select discard(s)
{
delete_if_not_contains_from_list => { "substringl", "substring2" };

}

Notes:

Delete lines from the file which do not contain the sub-strings listed.

-

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,

depth_search => recurse("inf");

"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");

170 Cfengine reference manual (version 3.0.0b5)

Agent bundles contain user-defined promises for cf-agent. The types of promises and their
corresponding bodies are detailed below.

7.7 interfaces promises in ‘agent’

Interfaces promises describe the configurable aspects relating to network interfaces. Most work-
stations and servers have only a single network interface, but routers and multi-homed hosts often
have multiple interfaces. Interface promises include attributes such as the IP address identity, as-
sumed netmask and routing policy in the case of multi-homed hosts. For virtual machines and hosts,
the list of interfaces can be quite large.

-
interfaces:
"interface name"
tcp_ip => tcp_ip_body,
N

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_interfaces_example.texinfo)

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_interfaces_notes.texinfo)

7.7.1 tcp_ip (compound body)

Type: (ext body)

‘ipv4_address’
Type: string
Allowed input range: [0-9.]+/[0-4]+
Synopsis: IPv4 address for the interface

Example:

body tcp_ip example

{

ipv4_address => "123.456.789.001";
}

Notes:

Chapter 7: Bundles of agent 171

The address will be checked and if necessary set. Today few hosts will be managed in
this way: address management will be handled by other services like DHCP.

‘ipv4_netmask’
Type: string
Allowed input range: [0-9.]+/[0-4]+
Synopsis: Netmask for the interface

Example:

body tcp_ip example

{

ipv4_netmask => "255.255.254.0";
3

Notes:

In many cases the CIDR form of address will show the netmask as ‘/23’, but this offers
and ‘old style’ alternative.

‘ipv6_address’
Type: string
Allowed input range: [0-9a-fA-F:]+/[0-9]+
Synopsis: IPv6 address for the interface

Example:

body tcp_ip example

{

ipv6_address => "2001:700:700:3:20f:1fff:fe92:2cd3/64";
}

Notes:

172 Cfengine reference manual (version 3.0.0b5)
(N
bundle agent main(parameter)
{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
- /

Agent bundles contain user-defined promises for cf-agent. The types of promises and their

corresponding bodies are detailed below.
7.8 methods promises in ‘agent’

Methods are compound promises that refer to whole bundles of promises. Methods may be
parameterized. Methods promises are written in a form that is ready for future development. The
promiser object is an abstract identifier that refers to a collection (or pattern) of lower level objects
that are affected by the promise-bundle. Since the use of these identifiers is for the future, you can
simply use any string here for the time being.

(" 0
methods:
Ilanyll
usebundle => method_id ("parameter",...);
N J

Methods are useful for encapsulating repeatedly used configuration issues and iterating over
parameters.

In cfengine 2 methods referred to separate sub-programs executed as separate processes. Methods
are now implemented as bundles that are run inline.

Chapter 7: Bundles of agent

bundle agent example
{

vars:

"userlist" slist => { "mark", "jeang", "jonhenrik", "thomas", "eben" };

methods:

"any" usebundle => subtest("$(userlist)");

B
bundle agent subtest(user)

{

commands :

"/bin/echo Fix $(user)";
reports:

linux::

"Finished doing stuff for $(user)";
}

173

Methods offer powerful ways to encapsulate multiple issues pertaining to a set of parameters.

7.8.1 usebundle
Type: (ext bundle) (Separate Bundle)

174 Cfengine reference manual (version 3.0.0b5)

-

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
N

Agent bundles contain user-defined promises for cf-agent. The types of promises and their
corresponding bodies are detailed below.

7.9 packages promises in ‘agent’

Package promises refer to native packages provided by operating system releases. Package man-
agement is rapidly developing area and this feature is currently undergoing further research.

packages:

?

Users may continue to use the package management features in cfengine 2 until the final design
for package promises is finalized.

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_packages_example.texinfo)

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/promise_packages_notes.texinfo)

Chapter 7: Bundles of agent 175

7.9.1 install (compound body)
Type: (ext body)

-

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
}
N

Agent bundles contain user-defined promises for cf-agent. The types of promises and their
corresponding bodies are detailed below.

7.10 processes promises in ‘agent’

Process promises refer to items in the system process table. Note that this is not the same as
commands (which are instructions). A process is a command in some state of execution (with a
Process Control Block). Promiser objects here are patterns that match line fragments in the system
process table.

176 Cfengine reference manual (version 3.0.0b5)

(N

processes:
"regex contained in process line"

process_select => process_filter_body,
restart_class => "activation class for process",

*

- J

In cfengine 2 there was a restart clause for directly executing a command to restart a process.
In cfengine 3 there is instead a class to activate. You must then desribe a command in that class to
restart the process.

commands :
restart_me::

"/path/executable" ... ;

This rationalizes complex restart-commands and avoids unnecessary overlap between processes
and commands.

The process_stop is also arguably a command, but it should be an ephemeral command that
does not lead to a persistent process. It is intended only for commands of the form ‘/etc/inetd
service stop’, not for processes that persist. Processes are restarted at the end of a bundle’s
execution, but stop commands are executed immediately.

Take care to note that process table formats differ between operating systems, and the use of
simple patterns such as program-names is recommended. For more sophisticated matches, users
should use the process_select feature.

Note: process_select was previously called process filters in cfengine 2 and earlier.

bundle agent example

{
processes:
n ‘*Il
process_count => anyprocs,
process_select => proc_finder;
reports:
any_procs::

"Found processes out of range";

Chapter 7: Bundles of agent 177

HAFHHAFHHBHHH AR AR R RS

body process_select proc_finder

{
stime_range => irange(ago(0,0,0,5,30,0),ag0(0,0,0,0,20,0));
process_result => "stime";

}
SR
body process_count anyprocs

{
match_range => "0,0";
out_of_range_define => { "any_procs" };

}

In cfengine 2, one has two separate actions:
processes
shellcommands

In cfengine 3 we have

processes
commands

Cfengine 2 got this ontology about right intuitively, but not quite. It allowed a ‘restart’
command to appear in a process promise, which is really a command execution. This has been
changed in cfengine 3 so that there is a cleaner separation. Let’s see why.

Executions are about jobs, services, scripts etc. They are properties of an executable file. The
referring ‘promiser’ is a file object. On the other hand a process is a property of a "process identifier"
which is a kernel instantiation, a quite different object altogether. So it makes sense to say that

e A "PID" (which is not an executable) promises to be reminded of a signal, e.g.
kill signal pid

e An "command" promises to start or stop itself with a parameterized specification.
exec command argumentl argument2 ...

Neither the file nor the pid necessarily promise to respond to these activations, but they are
nonetheless physically meaningful phenomena or attributes associated with these objects.

e Executable files do not listen for signals as they have no active state.
e PIDs do not run themselves or stop themselves with new arguments, but they can use signals
as they are running.

Executions lead to processes for the duration of their lifetime, so these two issues are related,
although the promises themselves are not.

Services verus processes:

178 Cfengine reference manual (version 3.0.0b5)

A service is an abstraction that requires processes to run and files to be configured. It makes a
lot of sense to wrap services in modular bundles. Starting and stopping a service can be handled in
at least two ways. Take the web service as an example.

We can start the service by promising an execution of a daemon (e.g. httpd). Normally this
execution does not terminate without intervention. We can terminate it in one of two ways:

e Using a process signal, by promising a signal to processes matching a certain pid search

e Using an execution of a termination command, e.g. ‘/etc/init.d/apache stop’.

The first case makes sense if we need to qualify the termination by searching for the processes.
The processes section of a cfengine 3 policy includes a control promise to search for matching
processes. If matches are found, signals can be sent to precisely each specific process.

Classes can also be defined, in principle triggering an execution of the stop script, but then
the class refers only to the presence of matching pids, not to the individual pids concerned. So it
becomes the responsibility of the execution to locate and interact with the pids necessary.

Want it running?:

How do we say simply that we want a service running? In the agent control promises, we could
check each service individually.
bundlesequence => { Update, Service("apache"), Service("nfsd") I};

or
bundlesequence => { Update, @(globals.all_services) };

The bundle for this can look like this:

bundle agent Service("$(service)")

{
processes:
"$(service)"
process_count => up("$(service)");
commands :
"$daemons [$(service)]"
ifvarclass => "$(service) _up",
args => "$args[$(service)]";
}

An alternative would be self-contained:

bundle agent Service

vars:

Chapter 7: Bundles of agent 179

"service" slist => { "apache", "nfsd", "bind" };
processes:
"$(service)"
process_count => up("$(service)");
commands :
"$daemons [$ (service)]"

ifvarclass => "$(service) _up",
args => "$args[$(service)]";

I
Parameterized body
HHEREHEHBRHEERRHR

body process_count("$(s)")

{
match_range => "[0,10]";
out_of_range_define => "$(s)_up";

}

Is this a step backwards? The cfengine 3 approach might seem like a step backwards from the
simple cfengine 2 statement:

processes:

"httpd" restart "/etc/init.d/apache restart"
However, it allows several improvements.

You can do other things in between stopping and starting the service, like file editing, or security
sweeps. You can use templates to simplify the syntax in bulk for several process checks or restarts.

processes:

"$(service.list)"

If you don’t want any delay in stopping and starting the service, then place these promises in a
private bundle with nothing in between them.

7.10.1 signals
Type: (option list)

180 Cfengine reference manual (version 3.0.0b5)

Allowed input range:

hup
int
trap
kill
pipe
cont
abrt
stop
quit
term
child
usrl
usr2
bus
segv
Synopsis: A list of menu options representing signals to be sent to a process

Example:

processes:

cfservd_out_of_control::

"cfservd"
signals => { "stop" , "term" },
restart_class => "start_cfserv";
any::
"Snmpd"
signals => { "term" , "kill" };
Notes:

Signals are presented as an ordered list until the first one succeeds.

7.10.2 process_stop

Type: string
Allowed input range: [/\].*

Synopsis: A command used to stop a running process

Chapter 7: Bundles of agent 181

Example:

processes:

n smnpd n

process_stop => "/etc/init.d/snmp stop";

Notes:

As an alternative to sending a termination or kill signal to a process, one may call a ‘stop script’
to perform a graceful shutdown.

7.10.3 process_count (compound body)

Type: (ext body)

‘match_range’

Type: irange [int,int]
Allowed input range: 0,99999999999
Synopsis: Integer range for acceptable number of matches for this process

Example:

body process_count example
{
match_range => irange("10","50");

}

Notes:

This is a numerical range for the number of occurrences of the process in the process
table. As long as it falls within the specified limits, the promise is considered kept.

‘in_range_define’

Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of classes to define if the matches are in range

Example:

182 Cfengine reference manual (version 3.0.0b5)

body process_count example
{
in_range_define => { "classl", "class2" };

}

Notes:

Classes are defined if the processes that are found in the process table satisfy the
promised process count, i.e. if the promise about the number of processes matching
the other criteria is kept.

‘out_of_range_define’
Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of classes to define if the matches are out of range

Example:

body process_count example(s)
{
out_of_range_define => { "process_anomaly", "anomaly_$(s)"};

}

Notes:

Classes to activate remedial promises conditional on this promise failure to be kept.

7.10.4 process_select (compound body)
Type: (ext body)
‘process_owner’
Type: slist
Allowed input range: (arbitrary string)
Synopsis: List of regexes matching the user of a process

Example:

body process_select example
{

process_owner => { "wwwrun", "nobody" };

Chapter 7: Bundles of agent

¢

pid’

Lppid’

Lpgid’

Notes:

Regular expression should match a legal user name on the system.

Type: irange [int,int]
Allowed input range: 0,99999999999
Synopsis: Range of integers matching the process id of a process

Example:

body process_select example
{

ppid => irange("1","10");
process_result => "ppid";

}

Notes:

Type: irange [int,int]
Allowed input range: 0,99999999999

Synopsis: Range of integers matching the parent process id of a process

Example:

body process_select example

{
ppid => irange("407","511");
}

Notes:

Type: irange [int,int]
Allowed input range: 0,99999999999

Synopsis: Range of integers matching the parent group id of a process

Example:

183

184

‘rsize’

‘vsize’

‘status’

body process_select example

{
pgid => irange("1","10");
process_result => "pgid";

}

Notes:

Type: irange [int,int]
Allowed input range: 0,99999999999

Cfengine reference manual (version 3.0.0b5)

Synopsis: Range of integers matching the resident memory size of a process

Example:

body process_select

{
rsize => irange("4000","8000");
}

Notes:

Type: irange [int,int]
Allowed input range: 0,99999999999

Synopsis: Range of integers matching the virtual memory size of a process

Example:

body process_select example

{
vsize => irange("4000","9000");
}

Notes:

Type: string

Allowed input range: (arbitrary string)

Chapter 7: Bundles of agent 185

Synopsis: Regular expression matching the status field of a process

Example:

body process_select example

{
status => "Z";

}

Notes:

For instance, characters in the set ‘NRS<sl+..’
‘ttime_range’
Type: irange [int,int]
Allowed input range: 0,4026531839
Synopsis: Range of integers matching the total elapsed time of a process

Example:

body process_select example
{
ttime_range => irange(0,accumulated(0,1,0,0,0,0));

}

Notes:

This is total accumulated time for a process.
‘stime_range’
Type: irange [int,int]
Allowed input range: 0,4026531839
Synopsis: Range of integers matching the start time of a process

Example:

body process_select example
{
stime_range => irange(ago(0,0,0,1,0,0,) ,now);

}

186

‘command’

‘tty’

Cfengine reference manual (version 3.0.0b5)

Notes:

The calculation of time from process table entries is sensitive to Daylight Savings Time
(Summer/Winter Time) so calculations could be a hour off. This is for now a bug to
be fixed.

Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression matching the command/cmd field of a process

Example:

body select_process example

{

command => "cf-.*";

process_result => "command";

}

Notes:

This expression should match the entire COMMAND field of the process table (not just a
fragment). This field is usually the last field on the line and thus starts with the first
non-space character and ends with the end of line.

Type: string

Allowed input range: (arbitrary string)

Synopsis: Regular expression matching the tty field of a process

Example:

body process_select example

{
tty => "pts/[0-9]+";
}

Notes:

Chapter 7: Bundles of agent 187

‘priority’ Type: irange [int,int]
Allowed input range: -20,+20
Synopsis: Range of integers matching the priority field (PRI/NI) of a process

Example:

body process_select example
{
priority => irange("-5","0");

}

Notes:

‘threads’ Type: irange [int,int]
Allowed input range: 0,99999999999
Synopsis: Range of integers matching the threads (NLWP) field of a process

Example:

body process_select example
{

threads => irange(1,5);

}

Q@verbatim

Ob{Notes}: @*
@*

Q@item @code{process_result}
@b{Type}: string
@noindent @b{Allowed input range}: Qcode{[(process_owner|pid|ppidl||pgid|rsizel|vsize|statu

@noindent @b{Synopsis}: Boolean class expression returning the logical combination of cla

@b{Example}:@*

188 Cfengine reference manual (version 3.0.0b5)

(CEJ

Q@verbatim

body process_select proc_finder(p)

{

process_owner => { "avahi", "bin" };

command => "$(p)";

pid => "100,199";

vsize => "0,1000";

process_result => "command. (process_owner|rsize)";
}

Notes:

A logical combination of the process selection classifiers. The syntax is the same as
that for class expressions. There should be no spaces in the expressions.

7.10.5 restart_class
Type: string
Allowed input range: [a-zA-Z0-9_$.]1+

Synopsis: A class to be set if the process is not running, so that a command: rule can be referred
to restart the process

Example:

processes:
"cfservd"
restart_class => "start_cfserv";
commands :
start_cfserv::

"/usr/local/sbin/cfservd";

Notes:

Chapter 7: Bundles of agent 189

This is a signal to restart a process that should be running, if it is not running. Processes are
signalled first and then restarted later, at the end of bundle execution, after all possible corrective
actions have been made that could influence their execution.

-

bundle agent main(parameter)

{
vars:
"sys_files" slist => {
"/etc/passwd",
"/etc/services"
};
files:
"$(sys_files)" perms => p("root","0644"),
changes => trip_wire;
"/etc/shadow" perms => p("root","0600"),
changes => trip_wire;
"/usr" changes => trip_wire,
depth_search => recurse("inf");
"/tmp" delete => tidy,
file_select => days("2"),
depth_search => recurse("inf");
-

Agent bundles contain user-defined promises for cf-agent. The types of promises and their
corresponding bodies are detailed below.

7.11 storage promises in ‘agent’

Storage promises refer to disks and filesystem properties.

-

storage:
"/disk volume or mountpoint"

volume => volume_body,

L)

190 Cfengine reference manual (version 3.0.0b5)

In cfengine 2, storage promises were divided into disks or required, and misc_mounts types.
The old mount-models for binary and home servers has been deprecated and removed from cfengine
3. Users who use these models can reconstruct them from the low-level tools.

bundle agent storage

{
storage:

"/usr" volume => mycheck("10%");

"/mnt" mount => nfs("nfsserv.example.org","/home");
}

HERHHHHH R R R R R R

body volume mycheck(free) # reusable template

{

check_foreign => "false";
freespace => "$(free)";
sensible_size => "10000";
sensible_count => "2";

}
body mount nfs(server,source)

{

mount_type => "nfs";
mount_source => "$(source)";
mount_server => "$(server)";
edit_fstab => "true";

}

7.11.1 mount (compound body)
Type: (ext body)

‘mount_type’
Type: (menu option)

Allowed input range:

nfs
nfs2

Chapter 7: Bundles of agent 191

nfs3
nfs4

Synopsis: Protocol type of remote file system

Example:

body mount example
{
mount_type => "nfs3";

}

Notes:

This field is mainly for future extensions.
‘mount_source’

Type: string

Allowed input range: [/\].*

Synopsis: Path of remote file system to mount

Example:

body mount example
{

mount_source "/location/disk/directory";

}

Notes:

This is the location on the remote device, server, SAN etc.
‘mount_server’

Type: string

Allowed input range: (arbitrary string)

Synopsis: Hostname or IP or remote file system server

Example:

body mount example

{

192 Cfengine reference manual (version 3.0.0b5)

mount_server => "nfs_host.example.org";

}

Notes:

Hostname or IP address, this could be on a SAN.
‘mount_options’
Type: slist
Allowed input range: List of option strings to add to the file system table
("fstab")
Synopsis: (null)

Example:

body mount example

{
mount_options => { "rw", "acls" };

}

Notes:

This list is concatenated in a form appropriate for the filesystem. The options must be
legal options for the system mount commands.

‘edit_fstab’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false add or remove entries to the file system table ("fstab")

Example:

body mount example

{

edit_fstab => "true";

Chapter 7: Bundles of agent 193

Notes:

The default behaviour is to not place edits in the file system table.

‘unmount’ Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false unmount a previously mounted filesystem

Example:

body mount example
{

unmount => "true";

}

Notes:

7.11.2 volume (compound body)
Type: (ext body)

‘check_foreign’
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false verify storage that is mounted from a foreign system on this host

194 Cfengine reference manual (version 3.0.0b5)

Example:

body volume example

{
#..
check_foreign => "false";

}

Notes:

Cfengine will not normally perform sanity checks on filesystems which are not local to
the host. If true it will ignore a partition’s network location and ask the current host
to verify storage located physically on other systems.

‘freespace’
Type: string
Allowed input range: [0-9]+ [mb%]

Synopsis: Absolute or percentage minimum disk space that should be available before
warning

Example:

body volume examplel
{
freespace => "10%";

}

body volume example2
{
freespace => "50M";

}

Notes:

The amount of freespace that is promised on a storage device. Once this promise is
found not to be kept, warnings are generated.

‘sensible_size’
Type: int
Allowed input range: 0,99999999999

Chapter 7: Bundles of agent 195

Synopsis: Minimum size in bytes that should be used on a sensible-looking storage
device

Example:

body volume example

{
sensible_size => "20K";

}

Notes:

body volume control
{
sensible_size => "20K";

}

‘sensible_count’
Type: int
Allowed input range: 0,99999999999

Synopsis: Minimum number of files that should be defined on a sensible-looking storage
device

Example:

body volume example
{
sensible_count => "20";

}

Notes:

Files must be readable by the agent, i.e. it is assumed that the agent has privileges on
volumes being checked.

‘scan_arrivals’
Type: (menu option)

Allowed input range:

196

Cfengine reference manual (version 3.0.0b5)

true
false
yes
no

on
off

Synopsis: true/false generate pseudo-periodic disk change arrival distribution

Example:

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/bodypart_scan_arrivals_example.texinfo)J

body volume example
{
scan_arrivals => "true";

}

Notes:

This operation should not be left ‘on’ for more than a single run (maximum once per
week). It causes cfengine to perform an extensive disk scan noting the schedule of
changes between files. This can be used for a number of analyses including optimum
backup schedule computation.

Chapter 8: Bundles of server 197

8 Bundles of server

~
bundle server access_rules()
{
access:
"/home/mark/PrivateFiles"
admit => { ".*\.example\.org" };
"/home/mark/.cfagent/bin/cf-agent"
admit => { ".*\.example\.org" };
roles:
" %" authorize => { "mark" };
}
N

Bundles in the server describe access promises on specific file and class objects supplied by the
server to clients.

8.1 access promises in ‘server’

Access promises are conditional promises made by the server about file objects. The promise has
two consequences. For file copy requests, the file becomes transferrable to the remote client according
to the conditions specified in the server promse (i.e. if the connection encryption requirements are
met, and if the client has been granted appropriate privileges with maproot (like its NFS counterpart)
to be able to see file objects not owned by the server process owner).

The promise has two mutally exclusive attributes ‘admit’ and ‘deny’. Use of ‘admit’ is preferred
as mistakes and omissions can easily be made when excluding from a group.

When access is granted to a directory, the promise is automatically given about all of its contents
and sub-directories. The access promise allows overlapping promises to be made, and these are kept
in a first-come-first-served fashion. Thus file objects (promisers) should be listed in order of most-
specific file first. In this way, specific promises will override less specific ones.

198 Cfengine reference manual (version 3.0.0b5)

-
access:
"/path/file_object"
admit => { "hostname", "ipv4_address", "ipv6_address" };
N

8.1.1 Access Example

I
Server config
B s S s s S s S S

body server control

{
allowconnects => { "127.0.0.1" , "::1" };
allowallconnects => { "127.0.0.1" , "::1" };
trustkeysfrom => { "127.0.0.1" , "::1" };
}

HERFHHHHH R R R R R

bundle server access_rules()

{
access:
"/home/mark/LapTop"
admit => { "127.0.0.1" };
}

Entries may be literal addresses of IPv4 or IPv6, or any name registered in the POSIX
gethostbyname service.

8.1.2 admit
Type: slist
Allowed input range: (arbitrary string)

Synopsis: List of host names or IP addresses to grant access to file objects

Chapter 8: Bundles of server 199

Example:

access:
"/home/mark/LapTop"
admit => { "127.0.0.1", "192.168.0.1", "*.domain.tld" };

Notes:

Admit promises grant access to file objects on the server. Arguments may be IP addresses or
hostnames, provided DNS name resolution is active. In order to reach this stage, a client must first
have passed all of the standard connection tests in the control body.

8.1.3 deny

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of host names or IP addresses to deny access to file objects

Example:

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/bodypart_deny_example.texinfo)
Notes:

Fill me in (/home/mark/LapTop/Cfengine3/trunk/docs/bodypart_deny_notes.texinfo)

8.1.4 maproot
Type: slist
Allowed input range: (arbitrary string)

Synopsis: List of host names or IP addresses to grant full read-privilege on the server

Example:

access:
n /home "
admit => { "backup_host.example.org" 7,

ifencrypted => "true",
maproot => "true";

200 Cfengine reference manual (version 3.0.0b5)

Notes:

Normally users authenticated by the server are granted access only to files owned by them and no-
one else. Even if the cf-serverd process runs with root privileges on the server side of a client-server
connection, the client is not automatically granted access to download files owned by non-privileged
users. If maproot is true then remote root users are granted access to all files.

A typical case where mapping is important is in making backups of many user files.

8.1.5 ifencrypted
Type: (menu option)

Allowed input range:

true
false
yes
no

on
off

Synopsis: true/false whether the current file access promise is conditional on the connection from
the client being encrypted

Example:

access:
"/path/file"

admit => { ".x.example.org" I},
ifencrypted => "true";

Notes:

If this flag is true a client cannot access the file object unless its connection is encrypted.

8.2 roles promises in ‘server’

Roles promises are server-side decisions about which users are allowed to define soft-classes on
the server’s system during remote invocation of cf-agent. This implements a form of Role Based
Access Control (RBAC) for pre-assigned class-promise bindings. The user names cited must be
attached to trusted public keys in order to be accepted.

Chapter 8: Bundles of server 201

(N

roles:
"regex"

authorize => { "usernames", ... };

- J

It is worth re-iterating here that it is not possible to send commands or modify promise definitions
by remote access. At best users may try to send classes when using cf-runagent in order to activate
sleeping promises. This mechanism limits their ability to do this.

bundle server access_rules()

{

roles:
Allow mark

"Mark_.*" authorize => { "mark" };

In this example user ‘mark’ is granted permission to remotely activate classes matching the
regular expression when using the cf-runagent to activate cfengine. In this way one can implement
a form of Role Based Access Control (RBAC), provided users do not have privileged access on the
host directly.

8.2.1 authorize
Type: slist
Allowed input range: (arbitrary string)

Synopsis: List of public-key user names that are allowed to activate the promised class during remote
agent activation

Example:

roles:

". %" authorize => { "mark", "marks_friend" };

Notes:

202 Cfengine reference manual (version 3.0.0b5)

Part of Role Based Access Control (RBAC) in cfengine. The users listed in this section are
granted access to set certain classes by using the remote cf-runagent. The user-names will refer to
public key identities already trusted on the system.

Chapter 9: Bundles of knowledge 203

9 Bundles of knowledge

~
bundle knowledge system
{
topics:
Troubleshooting::
"Segmentation fault"
association => a("is caused by","Bad memory reference",'"can cause");

"Remote connection problem";

"Web server not running";

"Print server not running";

"Bad memory reference";
}

Knowledge bundles describe topic maps, i.e. Topics, Associations and Occurrences (of topics in
documents). This is for knowledge modelling and has no functional effect on a system.

9.1 topics promises in ‘knowledge’

Topic promises are part of the knowledge management engine. A topic is any string that refers
to a concept or subject that we wish to include in a knowledge base. If a topic has a very long
name, it is best to made the promiser object a short name and use the comment field to add the long
explanation (e.g. unique acronym and full text).

-
topics:
"topic string"
comment => "long name..",
o
-

Topics form associative structures based entirely on an abstract space of natural language. Actu-
ally, this is only slightly more abstract than files, processes and commands etc. The main difference
in knowledge management is that there are no corrective or maintenance operations associated with
knowledge promises.

Class membership in knowledge management is subtly different from other parts of cfengine. If a
topic lies in a certain class context, the topic uses it as a type-label. This is used for disambiguation
of subject-area in searches rather than for disambiguation of rules between physical environments.

204 Cfengine reference manual (version 3.0.0b5)

bundle knowledge example

{
topics:
"Distro"
comment => "Distribution of linux",
association => a("is a packaging of","Linux","is packaged as a");
}

Topics are basically identifiers, where the comment field here is a long form of the subject string.
Associations form semantic links between topics. Topics can appear multiple times in order to form
multiple associations.

9.1.1 association (compound body)
Type: (ext body)
‘forward_relationship’
Type: string
Allowed input range: (arbitrary string)
Synopsis: Name of forward association between promiser topic and associates

Example:

body association example
{
forward_relation => "is bigger than";

}

Notes:

‘backward_relationship’
Type: string

Allowed input range: (arbitrary string)
Synopsis: Name of backward/inverse association from associates to promiser topic

Example:

Chapter 9: Bundles of knowledge 205

body association example

{
..
backward_relationship => "is less than";

}

Notes:

Denotes the inverse name which is used to ‘moralizing’ the association graph.
‘associates’

Type: slist

Allowed input range: (arbitrary string)

Synopsis: List of associated topics by this forward relationship

Example:

body association example(literal,scalar,list)

{
#...
associates => { "literal", $(scalar), @(list)};

}

Notes:

An element of an association which is a list of topics to which the current topic is
associated.

9.1.2 comment

Type: string

Allowed input range: (arbitrary string)

Synopsis: Retained comment about this promise’s real intention

Example:

comment => "This comment follows the data for reference ...",

Notes:

206 Cfengine reference manual (version 3.0.0b5)

Comments written in code follow the program, they are not merely discarded. They appear in
reports and error messages.

9.2 occurrences promises in ‘knowledge’

Occurrences are documents or information resources that discuss topics. An occurrence promise
asserts that a particular document of text resource in fact represents information about one or more
topics. This is used to construct references to actual information in a topic map.

(N

occurrences:
topic_name::
"URL reference or literal string"

represents => { "sub-topic disambiguator", ... },
representation => "literal or url";

Mark_Burgess::

"http://www.iu.hio.no/ mark"
represents => { "Home Page" };

lvalue::

"A variable identifier, i.e. the left hand side of an ’=’ association. The promiser in a variakt
represents => { "Definitions" },
representation => "literal";

Editing_Files::

"http://wuw.cfengine.org/confdir/customizepasswd.html"
represents => { "Setting up users" };

Occurrences are pointers to information about topics. This might be a literal text string or a
URL reference to an external document.

9.2.1 represents

Type: slist

Chapter 9: Bundles of knowledge

Allowed input range: (arbitrary string)
Synopsis: List of subtopics that disambiguate the context of this reference

Example:

occurrences:
Promise_Theory::
"A theory of autonomous actors that offer certainty through promises"

represents => { "Definitions" 7},
representation => "literal";

Notes:

The sub-topic represented by the document reference in a knowledge base.

9.2.2 representation

Type: (menu option)
Allowed input range:

literal
url
db
file
web
Synopsis: How to interpret the promiser string e.g. actual data or reference to data

Example:

occurrences:
Promise_Theory::
"A theory of autonomous actors that offer certainty through promises"
represents => { "Definitions" },

representation => "literal";

Notes:

207

208 Cfengine reference manual (version 3.0.0b5)

The form of knowledge representation in a topic map occurrence reference.

Chapter 10: Special functions

10 Special functions

10.1 Function accessedbefore

Synopsis: accessedbefore(2 args) returns type class
Define class if argl was accessed before arg2 (atime)

Example:

body common control

{

bundlesequence => { "example" };
}

HERHHHHH R R R R

bundle agent example

{
classes:

"do_it" and => { accessedbefore("/tmp/earlier","/tmp/later"), "linux" };
reports:

do_it::

"The secret changes have been accessed after the reference time";

}
Notes:

The function accesses the atime fields of a file and makes a comparison.

touch /tmp/reference
touch /tmp/secretfile

/usr/local/sbin/cf-agent -f ./unit_accessed_before.cf -K

R: The secret changes have been accessed after the reference time

10.2 Function accumulated

Synopsis: accumulated(6 args) returns type int

209

210 Cfengine reference manual (version 3.0.0b5)

Convert an accumulated amount of time into a system representation

Example:

bundle agent testbundle

{
processes:
n ‘*ll
process_count => anyprocs,
process_select => proc_finder;
reports:

any_procs::

"Found processes in range";

s s s s s s
body process_select proc_finder

{
ttime_range => irange(accumulated(0,0,0,0,2,0),accumulated(0,0,0,0,20,0));
process_result => "ttime";

}
HEFH R R R R

body process_count anyprocs

{
match_range => "0,0";
out_of_range_define => { "any_procs" };

}

Notes:

In the example we look for processes that have accumulated between 2 and 20 minutes of total
run time.

ARGUMENTS:

Chapter 10: Special functions

‘Years’ The year, e.g. 2009
‘Month’ The Month, 1-12
‘Day’ The day 1-31
‘Hours’ The hour 0-23

‘Minutes’ The minutes 0-59

‘Seconds’ The number of seconds 0-59

10.3 Function ago

Synopsis: ago(6 args) returns type int
Convert a time relative to now to an integer system representation

Example:

bundle agent testbundle

{
processes:
n ‘*Il
process_count => anyprocs,
process_select => proc_finder;
reports:
any_procs::
"Found processes out of range";
}

HAFHHHFHH B H AR R R R R

body process_select proc_finder

{

stime_range => irange(ago(0,0,0,5,30,0),ag0(0,0,0,0,20,0));

process_result => "stime";

}

HERHHHHHE R R R R R R

body process_count anyprocs

211

212 Cfengine reference manual (version 3.0.0b5)

{
match_range => "0,0";
out_of_range_define => { "any_procs" };

}

Notes:

The ago function measures time relative to now.
ARGUMENTS:

‘Years’ The year, e.g. 2009
‘Months’ The Month, 1-12
‘Days’ The day 1-31
‘Hours’ The hour 0-23
‘Minutes’ The minutes 0-59

‘Seconds’ The number of seconds 0-59

10.4 Function canonify

Synopsis: canonify(1 args) returns type string
Convert an abitrary string into a legal class name

Example:

commands :
"/var/cfengine/bin/$ (component)"
ifvarclass => canonify("start_$(component)");

Notes:

This is for use in turning arbitrary text into class data.

10.5 Function changedbefore

Synopsis: changedbefore(2 args) returns type class
Define class if argl was changed before arg2 (ctime)

Example:

Chapter 10: Special functions 213

body common control

{

bundlesequence => { "example" };
}

HHH R R

bundle agent example

{
classes:

"do_it" and => { changedbefore("/tmp/earlier","/tmp/later"), "linux" };
reports:

do_it::

"The derived file needs updating";

}
Notes:

Change times include both file permissions and file contents. Comparisons like this are normally
used for updating files (like the ‘make’ command).

10.6 Function classmatch

Synopsis: classmatch(1 args) returns type class
Define class if the regular expression matches any currently defined class

Example:

body common control

{

bundlesequence => { "example" };
}

HEFHHHFHHHFHH B RS R AR R R

bundle agent example

214 Cfengine reference manual (version 3.0.0b5)

{
classes:

"do_it" and => { classmatch(".*_cfengine_com"), "linux" };
reports:

do_it::

"Host matches pattern";

}
Notes:

The regular expression is matched against the current list of defined classes.

10.7 Function execresult

Synopsis: execresult(2 args) returns type string
Execute named command and assign output to variable

Example:

body common control

{

bundlesequence => { "example" };

}

HAEFHHHFHHAFHH B HHAFH R H RS H R R R R

bundle agent example

vars:

"my_result" string => execresult("/bin/ls /tmp","noshell");
reports:

linux::

"Variable is $(my_result)";

Chapter 10: Special functions 215

Notes:

The second argument decides whether a shell will be used to encapsulate the command. This is
necessary in order to combine commands with pipes etc, but remember that each command requires
a new process that reads in files beyond cfengine’s control. Thus using a shell is both a performance
hog and a potential security issue.

10.8 Function fileexists

Synopsis: fileexists(1 args) returns type class
Define class if the named file can be accessed

Example:

body common control

{

bundlesequence => { "example" };
}

HERHHHHH R R R R R

bundle agent example

{
classes:

"exists" expression => fileexists("/etc/passwd");
reports:

exists::

"File exists";

}
Notes:

The user must have access permissions to the file for this to work faithfully.

216 Cfengine reference manual (version 3.0.0b5)

10.9 Function getindices
Synopsis: getindices(1 args) returns type slist
Get a list of keys to the array whose id is the argument and assign to variable

Example:

body common control

{

any::

bundlesequence => { "testsetvar" };

}

HEHFHH B BRI

bundle agent testsetvar

{
vars:
"v[index_1]" string => "value_1";
"v[index_2]" string => "value_2";
"parameter_name" slist => getindices("v");
reports:
Yr2008::
"Found index: $(parameter_name)";
}
Notes:

Make sure you specify the correct scope when supplying the name of the variable.

10.10 Function getgid
Synopsis: getgid(1 args) returns type int
Return the integer group id of the named group on this host

Chapter 10: Special functions 217

Example:

body common control

{

bundlesequence => { "example" };
}

B S S S s

bundle agent example

{
vars:

"gid" int => getgid("users");
reports:

Yr2008::

"Users gid is $(gid)";

}
Notes:

If the named group does not exist, the variable will not be defined.

10.11 Function getuid

Synopsis: getuid(1 args) returns type int
Return the integer user id of the named user on this host

Example:

body common control

{
bundlesequence => { "example" };

}

HEH R

218 Cfengine reference manual (version 3.0.0b5)

bundle agent example

{
vars:

"uid" int => getuid("mark");
reports:

Yr2008::

"Users gid is $(uid)";

}
Notes:

If the named user is not registered the variable will not be defined.

10.12 Function groupexists

Synopsis: groupexists(1 args) returns type class
Define class if group or numerical id exists on this host

Example:

body common control

{

bundlesequence => { "example" };
}

B S s s

bundle agent example

{

classes:

"gname" expression => groupexists("users");
"gid" expression => groupexists("100");

reports:

Chapter 10: Special functions 219

gname: :
"Group exists by name";
gid::

"Group exists by id";

Notes:

The group may be specified by name or number.

10.13 Function hash

Synopsis: hash(2 args) returns type string
Return the hash of argl, type arg2 and assign to a variable

Example:

body common control

{

bundlesequence => { "example" };

}
s s s e

bundle agent example

vars:
"md5" string => hash("Cfengine is not cryptic","md5");
reports:
Yr2008::

"Hashed to: $(md5)";

220 Cfengine reference manual (version 3.0.0b5)

Notes:

Hash functions are extremely sensitive to input. You should not expect to get the same answer
from this function as you would from every other tool, since it depends on how whitespace and end
of file characters are handled.

10.14 Function hostrange

Synopsis: hostrange(2 args) returns type class
Define class if the current host lies in the range of enumerated hostnames specified

Example:

body common control

{

bundlesequence => { "example" };
}

B R R

bundle agent example

{
classes:

"compute_nodes" expression => hostrange("cpu-","01-32");
reports:

compute_nodes::

"No computer is a cluster";

}
Notes:

This is a pattern matching function for non-regular (enumerated) expressions.

10.15 Function iprange

Synopsis: iprange(1l args) returns type class

Chapter 10: Special functions 221

Define class if the current host lies in the range of IP addresses specified

Example:

body common control

{

bundlesequence => { "example" };

}

B g S S S S S

bundle agent example

{
classes:
"adhoc_group_1" expression => iprange("128.39.89.10-15");
"adhoc_group_2" expression => iprange("128.39.74.1/23");
reports:

adhoc_group_1::
"Some numerology";
adhoc_group_2::

"The masked warriors";

Notes:

Pattern matching based on IP addresses.

10.16 Function irange

Synopsis: irange(2 args) returns type irange [int,int]
Define a range of integer values for cfengine internal use

Example:

222 Cfengine reference manual (version 3.0.0b5)

Notes:

Not currently used.

10.17 Function isdir

Synopsis: isdir(1 args) returns type class
Define class if the named object is a directory

Example:

body common control

{

bundlesequence => { "example" };
b

HHH R R R

bundle agent example

{
classes:

"isdir" expression => isdir("/etc");
reports:

isdir::

"Directory exists..";

}
Notes:

The cfengine process must have access to the object concerned in order for this to work.

10.18 Function isgreaterthan

Synopsis: isgreaterthan(2 args) returns type class

Define class if argl is numerically greater than arg2, else compare strings like stremp

Chapter 10: Special functions 223

Example:

body common control

{

bundlesequence => { "test" };

}
s e

bundle agent test

{

classes:
"ok" expression => isgreaterthan("1","0");
reports:
ok::
"Assertion is true";
lok::

"Assertion is false";

Notes:

The comparison is made numerically if possible. If the values are strings, the result is identical
to that of comparing with ‘strcmp()’.

10.19 Function islessthan

Synopsis: islessthan(2 args) returns type class
Define class if argl is numerically less than arg2, else compare strings like NOT stremp

Example:

body common control

224 Cfengine reference manual (version 3.0.0b5)

{

bundlesequence => { "test" };

}

HAEFHHHFHHAFHH B R A H R H SRR R R R R

bundle agent test

{

classes:
"ok" expression => islessthan("0","1");
reports:
ok::
"Assertion is true";
lok::

"Assertion is false";

Notes:

The complement of isgreaterthan. The comparison is made numerically if possible. If the
values are strings, the result is identical to that of comparing with ‘strcmp()’.

10.20 Function islink

Synopsis: islink(1 args) returns type class
Define class if the named object is a symbolic link

Example:

body common control

{

bundlesequence => { "example" };

}

B R s

Chapter 10: Special functions 225

bundle agent example

{
classes:

"isdir" expression => islink("/tmp/link");
reports:

isdir::

"Directory exists..";

}
Notes:

The link node must both exist and be a symbolic link. Hard links cannot be detected using this
function. A hard link is a regular file or directory.

10.21 Function isnewerthan

Synopsis: isnewerthan(2 args) returns type class
Define class if argl is newer (modified later) than arg2 (mtime)

Example:

body common control

{

bundlesequence => { "example" };

}
s s s e

bundle agent example

{

classes:
"do_it" and => { isnewerthan("/tmp/later","/tmp/earlier"), "linux" };
reports:

do_it::

226 Cfengine reference manual (version 3.0.0b5)

"The derived file needs updating";

Notes:

This function compares the modification time of the file, referring to changes of content only.

10.22 Function isplain
Synopsis: isplain(1 args) returns type class
Define class if the named object is a plain/regular file

Example:

body common control

{

bundlesequence => { "example" };
}

HEH R R

bundle agent example

{
classes:
"isplain" expression => isplain("/etc/passwd");
reports:
isplain::
"File exists..";
}

Notes:

Chapter 10: Special functions 227

10.23 Function isvariable
Synopsis: isvariable(1 args) returns type class
Define class if the named variable is defined

Example:

body common control

{

bundlesequence => { "example" };

}

HAHAHBHHAH R HBHHAH RS R R H R AF R H B R AR RS H R R RS R R R3S

bundle agent example

vars:
"bla" string => "xyz..";
classes:
"exists" expression => isvariable("bla");
reports:
exists::

"Variable exists: \"$(bla)\"..";

Notes:

The variable need only exist. This says nothing about its value. Use regcmp to check variable
values.

10.24 Function now
Synopsis: now(0 args) returns type int

Convert the current time into system representation

228 Cfengine reference manual (version 3.0.0b5)

Example:

body file_select zero_age

{

mtime => irange(ago(1,0,0,0,0,0) ,now);
file_result => "mtime";

}

Notes:

10.25 Function on

Synopsis: on(6 args) returns type int
Convert an exact date/time to an integer system representation

Example:

body file_select zero_age

{

mtime => irange(on(2000,1,1,0,0,0) ,now) ;
file_result => "mtime";

}

Notes:

An absolute date. Note that in process matching dates could be wrong by an hour depending on
Daylight Savings Time / Summer Time. This is a known bug to be fixed.

ARGUMENTS:

‘Years’ The year, e.g. 2009
‘Month’ The Month, 1-12
‘Day’ The day 1-31
‘Hours’ The hour 0-23

‘Minutes’ The minutes 0-59

‘Seconds’ The number of seconds 0-59

10.26 Function randomint

Synopsis: randomint(2 args) returns type int

Chapter 10: Special functions 229

Generate a random integer between the given limits

Example:

vars:

"ran" int => randomint(4,88);

Notes:

The limits must be integer values and the resulting numbers are based on the entropy of the md5
algorithm.

10.27 Function readfile

Synopsis: readfile(2 args) returns type string
Read max number of bytes from named file and assign to variable

Example:

vars:
Ny

string => readfile("/home/mark/tmp/testfile" , "33");

Notes:

The file (fragment) is read into a single scalar variable.

10.28 Function readintarray

Synopsis: readintarray(6 args) returns type int
Read an array of integers from a file and assign the dimension to a variable

Example:

vars:
"dim_array"

int => readintarray("array_name","/tmp/array","#["\nlx",":",10,4000);

230 Cfengine reference manual (version 3.0.0b5)

Notes:

Reads a two dimensional array from a file. One dimension is separated by the character specified
in the argument, the other by the the lines in the file. The first field of the lines names the first
array argument.

1: 5:7:21:13

2:19:8:14:14

3:45:1:78:22

4:64:2:98:99
Results in

array_name [1] [0]
array_name[1] [1]
array_name [1] [2]
array_name[1][3] 21
array_name [1] [4] 13
array_name[2] [0] 2

array_name [2] [1] 19
array_name[2] [2] 8

array_name [2] [3] 14
array_name [2] [4] 14
array_name[3] [0] 3

array_name[3] [1] 45
array_name[3][2] 1

array_name[3][3] 78
array_name [3] [4] 22
array_name[4] [0] 4

array_name[4] [1] 64
array_name[4][2] 2

array_name [4] [3] 98
array_name[4] [4] 99

~N o=

10.29 Function readintlist

Synopsis: readintlist(5 args) returns type ilist
Read and assign a list variable from a file of separated ints

Example:

body common control

{

bundlesequence => { "example" };

}

B R s

Chapter 10: Special functions 231

bundle agent example

{
vars:

"mylist" ilist => { readintlist("/tmp/listofint","#.%","[\n]",10,400) };
reports:

Yr2008: :

"List entry: $(mylist)";

}
ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.
‘comment’ A regex pattern which is to be ignored in the file

‘split’ A regex pattern which is to be used to split up the file into items
‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

10.30 Function readrealarray

Synopsis: readrealarray(6 args) returns type int
Read an array of real numbers from a file and assign the dimension to a variable

Example:

vars:
"dim_array"

int => readrealarray("array_name","/tmp/array","#[" \nl*",":",10,4000);

Notes:

See the notes for readintarray.

232 Cfengine reference manual (version 3.0.0b5)

10.31 Function readreallist

Synopsis: readreallist(5b args) returns type rlist
Read and assign a list variable from a file of separated real numbers

Example:

body common control

{

bundlesequence => { "example" };
}

HERHHHHHE R R R R R

bundle agent example

{
vars:

"mylist" ilist => { readreallist("/tmp/listofreal","#.*","[\n]",10,400) };
reports:

Yr2008::

"List entry: $(mylist)";

}
ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.
‘comment’ A regex pattern which is to be ignored in the file

‘split’ A regex pattern which is to be used to split up the file into items
‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

10.32 Function readstringarray

Synopsis: readstringarray(6 args) returns type int

Chapter 10: Special functions 233

Read an array of strings from a file and assign the dimension to a variable

Example:

vars:
"dim_array"

int => readstringarray("array_name","/tmp/array","#["\n]*",":",10,4000);

Notes:

Reads a two dimensional array from a file. One dimension is separated by the character specified
in the argument, the other by the the lines in the file. The first field of the lines names the first
array argument.

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
avahi:x:103:105:User for Avahi:/var/run/avahi-daemon:/bin/false
beagleindex:x:104:106:User for Beagle indexing:/var/cache/beagle:/bin/bash
bin:x:1:1:bin:/bin:/bin/bash

daemon:x:2:2:Daemon:/sbin:/bin/bash

Results in a systematically indexed map of the file. Some samples are show below to illustrate the
pattern.

array_name [daemon] [0] daemon
array_name[daemon] [1] x
array_name [daemon] [2] 2
array_name [daemon] [3] 2
array_name [daemon] [4] Daemon
array_name [daemon] [5] /sbin
array_name [daemon] [6] /bin/bash

array_name [at] [3] 25

array_name [at] [4] Batch jobs daemon
array_name [at] [5] /var/spool/atjobs
array_name [at] [6] /bin/bash
array_name [games] [3] 100

array_name [games] [4] Games account
array_name [games] [5] /var/games

array_name [games] [6] /bin/bash

10.33 Function readstringlist

Synopsis: readstringlist(5 args) returns type slist

Read and assign a list variable from a file of separated strings

234 Cfengine reference manual (version 3.0.0b5)

Example:

body common control

{

bundlesequence => { "example" };
}

HHFH AR R R R R R

bundle agent example

{
vars:

"mylist" ilist => { readstringlist("/tmp/listofint","#.*","[\n]",10,400) };
reports:

Yr2008::

"List entry: $(mylist)";

}
ARGUMENTS:

‘filename’ The name of a text file containing text to be split up as a list.
‘comment’ A regex pattern which is to be ignored in the file

‘split’ A regex pattern which is to be used to split up the file into items
‘maxent’ The maximum number of list items to read from the file

‘maxsize’ The maximum number of bytes to read from the file

Notes:

The following example file would be split into a list of the first ten Green letters.

alpha

beta

gamma # This is a comment
delta

epsilon

zeta

eta

theta

Chapter 10: Special functions 235

iota
kappa
lambda
mu

nu

etc

10.34 Function readtcp

Synopsis: readtcp(4 args) returns type string
Connect to tcp port, send string and assign result to variable

Example:

body common control

{

bundlesequence => { "example" };

}

HHHAHBHHAH R HBHHAH RS HEHHAH B R AH B HBH R AR RS H AR AR RS H AR H R HH

bundle agent example

{
vars:

"my80" string => readtcp("www.cfengine.com","80","GET /index.html",400);
reports:

Yr2008::

"Server returned: $(my80)";
}
‘hostnameip’
The host name or IP address of a tcp socket.

‘port’ The port number to connect to.
‘sendstring’

A string to send to the TCP port to illicit a response

‘maxbytes’ The maximum number of bytes to read in response.

236 Cfengine reference manual (version 3.0.0b5)

Notes:

If the send string is empty, no data are sent or received from the socket. Then the function only
tests whether the TCP port is alive and returns an empty variable.

Note that on some systems the timeout mechanism does not seem to successfully interrupt the
waiting system calls so this might hang if you send a query string that is incorrect. This should not
happen, but the cause has yet to be diagnosed.

10.35 Function regarray

Synopsis: regarray(2 args) returns type class
Define class if argl matches any item in the associative array with id=arg?2

Example:

body common control

{

bundlesequence => { "testbundle" };
}

HERHHHHHHE R R R R

bundle agent testbundle

{

vars:
"myarray[0]" string => "blal";
"myarray[1]" string => "bla2";
"myarray[3]" string => "bla";
"myarray" string => "345";
"not" string => "345";

classes:
"ok" expression => regarray("myarray","b.*2");

reports:

ok::

"Found in list";

lok::

Chapter 10: Special functions 237

"Not found in 1list";

Notes:

Tests whether an associative array contains elements matching a certain regular expression. The
result is a class.
ARGUMENTS:

‘array_name’
The name of the array, with no ‘$()’ surrounding, etc.

‘regex’ A regular expression to match the content.

10.36 Function regcmp

Synopsis: regemp(2 args) returns type class
Define class if argl is a regular expression matching arg?2

Example:

bundle agent subtest(user)

{

classes:
"invalid" not => regcmp("[a-z] [a-z] [a-z] [a-z]","$(user)");
reports:
linvalid::
"User name $(user) is valid at 4 letters";
invalid::

"User name $(user) is invalid";

Notes:

Compares a string to a regular expression.
ARGUMENTS:

238 Cfengine reference manual (version 3.0.0b5)

‘regex’ A regular expression to match the test data.

‘string’ Test data for the regular expression.

10.37 Function reglist

Synopsis: reglist(2 args) returns type class
Define class if argl matches any item in the list with id=arg2

Example:

vars:

"nameservers" slist => {
"128.39.89.10",
"128.39.74.16",
"192.168.1.103"
};

classes:

"am_name_server" expression => reglist("@(nameservers)","$(sys.ipv4[eth0])");

Notes:

Matches a list of test strings to a regular expression.

ARGUMENTS:
‘list’ The list of strings.
‘regex’ The scalar regular expression string.

10.38 Function returnszero

Synopsis: returnszero(2 args) returns type class
Define class if named shell command has exit status zero

Example:

body common control

{

bundlesequence => { "example" };

}

HEH R

Chapter 10: Special functions 239

bundle agent example

{
classes:

"my_result" expression => returnszero("/usr/local/bin/mycommand","noshell");
reports:

'my_result::

"Command failed";

}
Notes:

This is the complement of execresult, but it returns a class result rather than the output of
the command.

10.39 Function rrange

Synopsis: rrange(2 args) returns type rrange [real,real]
Define a range of real numbers for cfengine internal use

Example:

Notes:

This is not yet used.

10.40 Function selectservers

Synopsis: selectservers(6 args) returns type int
Select tcp servers which respond correctly to a query and return their number, set array of names

Example:

body common control

240 Cfengine reference manual (version 3.0.0b5)

{

bundlesequence => { "test" };

}

HAEFHHHFHHAFHH B R A H R H SRR R R R R

bundle agent test

vars:

"hosts" slist => { "slogans.iu.hio.no", "eternity.iu.hio.no", "nexus.iu.hio.no" };

"up_servers" int => selectservers("@(hosts)","80","","","100","alive_servers");
classes:

"someone_alive" expression => isgreaterthan("$(up_servers)","0");

"i_am_a_server" expression => regarray("up_servers","$(host) |$(fqhost)");
reports:

someone_alive::

"Number of active servers $(up_servers)";
"First server $(alive_servers[0]) fails over to $(alive_servers[1])";

Notes:

This function selects all the TCP ports that are active and functioning from an ordered list and
builds an array of their names. This allows us to select a current list of failover alternatives that are
pretested.

‘hostlist’ A list of host names or IP addresses to attempt to connect to.
‘port’ The port number for the service.
‘sendstr’ An optional string to send to the server to illicit a response.

‘regex_on_reply’
If a string is sent, this regex must match the resulting reply.

‘maxbytesread_reply’
The maximum number of bytes to read as the server’s reply.

Chapter 10: Special functions 241

‘array_name’
The name of the array to build containing the names of hosts that pass the above tests.
The array is ordered array_name[0], .. etc.

10.41 Function strcmp

Synopsis: stremp(2 args) returns type class
Define class if the two strings match exactly

Example:

body common control

{

bundlesequence => { "example" };

}
B s s s s s S s s
bundle agent example

{

classes:
"same" expression => strcmp("test","test");
reports:
same: :
"Strings are equal";
I'same::

"Strings are not equal';

Notes:

10.42 Function usemodule

Synopsis: usemodule(2 args) returns type class

Execute cfengine module script and set class if successful

242 Cfengine reference manual (version 3.0.0b5)

Example:

body common control

{
any::
bundlesequence => {
test
+;
¥

B R

bundle agent test

{
classes:

returns $(user)

"done" expression => usemodule("getusers","");
commands:

"/bin/echo promiser text" args => "test $(user)";
}
Notes:

Modules must reside in ‘WORKDIR/modules’ but no longer require a special naming convention.

ARGUMENTS:

‘Module name’
The name of the module without its leading path, since it is assuemed to be in the
registered modules directory.

‘Argument string’
Any command link arguments to pass to the module.

10.43 Function userexists
Synopsis: userexists(1 args) returns type class

Define class if user name or numerical id exists on this host

Chapter 10: Special functions

Example:

body common control

{

bundlesequence => { "example" };

}
I

bundle agent example

{

classes:
"ok" expression => userexists("root");
reports:
ok::
"Root exists";
lok::

"Root does not exist";

Notes:

243

Checks whether the user is in the password database for the current host. The argument must

be a user name or user id.

244 Cfengine reference manual (version 3.0.0b5)

Chapter 11: Special Variables 245

11 Special Variables

11.1 Variable context const

Cfengine defines a number of variables for embedding unprintable values or values with special
meanings in strings.

11.1.1 Variable const.dollar

reports:
some: :
"The value of $(const.dollar) (const.dollar) is $(const.dollar)";

"But the value of \$(dollar) is \$(dollar)";

11.1.2 Variable const.endl

reports:

"A newline with either $(const.endl) or with $(const.n) is ok";

11.1.3 Variable const.n

reports:

"A newline with either $(const.n) or with $(const.endl) is ok";

11.1.4 Variable const.r

reports:

246 Cfengine reference manual (version 3.0.0b5)

"A carriage return character is $(const.r)";

11.2 Variable context sys

System variables are derived from cfengine’s automated discovery of system values. They are
provided as variables in order to make automatically adaptive rules for configuration, e.g.

files:
any::
"$(sys.resolv)"

create => "true",
edit_line => doresolv("@(this.list1)","@(this.list2)"),
edit_defaults => reconstruct;

The above rule requires no class specification because the variable itself is class-specific.

11.2.1 Variable sys.arch

The variable gives the kernel’s short architecture description.

arch = x86_64

11.2.2 Variable sys.cdate

The date of the system in canonical form, i.e. in the form of a class.

cdate = Sun_Dec__7_10_39_53_2008_

11.2.3 Variable sys.class

This variable contains the name of the hard-class category for this host, i.e. its top level operating
system type classification.

class = linux

Chapter 11: Special Variables 247

11.2.4 Variable sys.date

The date of the system as a text string.

date = Sun Dec 7 10:39:53 2008

11.2.5 Variable sys.domain

The domain name as divined by cfengine. If the DNS is in use, it could be possible to derive
the domain name from its DNS regisration, but in general there is no way to discover this value
automatically. The common control body permits the ultimate specification of this value.

domain = example.org

11.2.6 Variable sys.fqhost

The fully qualified name of the host. In order to compute this value properly, the domain name
must be defined.

fqhost = host.example.org

11.2.7 Variable sys.fstab

The location of the system filesystem (mount) table.

fstab = /etc/fstab

11.2.8 Variable sys.host

The name of the current host, according to the kernel. It is undefined whether this is qualified
or unqualified with a domain name.

host = myhost

248 Cfengine reference manual (version 3.0.0b5)

11.2.9 Variable sys.interface

The assumed (default) name of the main system interface on this host.

interface = ethO

11.2.10 Variable sys.ipv4

All four octets of the IPv4 address of the system interface named as the associative array index,
e.g. ‘$(ipv4_1[$(interface)])’.

The IP on the default interface
ipv4 = 192.168.1.101

The octets of all interfaces as an associative array

ipv4_1[1e0] = 192
= 192.168
ipv4_3[1e0] = 192.168.1

#
#
ipv4_2[1le0]
#
#

ipv4[1le0] 192.168.1.101

11.2.11 Variable sys.ipv4[eth1]

The IPv4 address of the default system interface.

E3

The IP on the default interface
ipv4d = 192.168.1.101

+*

The octets of all interfaces as an associative array

ipv4_1[1e0] = 192
= 192.168
ipv4_3[le0] = 192.168.1

#
#
ipv4_2[1le0]
#
#

ipv4[le0] 192.168.1.101

11.2.12 Variable sys.ipv4_1[eth1]

The first octet of the IPv4 address of the system interface named as the associative array index,
e.g. ‘$(ipv4_1[$(interface)])’.

Chapter 11: Special Variables 249

+*

The IP on the default interface
ipv4d = 192.168.1.101

+*+

The octets of all interfaces as an associative array

ipv4_1[1e0] = 192
= 192.168
ipv4_3[1e0] = 192.168.1

#
#
ipv4_2[1le0]
#
#

ipv4[le0] 192.168.1.101

11.2.13 Variable sys.ipv4_2[eth1]

The first two octets of the IPv4 address of the system interface named as the associative array
index, e.g. ‘$(ipv4_1[$(interface)])’.

E3

The IP on the default interface
ipv4d = 192.168.1.101

E3

The octets of all interfaces as an associative array

ipv4_1[1e0] = 192
= 192.168
ipv4_3[1le0] = 192.168.1

#
#
ipv4_2[1le0]
#
#

ipv4[1le0] 192.168.1.101

11.2.14 Variable sys.ipv4_3[ethl]

The first three octets of the IPv4 address of the system interface named as the associative array
index, e.g. ‘$(ipv4_1[$(interface)])’.

+*

The IP on the default interface
ipv4d = 192.168.1.101

£ 3

The octets of all interfaces as an associative array
ipv4_1[1e0] 192

ipv4_2[1e0] 192.168

#

#

ipv4_3[1e0] = 192.168.1
ipv4[1le0] 192.168.1.101

11.2.15 Variable sys.long_arch

250 Cfengine reference manual (version 3.0.0b5)

The long architecture name for this system kernel. This name is sometimes quite unwieldy but
can be useful for logging purposes.

long_arch = linux_x86_64_2_6_22_19_0_1_default__1_SMP_2008_10_14_22_17_43__0200

11.2.16 Variable sys.maildir

The name of the system email spool directory.

maildir = /var/spool/mail

11.2.17 Variable sys.os

The name of the operating system according to the kernel.

os = linux

11.2.18 Variable sys.ostype

Another name for the operating system.

ostype = linux_x86_64

11.2.19 Variable sys.release

The kernel release of the operating system.

release = 2.6.22.19-0.1-default

11.2.20 Variable sys.resolv

The location of the system resolver file.

resolv = /etc/resolv.conf

Chapter 11: Special Variables 251

11.2.21 Variable sys.ughost

The unqualified name of the current host. See also sys.fqghost.

ughost = myhost

11.2.22 Variable sys.workdir

The location of the cfengine work directory and cache. For the system privileged user this is
normally:

workdir = /var/cfengine
For non-privileged users it is in the user’s home directory:

workdir = /home/user/.cfagent

252 Cfengine reference manual (version 3.0.0b5)

Table of Contents

1 Cfengine 3.0.0b5 Basics....................... 1
1.1 Why change the language? i 2
1.2 Testing as a non-privilieged user......... ..., 3
1.3 The bear necessities of a cfengine 3......... 3
1.4 Familiarizing yourself 4

2 A simple crash course in concepts........................ 9
2.1 Rules are promisSeso.uuiii it 9
2.2 CONBAINETS . . .ottt e e 10
2.3 Typesin cfengine 3 ... i 11

3 How to run cfengine 3 examples......................... 13

4 A complete configuration................................. 15
4.1 What should a failsafe file contain?.............. 19
4.2 Recovery from errors in the configuration............................. 19
4.3 Recovery from errors in the software 21

5 Control promises............. i 23
5.1 common control PromisSesuuteeinnii e 23

5.1.1 bundlesequence...............ooiiiiiiiiii i 23
0.1.2 AnpUES ..o 24
0.1.3 VersSion 24
5.1.4 lastseenexpireafter............... il 25
9.1.0 output_prefix......... ... 25
5.1.6 domaim...... ..o 25
5.2 agent control promises............ ... i 26
5.2.1 MaXCOMNECTIONS. ...ttt 26
0.2.2 @bOTTClasSeS .. .vuttt it 27
5.2.3 abortbundleclasSSesttt 27
5.2.4 AddCLlasSes oot 29
0.2.5 ageNtaCCESS ...ttt 29
0.2.6 agentfacility..........oooiiiiiiiiiii 30
0.2.7 auditing...... ... 30
9.2.8 binarypaddingchar............. i 31
5.2.9 bindtointerface ... 31
0.2.10 hashpurgeottt 32
0.2.11 hashupdates............cooiiiiiiiiiii i 32
5.2.12 childlibpath. ... 33
9.2.13 defaultcopytypeot 33
0.2.14 dATYTUD. ..ot 34

5.2.15 editbinaryfilesize........... ... i 34

ii

Cfengine reference manual (version 3.0.0b5)

9.2.16 editfilesize......... ... i 35
5.2.17 exclamation...........oiiuuiiiii e 35
0.2.18 expireafter........ ... 36
0.2.19 files_SIngle _COpPY....uiiuriiiiiiiii i 36
0.2.20 files_auto_define............ ... i 37
0.2.21 fullencryption.......coiiuuiiiiiiii 37
9.2.22 hosStnameKeyYSiiuti i 38
5.2.23 difelapsed ... 38
0.2.24 Anform. 39
D.2.25 1aSESEeI. ...ttt 39
5.2.26 lastseenexpireafter............ ... il 40
5.2.27 mountfilesSyStemst 40
5.2.28 mnonalphanumfiles i 41
0.2.29 repchar....... 42
0.2.30 default_repository............coiiiiiiiiiiiiiii 42
9.2.31 secureinput 42
5.2.32 semsiblecount............ ... 43
5.2.33 sensiblesize.........oiiiiiiiii 43
0.2.34 skipidentify....... ... 44
0.2.35 suspiciousnames il 44
0.2.36 SYSLOg ..t 45
5.2.37 BAMEZOMEttt ettt 45
5.2.38 default_timeoutc.uuiiiiiiiiiiiiiiii i 45
0.2.39 Verbose..... ... 46
5.3 server control Promisesiiiiiiiiii i 46
5.3.1 cfruncommand............... . 47
5.3.2 MAXCOMNECTIONS . ..\ttt ettt et e e 47
5.3.3 denybadclocks.... ... 48
0.3.4 @lloWCOMNECES ..ottt ittt 48
0.3.5 denYCONNECES .. \u vttt 49
5.3.6 allowallCOMMNeCTtS . .uuutiii it 49
0.3.7 trustkeySfrom........ ... 50
0.3.:8 @LLOWUSETS « oottt ettt ettt e 50
9.3.9 dynamicaddresses i 51
0.3.10 skipverify o1
9.3.11 Jlogallconnections.............cooiiiiiiiiiiiiiiiiiiieann.. 51
5.3.12 logencryptedtransfers il 52
0.3.13 hostnameKeysttt 53
0.3.14 auditing........ ... o3
9.3.15 bindtointerface......... i 54
9.3.16 serverfacility.......... ... 54
5.4 monitor control PrOmMISESt eit e 55
0.4.1 forgetrate 95
9.4.2 monitorfacilityo o6
0.4.3 histogramsoiiiiiiiiii 56
.44 Bepdump 57
5.4.5 tcpdumpcommand. 57

5.5 runagent control promises............ ... i o8

9.5.1 hOStS o o8
D.5.2 POTL o 99
0.5.3 force _dpvd ... 59
0.5.4 BrustRey. ... 60
D.5.0 ENCTYPT .« ottt 60
5.5.6 background_children........... ... 61
5.5.7 max_children......... ... 62
5.5.8 output_to_file...... 62
5.6 executor control Promises..............ooiiiiiiiiiiiii i 63
0.6.1 splaytime........ ... 63
5.6.2 mailfrom.......... i 63
0.6.3 mailto 64
0.6.4 SIMEPSEIVETt 64
5.6.0 mailmaxlines.................iiiiiiiii 65
9.6.6 schedule.............iiiiiiiii 65
5.6.7 executorfacility i 65
5.6.8 execcommandl 66
5.7 knowledge control promises................ ... i 67
D.7.1 dd_prefix.... 67
9.7.2 build_directoryouiiiiiiiiii 68
D.7.3 8QL By P . o 68
5.7.4 sql_database......... ... 68
D.7.0 8QL_OWNET 69
D.7.6 89l _passSWduiiiii 69
D77 8QL_SEIVETL ...ttt 70
D.7.8 query_outputooiii 70
D.7.9 query_engine......... ... 71
0.7.10 style_sheeto 71
O.7.11 html_banneroouiiiiiiiiiii 71
0.7.12 graph outpub........c.oiiiiii 72
5.7.13 graph_directoryo 72
5.7.14 generate_manual 73
5.7.15 manual_source_directory.............. ..o, 73
5.8 reporter control promises............ ..o 74
D.8. 1 TePOTES .ttt 74
9.8.2 report_outpub...... ... 75
5.8.3 build_directoryciiiiiiiiiii (0]
0.84 auto_scaling..............iiiiiiiiii 76
D.8.0 @TTOT_DATS ..\ttt 76
5.8.6 TIME_STAMPS ...\ttt 7
0.8.7 query_engine......... ... 78
0.8.8 style_sheett 78
0.8.9 html_banneriiiiiiii i 78

iii

iv Cfengine reference manual (version 3.0.0b5)

6 Bundles of common......... 81
6.1 VarS PrOMUESES « . ottt ettt e 81
6.1.1 string...... ... 81
6.1.2 Ant. ... 82
6.1.3 real ... 82
6.1.4 SList ..o 83
6.1.0 AList ..o 83
6.1.6 Tlist ... 84
6.1.7 POLACY ettt 84
6.2 CLlasSSeS PIOIMUISES . . oottt ittt ettt 85
6.2, OT . 85
6.2.2 and. 85
6.2.3 ROT ... 86
6.2.4 ISt ... 86
6.2.0 eXPressSion 87
6.2.6 MOt 87
6.3 TepOorts PrOMUSES. 87
6.3.1 dastseen....... ... 87
6.3.2 dntermittency......... ... 88
6.3.3 showstate....... i 88
6.3.4 printfile (compound body)c..coiiiiiiiiiii 91
6.4 * promises in ‘agent’ 92
6.4.1 action (compound body)....... ... 92
6.4.2 classes (compound body)........coooiiiiiiiiiiii 97
6.4.3 AfVarclass ... 101
6.4.4 commENt..... 102
6.5 * promises in ‘edit_line’ i 102
6.5.1 select_region (compound body)c.ooiiL 103

7 Bundlesofagent............... 105
7.1 commands promises in ‘agent’............. ... i 105
0 0 - o~ 106
7.1.2 contain (compound body) 107
713 module........oiiii 111
7.2 files promises in ‘agent’ 113
7.2.1 file_select (compound body).........ccooiiiiiiiiiiiiii... 114
7.2.2 copy_from (compound body) 121
7.2.3 link_from (compound body)......... ... 131
7.2.4 perms (compound body)........ ... 135
7.2.5 changes (compound body)t 137
7.2.6 delete (compound body).........ccooiiiiiiiii 139
7.2.7 rename (compound body)..... ... 140
T7.2.8 TeposSitory ... 142
729 edit_line ... 143
7210 edit_xml ...t 143
7.2.11 edit_defaults (compound body)coiiiiiiiii.. 143
7.2.12 depth_search (compound body) 144

T.2.13 BOUCH ..ottt 148

T.2.14 Create. e 149

7.2.15 move_obstructions.......... ... i 149
7.2.16 transformer........... ... 150
7217 pathtypeo 150
7.2.18 acl (compound body) i 151
7.3 insert_lines promises in ‘edit_line’ it 152
7.3.1 location (compound body) ..., 153
7.3.2 ANSert_BYpPeot 155
7.3.3 insert_select (compound body) 155
734 expand_SCalarsS.........oouuiiiiiiiiiii i 158
7.4 field_edits promises in ‘edit_line’............oiiiiiiiiiiiaianan. 159
7.4.1 edit_field (compound body).........c.ocoiiiiiiiiiiiiiii. 161
7.5 replace_patterns promises in ‘edit_line’............... 164
7.5.1 replace_with (compound body)................ ... 165
7.6 delete_lines promises in ‘edit_line’ccoiiiiiiia... 166
7.6.1 mot_matching........... i 166
7.6.2 delete_select (compound body)cooooiiiiiiii. 167
7.7 interfaces promises in ‘agent’.............. ool 170
7.7.1 tcp_ip (compound body)..... ... 170
7.8 methods promises in ‘agent’...... i 172
7.8.1 usebundlet 173
7.9 packages promises in ‘agent’.........o 174
7.9.1 install (compound body) ... 175
7.10 processes promises in ‘agent’.......... ... i, 175
7101 signals. ... 179
7.10.2 ProcesS_StopP......iiuiiiiiii 180
7.10.3 process_count (compound body) 181
7.10.4 process_select (compound body)................. 182
7.10.5 restart_classS...........oiiiiiiiiii 188
7.11 storage promises in ‘agent’......... i 189
7.11.1 mount (compound body).........coooiiiiiiiiiii 190
7.11.2 volume (compound body)c.oiiiiiiiiiii 193
Bundles of server......... 197
8.1 access promises in ‘Server’ 197
8.1.1 Access Exampleo 198
8.1.2 admIt vttt 198
B.1.3 deny ... 199
8.1.4 MapToOt 199
8.1.5 dfencrypted......... ... 200
8.2 roles promises in ‘SErvVer’l 200

8.2.1 authorize 201

vi Cfengine reference manual (version 3.0.0b5)

9 Bundles of knowledge ... i 203
9.1 topics promises in ‘knowledge’............ ... il 203
9.1.1 association (compound body)..................oi 204
9.1.2 comment 205
9.2 occurrences promises in ‘knowledge’............l 206
9.2.1 TepPreSents 206
9.2.2 representation.............oiiiiiiiiiii 207
10 Special functions 209
10.1 Function accessedbefore i 209
10.2 Function accumulated e 209
10.3 Function ago 211
10.4 Function canonifyo i 212
10.5 Function changedbefore......... 212
10.6 Function classmatch oo i 213
10.7 Function execresult i i 214
10.8 Function filleexistsovuuiii e 215
10.9 Function getindiceso 216
10.10 Function getgid. ... 216
10.11 Function getuido 217
10.12 Function groupexistscooiiiiiiiiiii i 218
10.13 Function hash ... e 219
10.14 Function hostrange i i 220
10.15 Function Iprangeoouuuuiitot i 220
10.16 Function irange.couuuitott i 221
10.17 Function iSdir 222
10.18 Function isgreaterthan......... i i 222
10.19 Function islessthan i 223
10.20 Function islink ... 224
10.21 Function isnewerthan.......... i 225
10.22 Function isplain 226
10.23 Function isvariable i e 227
10.24 Function NOW. e 227
10.25 Function Ono..uiii i 228
10.26 Function randomint i 228
10.27 Function readfile 229
10.28 Function readintarray 229
10.29 Function readintlist........ 230
10.30 Function readrealarrayot 231
10.31 Function readreallist......... .. .o i i 232
10.32 Function readstringarray ... 232
10.33 Function readstringlist......... ... i 233
10.34 Function readtCpottt 235
10.35 Function regarrayo.ueoonue it 236
10.36 Function Tegempoovnn et e 237
10.37 Function reglist. 238
10.38 Function Teturnszeroouuuuuieeiiiiiiiieeennnnnnn. 238

10.39 Function ITANgeouiiin e 239

10.40 Function selectServerso 239
10.41 Function Strempuee oo 241
10.42 Function usemodule 241
10.43 Function USerexXistsutteiinn e 242
11 Special Variables 245
11.1 Variable context constol 245
11.1.1 Variable const.dollar........... i i, 245
11.1.2 Variable const.endl 245
11.1.3 Variable const.n 245
11.1.4 Variable const.r ... 245
11.2 Variable context Sys. ...t 246
11.2.1 Variable sys.arch o 246
11.2.2 Variable sys.cdate ... 246
11.2.3 Variable sys.class...... ..o 246
11.2.4 Variable sys.date....... ... i 247
11.2.5 Variable sys.domain ... 247
11.2.6 Variable sys.fqhost o i 247
11.2.7 Variable sys.fstab........ o 247
11.2.8 Variable sys.host ... i 247
11.2.9 Variable sys.interfaceo i i 248
11.2.10 Variable Sysipv4t 248
11.2.11 Variable sys.ipv4fethl]...... ... 248
11.2.12 Variable sys.ipv4_1fethl]....... ... 248
11.2.13 Variable sys.ipv4_2[ethl]........o i 249
11.2.14 Variable sys.ipv4_3[ethl]........ i 249
11.2.15 Variable sys.long_arch......... i i 249
11.2.16 Variable sys.maildiro i 250
11.2.17 Variable S¥S.08ttt 250
11.2.18 Variable SyS.0Stypeoviuiii i 250
11.2.19 Variable sys.release. 250
11.2.20 Variable sys.resolv. ... i 250
11.2.21 Variable sys.uqhost.......o i 251
11.2.22 Variable sys.workdir.........o i 251

vii

viii Cfengine reference manual (version 3.0.0b5)

	Cfengine 3.0.0b5 Basics
	Why change the language?
	Testing as a non-privilieged user
	The bear necessities of a cfengine 3
	Familiarizing yourself

	A simple crash course in concepts
	Rules are promises
	Containers
	Types in cfengine 3

	How to run cfengine 3 examples
	A complete configuration
	What should a failsafe file contain?
	Recovery from errors in the configuration
	Recovery from errors in the software

	Control promises
	common control promises
	bundlesequence
	inputs
	version
	lastseenexpireafter
	output_prefix
	domain

	agent control promises
	maxconnections
	abortclasses
	abortbundleclasses
	addclasses
	agentaccess
	agentfacility
	auditing
	binarypaddingchar
	bindtointerface
	hashpurge
	hashupdates
	childlibpath
	defaultcopytype
	dryrun
	editbinaryfilesize
	editfilesize
	exclamation
	expireafter
	files_single_copy
	files_auto_define
	fullencryption
	hostnamekeys
	ifelapsed
	inform
	lastseen
	lastseenexpireafter
	mountfilesystems
	nonalphanumfiles
	repchar
	default_repository
	secureinput
	sensiblecount
	sensiblesize
	skipidentify
	suspiciousnames
	syslog
	timezone
	default_timeout
	verbose

	server control promises
	cfruncommand
	maxconnections
	denybadclocks
	allowconnects
	denyconnects
	allowallconnects
	trustkeysfrom
	allowusers
	dynamicaddresses
	skipverify
	logallconnections
	logencryptedtransfers
	hostnamekeys
	auditing
	bindtointerface
	serverfacility

	monitor control promises
	forgetrate
	monitorfacility
	histograms
	tcpdump
	tcpdumpcommand

	runagent control promises
	hosts
	port
	force_ipv4
	trustkey
	encrypt
	background_children
	max_children
	output_to_file

	executor control promises
	splaytime
	mailfrom
	mailto
	smtpserver
	mailmaxlines
	schedule
	executorfacility
	execcommand

	knowledge control promises
	id_prefix
	build_directory
	sql_type
	sql_database
	sql_owner
	sql_passwd
	sql_server
	query_output
	query_engine
	style_sheet
	html_banner
	graph_output
	graph_directory
	generate_manual
	manual_source_directory

	reporter control promises
	reports
	report_output
	build_directory
	auto_scaling
	error_bars
	time_stamps
	query_engine
	style_sheet
	html_banner

	Bundles of common
	vars promises
	string
	int
	real
	slist
	ilist
	rlist
	policy

	classes promises
	or
	and
	xor
	dist
	expression
	not

	reports promises
	lastseen
	intermittency
	showstate
	printfile (compound body)

	* promises in agent
	action (compound body)
	classes (compound body)
	ifvarclass
	comment

	* promises in edit_line
	select_region (compound body)

	Bundles of agent
	commands promises in agent
	args
	contain (compound body)
	module

	files promises in agent
	file_select (compound body)
	copy_from (compound body)
	link_from (compound body)
	perms (compound body)
	changes (compound body)
	delete (compound body)
	rename (compound body)
	repository
	edit_line
	edit_xml
	edit_defaults (compound body)
	depth_search (compound body)
	touch
	create
	move_obstructions
	transformer
	pathtype
	acl (compound body)

	insert_lines promises in edit_line
	location (compound body)
	insert_type
	insert_select (compound body)
	expand_scalars

	field_edits promises in edit_line
	edit_field (compound body)

	replace_patterns promises in edit_line
	replace_with (compound body)

	delete_lines promises in edit_line
	not_matching
	delete_select (compound body)

	interfaces promises in agent
	tcp_ip (compound body)

	methods promises in agent
	usebundle

	packages promises in agent
	install (compound body)

	processes promises in agent
	signals
	process_stop
	process_count (compound body)
	process_select (compound body)
	restart_class

	storage promises in agent
	mount (compound body)
	volume (compound body)

	Bundles of server
	access promises in server
	Access Example
	admit
	deny
	maproot
	ifencrypted

	roles promises in server
	authorize

	Bundles of knowledge
	topics promises in knowledge
	association (compound body)
	comment

	occurrences promises in knowledge
	represents
	representation

	Special functions
	Function accessedbefore
	Function accumulated
	Function ago
	Function canonify
	Function changedbefore
	Function classmatch
	Function execresult
	Function fileexists
	Function getindices
	Function getgid
	Function getuid
	Function groupexists
	Function hash
	Function hostrange
	Function iprange
	Function irange
	Function isdir
	Function isgreaterthan
	Function islessthan
	Function islink
	Function isnewerthan
	Function isplain
	Function isvariable
	Function now
	Function on
	Function randomint
	Function readfile
	Function readintarray
	Function readintlist
	Function readrealarray
	Function readreallist
	Function readstringarray
	Function readstringlist
	Function readtcp
	Function regarray
	Function regcmp
	Function reglist
	Function returnszero
	Function rrange
	Function selectservers
	Function strcmp
	Function usemodule
	Function userexists

	Special Variables
	Variable context const
	Variable const.dollar
	Variable const.endl
	Variable const.n
	Variable const.r

	Variable context sys
	Variable sys.arch
	Variable sys.cdate
	Variable sys.class
	Variable sys.date
	Variable sys.domain
	Variable sys.fqhost
	Variable sys.fstab
	Variable sys.host
	Variable sys.interface
	Variable sys.ipv4
	Variable sys.ipv4[eth1]
	Variable sys.ipv4_1[eth1]
	Variable sys.ipv4_2[eth1]
	Variable sys.ipv4_3[eth1]
	Variable sys.long_arch
	Variable sys.maildir
	Variable sys.os
	Variable sys.ostype
	Variable sys.release
	Variable sys.resolv
	Variable sys.uqhost
	Variable sys.workdir

