
Virtualization and Cloud Support in CFEngine
A CFEngine Special Topics Handbook

CFEngine AS

� �
CFEngine Nova integrates simply with existing frameworks for virtualization and cloud com-
puting, allowing you to apply convergent ‘self-healing’ methods to the deployment and man-
agement of virtual machines running anywhere.
 	

Copyright c© 2010 CFEngine AS

Virtualization 1

Virtualization

i

Table of Contents

Virtualization . 1

3

What are virtualization and cloud computing?

Virtualization refers to the ability to run multiple host instances on a single physical node.
Cloud computing typically refers to what is called ‘platform as a service’, or deployment of
virtual machines on demand, often as an online service.

In this document, virtualization support refers specifically to hypervisor technologies sup-
ported by the open source library layer libvirt project, which includes interfaces for Xen, KVM,
Vmware-ESX, and more. CFEngine thus integrates freely with other tools based on this library,
such as virsh and the Virtual Manager graphical user interface.

Why build virtualization support into CFEngine?

Virtualization engines (usually called supervisors or hypervisors) are seeing an explosion of
development. They exist as a number of projects in various stages of maturity. The libvirt
project was designed as an integration layer based on an XML specification.

The tools for management are still quite primitive and require much manual work. CFEngine
has a unique role to play in maintaining desired state in virtual machine systems.

In the cloud, virtual machines may be rented from remote commercial providers, and man-
aged as disposable resources. Convergent or ‘self-healing’ maintenance is an essential method
for managing machines that are geographically remote and awkward to access, e.g. machines
in other time-zones that it is impractical to monitor by legacy methods.

What can CFEngine do with virtual machines?

The simple answer is: anything that libvirt can do, with added convergence to a desired state:
that means, creating, destroying and starting and stopping machines. By starting virtual
machines through CFEngine, you can be sure that a given ‘virtual guest’ is running on one
and only one physical host, thus avoiding conflicts that are difficult to detect with centralized
systems.

CFEngine does not support everything that libvirt does – it offers a simplified interface that
is meant for robustness, stability and hands-free repeatability.

� �
CFEngine does not use libvirt’s TLS based web communication layer. It manages every

host as an independent entity, in typical CFEngine fashion, using CFEngine’s own distributed
cooperation to provide thje implicit communication. CFEngine does not currently support
so-called ‘live migration’ of virtual machines.
 	

Guest environments promises

A virtual machine is one example of what CFEngine calls an ‘guest environment’. You can
promise to create (and host) an guest environment with certain attributes, just as you can
promise to host a file or a process. Here is a simple example:

4 Virtualization and Cloud Support in CFEngine

body common control

–

bundlesequence =¿ – ”my˙vm˙cloud” ˝;

˝

###

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml,

environment˙type =¿ ”xen”,

environment˙host =¿ ”my˙physical˙computer”, # ipv4˙10˙1˙2˙3

environment˙state =¿ ”create”;

˝

###

body environment˙resources virt˙xml

–

env˙spec˙file =¿ ”/srv/xen/centos5-libvirt-create.xml”;

˝

• The promiser (in this case ‘myUbuntu’) is the name of the virtual machine. This should
be a unique identifier, as we need to be able to refer to machines uniquely.

• The guest environment host is the name of the computer that is the host for the virtual
machine.

• Normally when we want to ensure something on a machine, we use classes to decide
where the promise will be made. For guest environments, however, we need to make
promises about the uniqueness of the machine. When you make a machine instance you
normally want it to be running on one and only one host. So you want every machine to
make a promise. On the guest environment’s host, you want to promise that the guest
environment is running, and on every other machine you want to promise that it is not.
In CFEngine, you simply include a unique class belonging to host in the promise using
environment˙host and CFEngine assumes that rest. Unique classes might include

• Hostname class e.g. myhost˙CFEngine˙com

• IP address class e.g. ipv4˙123˙456˙789˙123

An alternative way to write this example is to quote the XML specification in CFEngine
directly. This has a few advantages: you can re-use the data and use it as a template, filling
in CFEngine-variables. You can thus adapt the configuration using CFEngine’s classes.

5

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml(”$(this.promiser)”),

environment˙type =¿ ”xen”,

environment˙host =¿ ”myphysicalcomputer”;

environment˙state =¿ ”create”

˝

###

body environment˙resources virt˙xml(host)

–

env˙spec˙file =¿

”¡domain type=’xen’¿

¡name¿$(host)¡/name¿

¡os¿

¡type¿linux¡/type¿

¡kernel¿/var/lib/xen/install/vmlinuz-ubuntu10.4-x86˙64¡/kernel¿

¡initrd¿/var/lib/xen/install/initrd-vmlinuz-ubuntu10.4-x86˙64¡/initrd¿

¡cmdline¿ kickstart=http://example.com/myguest.ks ¡/cmdline¿

¡/os¿

¡memory¿131072¡/memory¿

¡vcpu¿1¡/vcpu¿

¡devices¿

¡disk type=’file’¿

¡source file=’/var/lib/xen/images/$(host).img’/¿

¡target dev=’sda1’/¿

¡/disk¿

¡interface type=’bridge’¿

¡source bridge=’xenbr0’/¿

¡mac address=’aa:00:00:00:00:11’/¿

¡script path=’/etc/xen/scripts/vif-bridge’/¿

¡/interface¿

¡graphics type=’vnc’ port=’-1’/¿

¡console tty=’/dev/pts/5’/¿

¡/devices¿

¡/domain¿

”;

˝

You should consult the libvirt documentation for the details of the XML specification.

6 Virtualization and Cloud Support in CFEngine

Virtualization types supported

CFEngine currently supports virtualization only through libvirt, so it supports those technolo-
gies that libvirt supports. Currently this includes most popular technologies. You must choose
the type of monitor that is to be responsible for keeping the guest environment promise. In
CFEngine, you should choose between a machine environment or network environment of the
following types:

xen A Xen hypervisor virtual domain.

kvm A KVM hypervisor virtual domain.

esx A VMware hypervisor virtual domain.

test The libvirt test-hypervisor virtual domain.

xen˙net A Xen hypervisor virtual network.

kvm˙net A KVM hypervisor virtual network

esx˙net An ESX/VMWare hypervisor virtual network.

test˙net The test hypervisor virtual network.

zone A Solaris zone (future development)

ec2 An Amazon EC2 instance (future development)

eucalyptus

A Eucalyptus instance (future development)

Once again, you must consult the libvirt documentation for details.

Distinct states

Libvirt recognizes a number of distinct states are transliterated into CFEngine as

create Build and start an guest environment.

delete Halt and remove runtime resources associated with an guest environment.

running An existing guest environment is in a running state.

suspended

An existing guest environment is in a ‘paused’ state.

down An existing guest environment is in a halted state.

The default promised state is for a machine to be running wherever the environment˙host
class is true, and suspended or down elsewhere.

7

Example deployment

Prerequisites: you need to make a ‘disk image’ for the machine, or a virtual disk of blocks
that can be allocated. This image does not have to contain any data, it will simply as a block
device for the VM. You can then install it by booting the machine from a network image, like
a PXE/kickstart installation.

If you want to allocate disk blocks as the file grows, you can create a file with a hole. The
following command will creates a file of 2048MB, but the actual data blocks are allocated in
a lazy fashion:

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M seek=2047 count=1

To reserve all the data blocks right away:

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M count=2048

Libvirt uses an XML file format that cannot be circumvented. CFEngine promises to honour
the promises that are expressed in this file, as in the examples above. You need to find out
about this file format from the libvirt website. To get CFEngine to honour these promises,
you point it to the specification that it should promise using spec˙file.

You need to set up a network for virtual machines to communicate with the outside world.
This can also be done with CFEngine, using the network promise types to build a bridge into
a virtual network.

Then just run CFEngine to start, stop or manage the guest environments on each localhost.
Run in verbose mode to see how CFEngine maintains the states convergently.

cf-agent -v

Appendix A: Virtualization Examples 9

Appendix A Virtualization Examples

Virtualized host examples

###

body common control

–

bundlesequence =¿ –”my˙vm˙cloud”˝;

host˙licenses˙paid =¿ ”2”;

˝

###

bundle agent my˙vm˙cloud

–

guest˙environments:

linux::

”bishwa-kvm1”

comment =¿ ”Keep this vm suspended”,

environment˙resources =¿ myresources,

environment˙type =¿ ”kvm”,

environment˙state =¿ ”suspended”,

environment˙host =¿ ”ubuntu”;

”bishwa-kvm2”

comment =¿ ”Keep this vm running”,

environment˙resources =¿ myresources,

environment˙type =¿ ”kvm”,

environment˙state =¿ ”running”,

environment˙host =¿ ”ubuntu”;

”bishwa-kvm3”

comment =¿ ”Power down this VM”,

environment˙resources =¿ myresources,

environment˙type =¿ ”kvm”,

environment˙state =¿ ”down”,

environment˙host =¿ ”ubuntu”;

”bishwa-kvm4”

comment =¿ ”Delete this VM”,

10 Virtualization and Cloud Support in CFEngine

environment˙resources =¿ myresources,

environment˙type =¿ ”kvm”,

environment˙state =¿ ”delete”,

environment˙host =¿ ”ubuntu”;

”bishwa-kvm5”

comment =¿ ”Keep this vm running”,

environment˙resources =¿ myresources,

environment˙type =¿ ”kvm”,

environment˙state =¿ ”running”,

environment˙host =¿ ”ubuntu”;

˝

###

body environment˙resources myresources

–

env˙cpus =¿ ”2”;

#env˙memory =¿ ”512”; # in KB

#env˙disk =¿ ”2048”; # in MB

˝

Virtual network example

body common control

–

bundlesequence =¿ –”my˙vm˙cloud”˝;

host˙licenses˙paid =¿ ”2”;

˝

###

bundle agent my˙vm˙cloud

–

guest˙environments:

linux::

”cfvrnet1”

comment =¿ ”Create a virtual network from given xml file”,

environment˙resources =¿ virt˙xml(”$(this.promiser)”),

environment˙type =¿ ”kvm˙net”,

Appendix A: Virtualization Examples 11

environment˙state =¿ ”create”,

environment˙host =¿ ”ubuntu”;

˝

###

body environment˙resources virt˙xml(name)

–

env˙spec˙file =¿”

”

¡network¿

¡name¿$(name)¡/name¿

¡bridge name=’virbr1’ /¿

¡forward mode=’route’ dev=’eth0’/¿

¡ip address=’192.168.123.1’ netmask=’255.255.255.0’¿

¡dhcp¿

¡range start=’192.168.123.2’ end=’192.168.123.254’ /¿

¡/dhcp¿

¡/ip¿

¡/network¿

”;

˝

