
Monitoring and Reporting
A CFEngine Special Topics Handbook

CFEngine AS

� �
A significant capability of CFEngine Nova over previous versions of CFEngine is the existence
of automated system reporting. CFEngine collects history, state and change data about
computers and ties them together.

The CFEngine strategy is to replace conventional CMDBs with a more scalable and flexible
approach to information mining over the coming years. Commercial versions of CFEngine are
designed to bring state of the art methods to the problem of information management for IT
operations.

Users of CFEngine’s Community Edition can use in-built logging and reporting functions to
simulate some aspects of these reports, by applying simple principles with work and ingenuity.
 	

Copyright c© 2009 CFEngine AS

i

Table of Contents

What are monitoring and reporting? . 1
Should monitoring and configuration be separate? . 1
Reporting in CFEngine . 1
Standard reports in CFEngine . 2
CFEngine output levels . 3
Creating custom reports – all versions . 3
Including data in reports . 5
Creating custom logs . 7
Redirecting output to logs . 9
Change auditing - the all seeing eye . 9
Cheaper options - tripwires . 10
Commercial edition measurements promises . 11
Hub Reporting . 11
Mission Portal access to the hub . 12
Command line access to the hub . 12
Example command hub searches . 13

1

What are monitoring and reporting?

Monitoring is the sampling of system variables at regular intervals in order to present an
overview of actual changes taking place over time. Monitoring data are often presented as
extensive views of moving-line time series. Monitoring has the ability to detect anomalous
behaviour by comparing past and present.

The term reporting is usually taken to mean the creation of short summaries of specific
system properties suitable for management. System reports describe both promises about the
system, such as compliance, discovered changes and faults.

The challenge of both these activities is to compare intended or promised, behaviour with
the actual observed behaviour of the system.

Should monitoring and configuration be separate?

The traditional view of IT operations is that configuration, monitoring and reporting are three
different things that should not be joined. Traditionally, all three have been independent
centralized processes. This view has emerged historically, but it has a major problem. Humans
are needed to glue these parts back together.

Monitoring as an independent activity is inherently non-scalable. When numbers of hosts
grow beyond a few thousands, centralized monitoring schemes fail to manage the information.
Tying configuration (and therefore repair) to monitoring at the host level is essential for the
effective management of large and distributed data facilities. CFEngine foresaw this need in
1998, with its Computer Immunology initiative, and continues to develop this strategy.

CFEngine’s approach is to focus on scalability. The commercial editions of CFEngine
provide what meaningful information they can in a manner that can be scaled to tens of
thousands of machines.

Reporting in CFEngine

� �
If you have regular reporting needs, we recommend using our commercially supported version
of CFEngine (CFEngine Nova or above), as you will save considerable time and resources
in programming, and you will have access to the latest developments through the software
subscription.
 	

No promises made in CFEngine imply automatic aggregation of data to a central loca-
tion. In commercial CFEngine versions, e.g. CFEngine Nova, an optimized aggregation of
standardized reports is provided, but the ultimate decision to aggregate must be yours.

Monitoring and reporting capabilities in CFEngine depend on the software version include:

• Community Edition: Basic output to file or logs may be customized on a per-promise ba-
sis. Users can design their own log and report formats, but data processing and extraction
from CFEngine’s embedded databases must be scripted by the user.

• Nova: In addition to community features, Nova/Enterprise provides automated extraction
of data from CFEngine’s self-learning agents, and the generation of a standard set of

2 Reporting

reports in text, HTML or XML formats. Nova summarizes distributed data and provides
simple compression and aggregation of these summaries. Finally summaries are tied into
a knowledge map or semantic index for browsing by IT operations. Command line tools
in cf-report are also available for Nova users to browse network-wide data.

Standard reports in CFEngine

The following list of reports are only available in full in commercial editions of CFEngine. Some
sample reports are provided in the Community Edition.

Available patches report
Patches already installed on system if available.

Classes report
User defined classes observed on the system – inventory data.

Compliance report
Total summary of host compliance, all promises aggregated over time.

File changes report
Latest observed changes to system files with time discovered.

File diffs report
Latest observed differences to system files, in a simple diff format.

Hashes report
File hash values measured (change detection).

Installed patches report
Patches not yet installed, but published by vendor if available.

Installed software report
Software already installed on system if available.

Lastseen report
Time and frequency of communications with peers, host reliability.

Micro-audit report
Generated by CFEngine self-auditing. This report is not aggregated.

Monitor summary report
Pseudo-real-time measurement of time series data.

Performance report
Time cost of verifying system promises.

Promise report
Per-promise average compliance report over time.

Promises not kept report
Promises that were recently un-kept.

Promises repaired report
Promises that were recently kept by repairing system state.

Setuid report
Known setuid programs found on system.

3

Variables report
Current variable values expanded on different hosts.

CFEngine output levels

CFEngine’s default behaviour is to report to the console (known as standard output). It’s
default behaviour is to report nothing except errors that are judged to be of a critical nature.

By using CFEngine with the inform flag:

cf-agent -I

cf-agent --inform

you can alter the default to report on action items (actual changes) and warnings.

By using CFEngine with the verbose flag:

cf-agent -v

cf-agent --verbose

you can alter the default to report all of its thought-processes. You should not interpret a
message that only appears in CFEngine’s verbose mode as an actual error, only as information
that might be relevant to decisions being made by the agent.

Creating custom reports – all versions

CFEngine allows you to use reports promises to make reports of your own. A simple example
of this is shown below.

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

#

bundle agent test

–

reports:

cfengine˙3::

”$(sys.date),This is a report”

report˙to˙file =¿ ”/tmp/test˙log”;

˝

We can apply this idea to make more useful custom reports. In this example, the agent tests
for certain software package and creates a simple HTML file of existing software.

body common control

–

bundlesequence =¿ – ”test” ˝;

4 Reporting

˝

#

bundle agent test

–

vars:

”software” slist =¿ – ”gpg”, ”zip”, ”rsync” ˝;

classes:

”no˙report” expression =¿ fileexists(”/tmp/report.html”);

”have˙$(software)” expression =¿ fileexists(”/usr/bin/$(software)”);

reports:

no˙report::

”

¡html¿

Name of this host is: $(sys.host)¡br¿

Type of this host is: $(sys.os)¡br¿

”

report˙to˙file =¿ ”/tmp/report.html”;

#

”

Host has software $(software)¡br¿

”

ifvarclass =¿ ”have˙$(software)”,

report˙to˙file =¿ ”/tmp/report.html”;

#

”

¡/html¿

”

report˙to˙file =¿ ”/tmp/report.html”;

˝

The outcome of this promise is a file called ‘/tmp/report.html’ containing output like this:

¡html¿

5

Name of this host is: atlas¡br¿

Type of this host is: linux¡br¿

Host has software gpg¡br¿

Host has software zip¡br¿

Host has software rsync¡br¿

¡/html¿

The mechanism shown above, can clearly be used to create a wide variety of report formats,
but it requires a lot of coding and maintenance by the user.� �

CFEngine Nova simplifies this kind of report generation by enabling and updating many
out-of-the-box reports directly from the cf-report agent.
 	

Including data in reports

CFEngine generates information internally that you might want to use in reports. For example,
the agent cf-agent interfaces with the local light-weight monitoring agent cf-monitord so
that system state can be reported simply:

body common control

–

bundlesequence =¿ – ”report” ˝;

˝

###

bundle agent report

–

reports:

linux::

”/etc/passwd except $(const.n)”

showstate =¿ – ”otherprocs”, ”rootprocs” ˝;

˝

A corollary to this is that you can get CFEngine to report system anomalies.

reports:

6 Reporting

rootprocs˙high˙dev2::

”RootProc anomaly high 2 dev on $(mon.host) at approx $(mon.env˙time)

measured value $(mon.value˙rootprocs)

average $(mon.average˙rootprocs) pm $(mon.stddev˙rootprocs)”

showstate =¿ – ”rootprocs” ˝;

entropy˙www˙in˙high&anomaly˙hosts.www˙in˙high˙anomaly::

”High entropy incoming www anomaly on $(mon.host) at $(mon.env˙time)

measured value $(mon.value˙www˙in)

average $(mon.average˙www˙in) pm $(mon.stddev˙www˙in)”

showstate =¿ – ”incoming.www” ˝;

This produces standard output of the form:� �
R: State of otherprocs peaked at Tue Dec 1 12:12:21 2009

R: The peak measured state was q = 98:

R: Frequency: [kjournald] —** (2/98)

R: Frequency: [pdflush] —** (2/98)

R: Frequency: /var/cfengine/bin/cf-execd—** (2/98)

R: Frequency: COMMAND —* (1/98)

R: Frequency: init [5] —* (1/98)

R: Frequency: [kthreadd] —* (1/98)

R: Frequency: [migration/0] —* (1/98)

R: Frequency: [ksoftirqd/0] —* (1/98)

R: Frequency: [events/0] —* (1/98)

R: Frequency: [khelper] —* (1/98)

R: Frequency: [kintegrityd/0] —* (1/98)
 	
Finally, you can quote lines from files in your data for convenience.

body common control

–

bundlesequence =¿ – ”report” ˝;

˝

###

bundle agent report

–

7

reports:

linux::

”/etc/passwd except $(const.n)”

printfile =¿ pr(”/etc/passwd”,”5”);

˝

##

body printfile pr(file,lines)

–

file˙to˙print =¿ ”$(file)”;

number˙of˙lines =¿ ”$(lines)”;

˝

This produces output of the form� �
R: /etc/passwd except

R: at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash

R: avahi:x:103:105:User for Avahi:/var/run/avahi-daemon:/bin/false

R: beagleindex:x:104:106:User for Beagle indexing:/var/cache/beagle:/bin/bash

R: bin:x:1:1:bin:/bin:/bin/bash

R: daemon:x:2:2:Daemon:/sbin:/bin/bash
 	
Creating custom logs

Logs can be attached to any promise. In this example, an executed shell command logs a
message to the standard output. CFEngine recognizes the stdout filename for Standard
Output, in the Unix/C standard manner.

bundle agent test

–

commands:

”/tmp/myjob”,

action =¿ logme(”executor”);

˝

##

8 Reporting

body action logme(x)

–

log˙repaired =¿ ”stdout”;

logstring =¿ ” -¿ Started the $(x) (success)”;

˝

In this next example, a file creation promise logs different outcomes (success or failure) to
different log files.

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

bundle agent test

–

vars:

”software” slist =¿ – ”/root/xyz”, ”/tmp/xyz” ˝;

files:

”$(software)”

create =¿ ”true”,

action =¿ logme(”$(software)”);

˝

#

body action logme(x)

–

log˙kept =¿ ”/tmp/private˙keptlog.log”;

log˙failed =¿ ”/tmp/private˙faillog.log”;

log˙repaired =¿ ”/tmp/private˙replog.log”;

log˙string =¿ ”$(sys.date) $(x) promise status”;

˝

This generates three different logs with outputs in of the form:� �
atlas$ more /tmp/private˙keptlog.log

Sun Dec 6 11:58:16 2009 /tmp/xyz promise status

Sun Dec 6 11:58:43 2009 /tmp/xyz promise status
 	

9

Redirecting output to logs

CFEngine interfaces with the system logging tools in different ways. Syslog is the default
log for Unix-like systems, while the event logger is the default on Windows. You may choose
to copy a fixed level of CFEngine’s standard screen messaging to the system logger on a
per-promise basis.

body common control

–

bundlesequence =¿ – ”one” ˝;

˝

bundle agent one

–

files:

”/tmp/xyz”

create =¿ ”true”,

action =¿ log;

˝

body action log

–

log˙level =¿ ”inform”;

˝

Change auditing - the all seeing eye

Total auditing of a system is a surprisingly difficult thing to do, and it is extremely resource
intensive. The followers of an audit trail are often paranoid by nature and are seldom satisfied
with the level of detail they find. However, the times we really need an audit are rare, but the
cost is ever present. The price of certainty is high.� �

Spend a moment considering this: if you want to describe every change of state that
happens on a computer, then you need to remember old state and compare it to new state.
Then you have to record the differences. So you need more than the entire size of your
computer’s normal resources to do this. Your storage efficiency will always be less than 50%
and your processing efficiency will be less than 50% on every audited item. Is this worth the
effort? Perhaps your resources would be better spent keeping targeted backups and simply
rebuilding contaminated systems.
 	

Switch on auditing like this:

body agent control

–

10 Reporting

auditing =¿ ”true”;

˝

If you decide to go for full auditing, CFEngine will not collect and centralize the reports as
they will be too large for this to be a scalable operation. Still, you can view them in a web
browser on the local host, or copy them manually to a suitable location.

Cheaper options - tripwires

Doing a change detection scan is a convergent process, but it can still detect changes and
present the data in a compressed format that is often more convenient than auditing. The
result is less precise, but there is a trade-off between precision and cost.

To make a change tripwire, you use a ‘files’ promise, something like this:

body common control

–

bundlesequence =¿ – ”testbundle” ˝;

˝

#

bundle agent testbundle

–

files:

”/home/mark/tmp” -¿ ”me”

changes =¿ scan˙files,

depth˙search =¿ recurse(”inf”);

˝

library code ...

body changes scan˙files

–

report˙changes =¿ ”all”;

update˙hashes =¿ ”true”;

˝

body depth˙search recurse(d)

–

depth =¿ ”$(d)”;

˝

In CFEngine Nova, reports of the following form are generated when these promises are
kept by the agent:

11

� �
Change detected File change

Sat Dec 5 18:27:44 2009 group for /tmp/testfile changed 100 -¿ 0

Sat Dec 5 18:27:44 2009 /tmp/testfile

Sat Dec 5 18:20:45 2009 /tmp/testfile
 	
These reports are generated automatically in CFEngine Nova, and are integrated into the web
browsable knowledge map. Community edition users have to extract the data and create these
themselves.

Commercial edition measurements promises

In commercial versions of CFEngine, you can extract data from the system in more sophisti-
cated ways from files or pipes, using Perl Compatible Regular Expressions to match text. The
cf-monitord agent is responsible for processing measurement promises.

In this example, we count lines matching a pattern in a file. You might want to scan a log
for instances of a particular message and trace this number over time.

bundle monitor watch

–

measurements:

”/tmp/file”

handle =¿ ”line˙counter”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scanlines(”MYLINE.*”),

history˙type =¿ ”log”;

˝

#

body match˙value scanlines(x)

–

select˙line˙matching =¿ ”ˆ(x)”;

˝

See the CFEngine Nova documentation for more possibilities of measurement promises.

Hub Reporting

In the commercial editions of CFEngine much more extensive and searchable reporting is
available.

12 Reporting

Mission Portal access to the hub

The preferred approach to querying information on a hub is to use the web interface in the
Mission Portal. This gives the greatest flexibility in both search and presentation of data. Given
the extensiveness of the Mission Portal user interface, the details are covered in a separate
document.

Command line access to the hub

Users with login access to the hub can also use the command line tool cf-report to extract
a limited view of the data. Currently supported reports include:

compliance

The percentage total compliance log for all hosts.

dead-clients

Shows a list of client hosts that have not made incoming requests within the
standard time horizon (default 15 minutes).

file˙changes

The change log

file˙diffs

The change details for text files.

last-seen

Show the last time hosts connnected to the hub

promises Compliance by promise, labelled by promise-handle.

setuid The list of setuid/setgid root files detected on the system.

software The installed software base of the system.

summary A summary of how many hosts are compliant within a given set of search param-
eters.

vars The values of variables set on hosts.

Some special command line options are supported in the commercial versions.

‘--query-hub’
or ‘-q’ Query hub database interactively. This option is the entry point for query-
ing the hub data with cf-report, and must always be specified.

‘--show name’
Select the name of the report from the above list.

‘--promise-handle’
or ‘-p regex’. For promise compliance report, this defines a regular expression to
search for promises of a specific name. Specify a promise-handle to look up

‘--hostkey’
or ‘-k hashkey’. Specify a particular host to query for data, using the unique
host-key.

13

‘--class-regex’
or ‘-c regex’ - Specify a class regular expression to search for

‘--filter’
or ‘-F regex’ - Specify a name regular expression for filtering results

Example command hub searches

If only a host-key is specified, CFEngine returns with the last known location and identity of
the host. (Note that, in the following examples, the SHA keys are reduced for readability).

host# cf-report -q --hostkey SHA=bd6dfcc2...

-¿ Hostname: hub.test.cfengine.com

-¿ Recent IP Addresses: 10.0.0.29

To dump all values from all hosts:

cf-report -q --show promises

cf-report --query-hub --show promises

You can select a single host for a particular report:

cf-report -q --hostkey SHA=c40fb732c6e5... --show vars

Or you can select a CFEngine class of hosts that will be selected to report

cf-report -q --show summary --class-regex linux

cf-report -q --show summary --class-regex SuSE

cf-report -q --show summary --class-regex NewYork

Here are some examples using filters to ’grep’ out certain items:

cf-report -q --hostkey SHA=c40fb732c6... --show vars --filter date

cf-report -q --filter ”mail.*” --hostkey SHA=bd6dfccb1a... --show setuid

cf-report -q --show promises -p knowledge˙files˙db˙stamp

