
Distributed Scheduling and Workflows
A CFEngine Special Topics Handbook

CFEngine AS

� �
Distributed scheduling is about tying together jobs to create a workflow across multiple ma-
chines. It introduces a level of fragility into system automation. Using CFEngine promises,
we can create self-healing workflows, but we recommend minimizing dependencies. This doc-
ument shows how to build workflows using CFEngine primitives.
 	

Copyright c© 2010 CFEngine AS

i

Table of Contents

What is distributed scheduling? . 1
Coordinating dispatch . 1
Job scheduling and periodic maintenance . 1

One-off workflows . 1
Regular workflows . 3

Fancy distributed encapsulation . 4
More links in the chain . 6

Aggregation of multiple jobs . 7
Triggering multiple follow-ups . 8

Self-healing workflows . 9
Long workflow chains . 9
Summary of Distributed Scheduling . 9

1

What is distributed scheduling?

Scheduling refers to the execution of non-interactive processes or tasks (usually called ‘jobs’)
at designated times and places around a network of computers (see the Special Topics Guide
on Scheduling). Distributed Scheduling refers to the chaining of different jobs into a coordi-
nated workflow that spans several computers. For example, you schedule a processing job on
machine1 and machine2, and when these are finished you need to schedule a job on machine3.
This is distributed scheduling.

Coordinating dispatch

Dispatch is the term used for starting actually the execution of a job that has been scheduled.
There are two ways to achieve distributed job scheduling:

• Centralized dispatch of jobs.

• Peer to peer signalling with local dispatch of jobs.

There are pros and cons to centralization. Centralization makes consistency easy to deter-
mine, but it creates bottlenecks in processing and allows one machine to see all information.
Decentralization provides an automatic and natural load-balancing of job dispatch, and it
allows machines to reveal information on a ‘need to know’ basis.

CFEngine is a naturally decentralized system, and only policy definition is usually centralized,
but you can set up practically any architecture you like, in a secure fashion.

Job scheduling and periodic maintenance

You promise to execute tasks or keep promises at distributed places and times:

• You tell CFEngine what and how with the details of a promise.

• You tell CFEngine where and when promises should be kept, using classes.

CFEngine is designed principally to maintain desired state on a continuous basis. There
are three cases for job scheduling:

• Unique jobs run once and only once.

• Standard jobs run sporadically on demand.

• Standard jobs run on a regular schedule.

This list transfers to workflow processes too. If one job needs to follow after another
(because it depends on it for something), we can ask if this workflow is a standard and regular
occurrence, or a one-off phenomenon.

One-off workflows

In CFEngine, you code a one-off workflow by specifying the space-time coordinates of the
event that starts it. For example, if you want a job to be run a 16:45 on Monday 24th January
2012, you would make a class corresponding to this time, and place the promise of a job (or
jobs) in this class. Let’s look at some examples of this, in which host1 executes a command
called ‘my˙job’, and host2 follows up with a bundle of promises afterwards.

The simplest case is to schedule the exact times.

2 Distributed Scheduling

bundle agent workflow˙one

–

methods:

Host2.Day24.January.Year2012.Hr16.Min50˙55::

”any” usebundle =¿ do˙my˙job˙bundle;

commands:

Host1.Day24.January.Year2012.Hr16.Min45˙50::

”/usr/local/bin/my˙job”;

˝

Host1 runs its task at 16:45, and Host2 excutes its part in the workflow five minutes later.
The advantage of this approach is that no direct communication is required between Host1
and Host2. The disadvantage is that you, as the orchestrator, have to guess how long the
jobs will take. Moreover Host2 doesn’t know for certain whether host1 succeeded in carrying
out its job, so it might be a fruitless act.

We can change this by signalling between the processes. Whether not you consider this
an improvement or not depends on what you value highest: avoidance of communication
or certainty of outcome. In this version, we increase the certainty of control by asking the
predecessor or upstream host for confirmation of success if the job was carried out.

bundle agent workflow˙one

–

classes:

Host2::

”succeeded” expression =¿ remoteclassesmatching

(

”did.*”, # get classes matching

”Host1”, # from this server

”no”, # encrypt comms?

”hostX” # prefix

);

methods:

Host2.hostX˙did˙my˙job

”any” usebundle =¿ do˙my˙job˙bundle;

commands:

Host1.Day24.January.Year2012.Hr16.Min45˙50::

3

”/usr/local/bin/my˙job”,

classes =¿ state˙repaired(”did˙my˙job”);

˝

In this example, the methods promise runs on Host2 and the commands promise runs one
Host1 as before. Now, host 1 sets a signal class ‘did˙my˙job’ when it carries out the job,
and Host2 collects it by contacting the cf-serverd on Host1. Assuming that Host1 has
agreed to let Host2 know this information, by granting access to it, Host2 can inherit this
class, with a prefix of its own choosing. Thus is transforms the class ‘did˙my˙job’ on Host1
into ‘hostX˙did˙my˙job’ on Host2.

The advantage of this method is that the second job will only be started if the first com-
pleted, and we don’t have to know how long the job took. The disadvantage of this is that we
have to exchange some network information, and this has a small network cost, and requires
some extra configuration on the server side to grant access to this context information:

bundle server access˙rules

–

access:

”did˙my˙job”

resource˙type =¿ ”context”,

admit =¿ – ”Host2” ˝;

˝

Regular workflows

To make a job happen at a specific time, we used a very specific time classifier
‘Day24.January.Year2012.Hr16.Min45˙50’. If we now want to make this workflow into a
regular occurrence, repeating at some interval we have two options:

• We repeat this at the same time each week, day, hour, etc.

• We don’t care about the precise time, we only care about the interval between executions.

The checking of promises in CFEngine is controlled by classes and by ifelapsed locks, which
may be used for these two cases respectively. If nothing else is specified, CFEngine runs every
5 minutes and reconsiders the state of all its active promises. To be specific about the time,
we just alter which promises are active at different times. Classes (as used already) allow us
to anchor a promise to a particular region of time and space. Locks, on the other hand, allow
us to say that a promise will only be rechecked if a certain time has elapsed since the last time.

So, to make a promise repeat, we simply have to be less specific about the time. Let us
make the promise on Host1 apply every day between 16:00:00 (4 pm) and 16:59:59, and add
an ifelapsed lock saying that we do not want to consider rechecking more often tha once every
100 minutes (more than 1 hour). Now we have a workflow process that starts at 16:00 hours
each day and runs only once each day.

bundle agent workflow˙one

–

classes:

4 Distributed Scheduling

Host2::

”succeeded” expression =¿ remoteclassesmatching(

”did.*”,

”Host1”,

”no”,

”hostX”

);

methods:

Host2.hostX˙did˙my˙job

”any” usebundle =¿ do˙my˙job˙bundle;

commands:

Host1.Hr16::

”/usr/local/bin/my˙job”,

action =¿ if˙elapsed(”100”),

classes =¿ state˙repaired(”did˙my˙job”);

Fancy distributed encapsulation

We could try to be fancy about distributed scheduling, packaging it into a reusable structure.
This may or may not be a good idea, depending on your aesthetics. The following example,
from the community unit tests, shows how we might proceed.

body common control

–

bundlesequence =¿ – job˙chain(”Hr16.Min10˙15”) ˝;

˝

##

bundle common g

–

vars:

Define the name of the signal passed between hosts

”signal” string =¿ ”pack˙a˙name”;

˝

5

##

bundle agent job˙chain(time)

–

vars:

Define the names of the two parties

”client” string =¿ ”downstream.exampe.org”;

”server” string =¿ ”upstream.example.org”;

classes:

derive some classes from the names defined in variables

”client˙primed” expression =¿ classmatch(canonify(”$(client)”)),

ifvarclass =¿ ”$(time)”;

”server˙primed” expression =¿ classmatch(canonify(”$(server)”)),

ifvarclass =¿ ”$(time)”;

client˙primed::

”succeeded” expression =¿ remoteclassesmatching(

”$(g.signal)”,

”$(server)”,

”yes”,

”hostX”

);

methods:

client˙primed::

”downstream” usebundle =¿ do˙job(”Starting local follow-up job”),

action =¿ if˙elapsed(”5”),

ifvarclass =¿ ”hostX˙$(g.signal)”;

server˙primed::

”upstream” usebundle =¿ do˙job(”Starting remote job”),

action =¿ if˙elapsed(”5”),

classes =¿ state˙repaired(”$(g.signal)”);

reports:

!succeeded::

6 Distributed Scheduling

”Server communication failed”,

ifvarclass =¿ ”$(time)”;

˝

###

bundle agent do˙job(job)

–

commands:

do whatever...

”/bin/echo $(job)”;

˝

###

Server config

###

body server control

–

allowconnects =¿ – ”127.0.0.1” , ”::1” ˝;

allowallconnects =¿ – ”127.0.0.1” , ”::1” ˝;

trustkeysfrom =¿ – ”127.0.0.1” , ”::1” ˝;

allowusers =¿ – ”mark” ˝;

˝

###

bundle server access˙rules()

–

access:

”$(g.signal)”

resource˙type =¿ ”context”,

admit =¿ – ”127.0.0.1” ˝;

˝

More links in the chain

In the examples above, we only had two hosts cooperating about jobs. In general, it is not a
good idea to link together many different hosts unless there is a good reason for doing so. In
HPC or Grid environments, where distributed jobs are more common and results are combined

7

from many sub-tasks, one typically uses some more specialized middleware to accomplish this
kind of cooperation. Such software makes compromises of its own, but is generally better
suited to the specialized task for which it was written than a tool like CFEngine (whose main
design criteria are to be secure and generic).

Nevertheless, there are some tricks left in CFEngine for distributed scheduling if we want
to trigger a number of follow-ups from a single job, or aggregate a number of jobs to drive a
single follow-up (see figure).

Aggregation of multiple jobs

When aggregating jobs, we must combine their exit status using AND or OR. The most
common case it that we require all the prerequisites in place in order to generate the final
result, i.e. trigger the followup only if all of the prerequisites succeeded.

bundle agent workflow˙one

–

vars:

”n” slist =¿ – ”2”, ”3”, ”4” ˝;

classes:

”succeeded$(n)” expression =¿ remoteclassesmatching(

”did.*”,

”Host$(n)”,

”no”,

”hostX”

),

ifvarclass =¿ ”Host$(n)”;

methods:

Host2.Host3.Host4.hostX˙did˙my˙job

8 Distributed Scheduling

”any” usebundle =¿ do˙my˙job˙bundle;

commands:

Host1.Hr16::

”/usr/local/bin/my˙job”,

action =¿ if˙elapsed(”100”),

classes =¿ state˙repaired(”did˙my˙job”);

This example shows an all-or-nothing result. The follow-up job will only be executed if all
three jobs finish within the same 5 minute time-frame. There is no error handling or recovery
except to schedule the whole thing again.

Triggering from one or more predecessors, i.e. combining with OR, looks similar, we just
have to change the class expression:

...

methods:

(Host2—Host3—Host4).hostX˙did˙my˙job

”any” usebundle =¿ do˙my˙job˙bundle;

...

Triggering multiple follow-ups

The converse scenario is to trigger a number of jobs from a single pre-requisite. This is simply
a case of listing the jobs under the trigger classes.

bundle agent workflow˙one

–

classes:

Host2::

”succeeded” expression =¿ remoteclassesmatching(

”did.*”,

”Host1”,

”no”,

”hostX”

);

methods:

Host2.hostX˙did˙my˙job

”any” usebundle =¿ do˙my˙job˙bundle1;

”any” usebundle =¿ do˙my˙job˙bundle2;

”any” usebundle =¿ do˙my˙job˙bundle3;

9

commands:

Host1.Hr16::

”/usr/local/bin/my˙job”,

action =¿ if˙elapsed(”100”),

classes =¿ state˙repaired(”did˙my˙job”);

Self-healing workflows

To apply CFEngine’s self-healing concepts to workflow scheduling, we can imagine the concept
of a convergent workflow, i.e. one that, if we repeat everything a sufficient number of times,
will eventually lead to the result. The outcome of the chained sequence of jobs must have
an outcome that is repeatably achievable and which will eventually be achieved if we try a
sufficient number of times. Using CFEngine this is a natural outcome – however, most system
designers do not think in terms of repeatable sustainable outcomes and fault-tolerance.

Beware however, one-off jobs cannot be made convergent, because they only have a single
chance to succeed. It is a question of business process design whether you design workflows
to be sustainable and repeatable, or whether you trust the outcome of a single shot process.
Using the persistent classes in CFEngine together with the if-elapsed locks to send signals
between hosts, it is simple and automatic to make convergent self-healing workflows.

Long workflow chains

Long workflow chains are those which involve more than one trigger. These can be created by
repeating the pattern above several times. Note however, that each link in the chain introduces
a new level of uncertainty and potential failure. In general, we would not recommend creating
workflows with long chains.

Summary of Distributed Scheduling

Distributed scheduling is about tying together jobs to create a workflow across multiple ma-
chines. It introduces a level of fragility into system automation. Using CFEngine promises,
we can create self-healing workflows, but we recommend minimizing dependencies. This doc-
ument shows how to build workflows using CFEngine primitives.

