
Change Management and Incident Repair
A CFEngine Special Topics Handbook

CFEngine AS

� �
Change Management is about the planning and implementation of intended changes to an IT
system, as well as the detection, documentation and possible repair of unintended changes.
Change Management involves the assessment of current system state, the planning, testing
and quality assurance cycles, and scheduling of improvements.

This guide explains change management in the framework of CFEngine’s self-healing automa-
tion.
 	

Copyright c© 2009, updated 2011 CFEngine AS

i

Table of Contents

What is change management? . 1
Regulation: authorized and unauthorized change . 1
Intended and unintended change . 2
How fast should changes be made? . 2
Partially centralized change . 3
The decision point . 4
Promises about change vs state . 4
Promises about change . 5
Change management and knowledge management . 6
Non-destructive change . 7
Change and convergence . 8
The change decision process or release management 8
Deploying policy changes . 9

1

What is change management?

Change Management is about the planning and implementation of intended changes to an IT
system, as well as the detection, documentation and possible repair of unintended changes.
Change Management involves the assessment of current system state, the planning, testing
and quality assurance cycles, and scheduling of improvements.

There are many accounts of change management in the industry. Often these make as-
sumptions about the management framework being used. In the context of CFEngine au-
tomation, some of these approaches are considered antiquated. This guide explains change
management in the framework of CFEngine’s self-healing automation.

Regulation: authorized and unauthorized change

It is common to speak of authorized and unauthorized change in the IT industry. Many
organizations think in these authoritarian terms and use management techniques designed for
a slower-moving world. Today’s e-commerce companies usually have much more agile and
dynamical processes for change.

The purpose of change regulation is to minimize the risk of actions taken by humans, i.e. to
avoid human error. This approach makes sense in low-tech companies that have environments
where change is only about long-term wear and tear or intended modifications to infrastructure
(like a adding new building, or fitting a new gasket on a car). In today’s IT-driven organizations,
problems arise a thousand or more times faster than that, and a new approach is needed.

Procedures for change, based on legacy regulative methods are incorporated into popular
frameworks for human management, such as ITIL. They begin by making a formal Request For
Change (RFC), which is processed by management in order to secure permission to exercise a
change during an allocated time-window. In some cases, an ordinary repair such as restarting
a server could take weeks to process, as mandatory Root Cause Analysis (RCA) is undertaken.
The Mean Time To Repair (MTTR) is dominated by internal bureaucracy.

Today’s IT-based organizations, experience unintended change too quickly for such a pro-
cess however, and there is a real risk of lost revenues from not repairing issues quickly. As
many organizations are fearful of litigation or management reprisals, preferring to err on the
side of caution, it is necessary to evaluate the best strategy for avoiding exposure to risk. To
use automation effectively, it makes sense to separate change management into two phases:

• Change of policy itself - which defines desired state.

Policy has a strategic impact, and its change deserves a process that includes expert
opinions, staged testing and ultimately a phased deployment during a controllable time-
window.

• Change that brings systems into compliance with policy.

Once policy is frozen for a period of time, any unintended changes must be considered
infractions (non-compliance), and repairs should be made according to what has already
been decided. This should happen without delay, rather than starting a new process to
delay action. The ethical issue is now turned on its head: execessive caution in fixing
what has already been decided may be seen as prevarication and even negligence.

2 Change Management and Incident Repair

� �
The CFEngine way of managing change is to migrate systems through states of stable

equilibrium. One should not believe that systems continue flawlessly because no intended
changes are made. Change management with CFEngine should be about planning one stable
state after another, but expecting run-time errors. The rate at which you move through
revisions of stable policy depends on your needs. The rate at which compliance is repaired
should be ‘as soon as possible’.

To use an analogy: if policy changes are like take-off and landing, then a period of stable
operations is like a smooth flight, on course to the correct destination. If unintended changes
happen to change that, like the weather, immediate course corrections should be made to
avoid loss.
 	

Intended and unintended change

To institue a rational approach to change management, i.e. one that is suited to business’s
operational time-scales, we need to think about separating change into two the categories
implied above: change by design and change by fate. It is desirable to exercise due diligence
in the design of a system’s intended state, but we must be ready to quickly repair faults that
might disrupt business services. We need to distinguish:

• Purposeful change of an intended policy (planning).

• Change in the actual system state and behaviour (implementation and maintenance).

What is intended and what actually happens should not be confused. It is impossible to
‘lock down’ or fully control changes made to computer systems, without switching them off.
A mandatory level of risk must be anticipated.� �

It is by defining a desired operational state that one can avoid re-processing every since
repair to a system.
 	

How fast should changes be made?

Time scales are crucially important in engineering, and deserve equal importance in IT man-
agement. Ask yourself: how do you know if something is changing or not? You’ve probably
heard catchetisms such as:

• A watched kettle never boils.

• Tempus fugit (time flies).

These phrases capture the idea that, if we expect to see change at a certain rate, it is
possible to miss changes that occur at either a faster or slower rate. When we manage a
dynamical process, we have to attend to the system at the same rate as change takes place.

If there is a process changing the system once a day, then to keep the system aligned with
its desired state, there must be a corrective process that repairs this once per day (the Mean
Time To Repair or MTTR should be the same as the Mean Time Before Failure MTBF),
else the system will experience significant deviations from policy. In the worst case, this could
result in security leaks or loss of revenue. This is not the full story of course: there will always
be some delay between error and repair (actual time to repair). To minimize the impact of

3

lost compliance and deviations from intended state, changes should be made before serious
consequences can ensue that require more significant repairs1.

Thus, mean time to repair is not a metric that should be used to define ideal time to repair.
The ideal time should be that which minimizes the risk of losses to operations, and therefore
revenues.

The advantage of CFEngine’s two-phase approach to change is that approved changes can
be made a quickly as possible, without significant use of resources. CFEngine’s lightweight
agents can run every five minutes to achieve a tight alignment with operational and business
goals.

� �
In information theory, Nyquist’s theorem says that, in order to properly track (and poten-

tially correct) a process that happens at rate R, one must sample the system at twice this rate
2R. In CFEngine, we have chosen a repair resolution of 5 minutes for configuration sampling,
because measurements show that many system characteristics have auto-correlations times of
10-20 minutes2.
 	

Partially centralized change

It is not necessary to assume a central model of authority to manage change. Indeed, many
CFEngine users have highly devolved organizations with many decision makers. Federated
regions of an organization can maintain independent policies, aligned with different cultures if
necessary.

� �
What may be problematic is to have teams that are not aligned, so that there are conficting

intentions. In this case, one individual might instigate a change that conflicts with another.
This often happens in ‘hit’n’run system administration’, where there is no concerted plan or
modus operandi.
 	

To keep federated teams aligned with common criteria for policy, strong communication is
required. For this we provide access to information through the Mission Portal. This shows
the policy itself in different regions, as well as reports about the compliance of systems. Users
can also exchange messages about their intentions, through policy comments and personal
logs in the system.

1 For example, suppose a process runs out of control and starts filling up logs with error messages – the disk
might fill up and cause a much more serious problem, such as a total system failure with crash, is this were
left unattended.

2 Nyquist’s theorem is the main reason why CD-players sample at 44kHz in order to cover the audible spectrum
of 22kHz for most young people. Even though hearing deteriorates with age, and most people cannot hear
this well, it provides a quality margin.

4 Change Management and Incident Repair

The decision point

By making all changes through a single point of control and verification, you avoid3 the
problem of multiple intentions, because all intentions will be clear to see. CFEngine works
with promises, because a promise is simply the expression of an intention.

If you work in a federated environment, then each distinct region of policy can have its own
policy server or hub. These will not conflict, unless a host subscribes to updates from more
than one hub.

Promises about change vs state

CFEngine works by keeping promises, so think about how promises apply to change.

You could promise to make a change, but that is a very weak promise because it would be
kept by a single transitory event (the moment at which the change is made) and then it would
go away. To have control over your system at all times you need to make promises about
state, because state is something that persists for long times, and thus the promise persists.

When we care about the state of a system, we make promises that describe that state at
all times, because we know that there might be other forces for change that can bring about
unintended states. If we intend the state of the system to persist, we should promise that.
Thinking always about periods of stable equilbrium will minimize issues with non-compliance.

� �
To make a change of state, you should think about changing the promises that describe

your desired state, not about promising to make a change of state.
 	
3 Promise theory tells us that coordination requires mutual agreement between all agents that work in a coordi-

nated way on common resources. Every decision necessarily comes from a single point of origin (but there could
be many of these, making non-overlapping decisions); consistency only starts to go wrong when intentions
about common resources conflict.

5

An analogy: think of change management as navigation though a sea of possible states. If
you promise changes, you promise to alter course relative to your current state, e.g. turn left,
turn right, alter heading by 10 degrees to starboard, etc. However, you are now vulnerable
to things you don’t know about. Winds and currents blow you off course and can lead to
unintended changes that invalidate these course corrections, if you have not promised to
monitor and avoid them. That is why modern navigators use beacons.

In CFEngine, a beacon is a promise of desired end-state (the end of your journey). It’s
the place you want to be – and the journey doesn’t interest you. Navigators used fixed stars,
lighthouses and now artificial radio signals to guide ships and planes on their intended course
at all times, because beacons promise absolute desired location, not relative instructions to get
there. CFEngine uses promises in the same way, to guide systems to their desired outcomes,
not merely a script of relative corrections. So CFEngine works somewhat like a system auto-
pilot.

Promises about change

To help you think of change in terms of promises, consider the following promises made during
change management, with CFEngine examples.

You promise a desired state for your system (beacon).
packages:

”apache”

comment =¿ ”Ensure Apache webserver installed”,

package˙policy =¿ ”add”,

package˙method =¿ yum;

processes:

”apache”

comment =¿ ”Ensure apache webserver running”,

restart˙class =¿ restart˙apache;

You change a promise you have made about state to promise a new desired state.
You edit ‘promises.cf’ and track the changes using a change management repos-
itory like Subversion or CVS.

A third party promises a change and we promise to accept that change.
packages:

”apache”

comment =¿ ”Ensure Apache webserver up to date”,

package˙policy =¿ ”update”,

package˙method =¿ yum;

6 Change Management and Incident Repair

We promise to monitor unintended changes.

files:

”/usr” -¿ ”Security team”

changes =¿ detect˙all˙change,

depth˙search =¿ recurse(”inf”);

We promise two conflicting outcomes (a validation error to be corrected).
Conflicts of intention are easy to see when they are mediated by CFEngine.

files:

”/etc/passwd” -¿ ”Security team”

perms =¿ owner(”root”);

”/etc/passwd” -¿ ”Security team”

perms =¿ owner(”mark”);

Perhaps you can think of more promises for your own organization. CFEngine encourages
promise thinking because it promotes stable expectations about the system. Let us underline
what traditional approaches ignore about change management:

� �
If you have made no promise about your system state, you should not be surprised by

anything that happens there. You cannot assume that no change will happen.
 	
Change management and knowledge management

The decision to manage change is an economic trade-off. The more promises we make about
state, the higher the cost of keeping them. You have to decide how much you are willing to
spend on navigating change.

CFEngine makes desired state cheap, but the true cost of change management is not
implementation but the cost of changing knowledge, i.e. losing track of your place within
your intentions. If your system behaviour is dominated by changing external currents that you
ignore, you will constantly be fighting to steer reactively.

Knowledge Management is necessary to maintain a guidance system that makes course
programming reliable and effective. CFEngine allows you to document all of your intentions as
promises to be kept. CFEngine Nova additionally provides a continuously updated knowledge
map as part of its ‘auto-pilot navigation’ facilities, based on what we promise and what it
discovers about the environment impacting on systems. Hence, it tracks both promised state,
and unintended changes.

7

Lack of knowledge about your system is the cause of unexpected side-effects and unpleas-
ant surprises. The key to predictability in system operations is CFEngine’s core principle of
convergence. CFEngine Missions Specialists always think convergence.

Non-destructive change

The IT industry, for the most part, has not really progressed beyond the idea of baselining
systems. In the traditional conception of change management you start by baselining, i.e.
establishing a known starting configuration. Then you generally assume that you are the only
source of change. If something goes wrong you do not try to repair the fault, but merely start
again, destroying and rebuilding.

In fact, all kinds of things change beyond our control all the time. Bugs emerge, items
are stolen, things get broken by accident and external circumstances conspire to confound the
order we would like to preserve. The suggestion that only authorized people actually make
changes is simply wrong.

In reality, circumstances are part of the picture, as well as changing inventory and releases.
CFEngine uses the idea of “convergence” (see figure below) to ensure desired state, indepen-
dently of where you start from. In this way of thinking, the configuration details might be
changing in a quite unpredictable way, and it is our job to continuously monitor and repair this
general dilapidation. Rather than assuming a constant state in between changes, CFEngine
assumes a constant “ideal state” or goal to be achieved at all times.

8 Change Management and Incident Repair

Change and convergence

Change requires action, and implementation is the most dangerous part of change, as it leads
to consquences that a difficult to predict, especially if you have incomplete knowledge of your
environment.

Reliabilty and dependability on promises requires you to think about the convergence of
all change operations. Many change procedures fail because they are built in a highly fragile
manner (left hand figure): you require exact knowledge of where you start from, and you have
a recipe that (if applied once and only once) will take you to the desired end state.

Such a procedure cannot maintain the desired state, without demolishing it and rebuilding
it from scratch. With CFEngine you focus on the end state (right hand figure), not where
you start from. Every change, action or recipe may be repeated a infinite number of times4

without adverse consquences, because every action will only bring you to the desired state, no
matter where you start from.

The change decision process or release management

The process of managing intended changes is often called release management. A release is
a collection of authorized changes to the promises of desired state for a system.

A release is traditionally a larger umbrella under which many smaller changes are made.
Changes are assembled into releases and then they are ‘rolled out’.

� �
At CFEngine we encourage many small, incremental changes above large risky changes, as

every change has unexpected consequences, and small changes minimize risk. (See the Special
Topics Guide on BDMA.)
 	
4 Some writers like to call this property idempotence.

9

Release management is about the designing, testing and scheduling the release, i.e. every-
thing to do with the release process except the explicit implementation of it.

New releases are usually made in response to the occurrence of unintended changes, called
incidents (incident management). An incident is an event that leads to unintended behaviour.
The root cause of many incidents is often called a problem (problem management). One goal
of CFEngine is to plan pro-actively to handle incidents automatically, thus taking them off the
list of things to worry about. Changes can introduce new incidents, so it is important to test
changes to promises in advance.

1. Formulate proposed intentions in the form of promises.

2. Discuss the impact of these in your team of CFEngine Mission Specialists (more than one
pair of eyes).

3. Construct a test environment and examine the effect of these promises in practice.

4. Commit the changes to promises in version control, e.g. subversion.

5. Deploy promises changes into live environment on a small number of machines.

6. Finally deploy to all machines.

At each stage, we make careful, low-risk incursions on the system and see how it responds.
Note that some side-effects could take days to emerge, so the schedule for change should
account for the expected impact.

Deploying policy changes

The following sequence forms a checklist for deploying successful policy change:

1. Discuss the impact of changes in the team.

2. Construct a test environment and examine the effect of these promises in practice.

3. Make a change in the CFEngine input files.

4. Run the configuration through ‘cf-promises --inform’ to check for problems.

5. Commit the tested changes to promises in version control, e.g. subversion.

6. Move the policy to a test system.

7. Try running the configuration in dry-run model: ‘cf-agent --dry-run’

8. Try running the policy once on a single system, being observant of unexpected behaviour.

9. Try running the policy on a small number of systems.

10. Move the policy to the production environment.

11. If possible, test on one or a few machines before releasing for general use.

Be aware of the differences in your environment. A decision will not necessarily work everywhere
in the same way.

