
BDMA
A CFEngine Special Topics Handbook

CFEngine AS

� �
Build, Deploy, Manage, Audit is a simple and traditional model of the IT infrastructure lifecycle,
based on human workflows and processes. CFEngine’s approach to the IT infrastructure is
somewhat different, but the four pillars of the lifecycle can still be addressed in the framework
of automation. This guide explains how to think about the IT infrastructure lifecycle when
using CFEngine.
 	

Copyright c© 2009 CFEngine AS

i

Table of Contents

What is BDMA? . 1
Stem cell hosts . 2
Recommendations for Build . 2
Recommendations for Deploy . 3
Recommendations for Manage . 3
Recommendations for Audit . 4
Summary BDMA workflow . 5

1

What is BDMA?

The four mission phases are sometimes referred to as

Build A mission is based on decisions and resources that need to be put assembled or
‘built’ before they can be applied. This is the planning phase.

In CFEngine, what you build is a template of proposed promises for the machines
in an organization such that, if the machines all make and keep these promises,
the system will function seamlessly as planned. This is how it works in a human
organization, and this is how is works for computers too.

Deploy Deploying really means launching the policy into production. In CFEngine you
simply publish your policy (in CFEngine parlance these are ‘promise proposals’)
and the machines see the new proposals and can adjust accordingly. Each machine
runs an agent that is capable of keeping the system on course and maintaining it
over time without further assistance.

Manage Once a decision is made, unplanned events will occur. Such incidents traditionally
set off alarms and humans rush to make new transactions to repair them. Under
CFEngine guidance, the autonomous agent manages the system, and humans
only manage knowledge and have to deal with rare events that cannot be dealt
with automatically.

Audit CFEngine performs continuous analysis and correction, and commercial editions
generate explicit reports on mission status. Users can sit back and examine these
reports to check mission progress, or examine the current state in relation to the
knowledge map for the mission.

2 BDMA

Stem cell hosts

At CFEngine we talk about stem cell hosts. A stem cell host is a generic foundation of software
that is the necessary and sufficient basis for any future purpose. To make a finished system
from this stem cell host, you only have to ‘differentiate’ the system from this generic basis by
running CFEngine.

Differentiation of hosts involves adding or subtracting software packages, and/or config-
uring the basic system. This strategy is cost effective, as you do not have to maintain more
than one base-line ‘image’ for each operating system; rather, you use CFEngine to implement
and maintain the morphology of the differences. Stem cell hosts are normally built using PXE
services by booting and installing automatically from the network.

Recommendations for Build

There are many approaches to building complete systems. When you use CFEngine, you
should try to progress from thinking only about putting bytes on disks, to planning a long term
set of promises to keep.

• What services do you want to support?

• What promises do you want to keep concerning these services?

• Are these promises sustainable and convergently implementable?

3

• Formulate proposed intentions in the form of CFEngine promises.

• Discuss the impact of these in your team of CFEngine Mission Specialists (more than one
pair of eyes).

It is worth spending extra time in the build planning to simplify your system as much as
possible. A clear formulation here will save time both in maintenance and training later, as
employees come and go. The better you understand your intentions, the simpler the system
will be.

We cannot emphasize enough the value of the promise discipline. If you can formulate your
requirements as promises to be kept, you have identified not only what, where, when and how,
but also who is responsible and affected by every promise.

Building systems is resource intensive. CFEngine works well with rPath, allowing optimized
build that can shave off many minutes from the build time for machines. CFEngine can then
take over where rPath leaves off, performing surgically precise customization.

Recommendations for Deploy

Deploying a policy is a potentially dangerous operation, as it will lead to change, with associated
risk. Side-effects are common, and often result from incomplete planning. (See the CFEngine
Special Topics Guide on Change Management).

The following sequence forms a checklist for deploying successful policy change:

1. Discuss the impact of changes in the team.

2. Commit the changes to promises in version control, e.g. subversion.

3. Make a change in the CFEngine input files.

4. Run the configuration through ‘cf-promises --inform’ to check for problems.

5. Move the policy to a test system.

6. Try running the configuration in dry-run model: ‘cf-agent --dry-run’

7. Try running the policy once on a single system, being observant of unexpected behaviour.

8. Try running the policy on a small number of systems.

9. Construct a test environment and examine the effect of these promises in practice.

10. Move the policy to the production environment.

11. If possible, test on one or a few machines before releasing for general use.

CFEngine recommends a process of many small incremental changes, rather than large
high-risk deployments.

CFEngine allows you to apply changes at a much finer level of granularity than any pack-
age based management system, thus it complements basic package management with its
deployment and real time repair (see next section).

Recommendations for Manage

Managing systems is an almost trivial task with CFEngine. Once a model for desired state has
been created, you just sit back and watch. You should be ready for ‘hands free’ operation. No

4 BDMA

one should make changes to the system by hand. All changes should follow the deployment
strategy above.

All that remains to do is wait for email alerts from CFEngine and to browse reports about
the system state. In CFEngine Nova, these reports are generated automatically and integrated
into the system knowledge base.

Most email alerts from CFEngine are information only. It is possible (but not recommended)
to make CFEngine very verbose about its operations. It is common to look for confirmation
early in the phase of adopting CFEngine, as trust in the software is building. Eventually users
turn off the verbosity and the default is for CFEngine to send as little email or output as
possible.� �

Consider a single line E-mail, in confirmation of a change, arriving from 1000 computers
in a single day. Learning to trust the software saves unnecessary communication and need-
less human involvement. The Nova Mission Portal makes notification and alerting largely
unnecessary.
 	

Recommendations for Audit

Auditing systems is a continuous process when using CFEngine Nova. Report data are collected
on a continuous and distributed basis. These data are then collected from each distributed
location according to a schedule of your choosing to collate and integrate the reports from all
systems.

The reports CFEngine provides are meant to offer simple summaries of the kind of infor-
mation administrators need about their environment, avoiding unnecessary detail.

Available patches report
Patches already installed on system if available.

Classes report
User defined classes observed on the system – inventory data.

Compliance report
Total summary of host compliance, all promises aggregated over time.

File changes report
Latest observed changes to system files with time discovered.

File diffs report
Latest observed differences to system files, in a simple diff format.

Hashes report
File hash values measured (change detection).

Installed patches report
Patches not yet installed, but published by vendor if available.

Installed software report
Software already installed on system if available.

Lastseen report
Time and frequency of communications with peers, host reliability.

5

Micro-audit report
Generated by CFEngine self-auditing. This report is not aggregated.

Monitor summary report
Pseudo-real-time measurement of time series data.

Performance report
Time cost of verifying system promises.

Promise report
Per-promise average compliance report over time.

Promises not kept report
Promises that were recently un-kept.

Promises repaired report
Promises that were recently kept by repairing system state.

Setuid report
Known setuid programs found on system.

Variables report
Current variable values expanded on different hosts.

Summary BDMA workflow

1. Define a stem cell host template

2. Set up PXE network booting and kickstart / jumpstart OS tools with CFEngine integrated

3. Get CFEngine running and updating on all hosts, but making no system changes.

4. Define a service catalogue.

5. Discuss and formulate a policy increment, thinking convergence at all times

6. Publish (deploy) the policy.

7. Follow emails and reports in the CFEngine Knowledge Map (Manage).

8. Adjust policy if necessary, following procedures for change management (Manage)

9. View reports (or enjoy the silence) to audit system state.

CFEngine works well with package based management software. Users of rPath, for ex-
ample, can achieve substantially improved efficiency in the build phase. CFEngine takes over
where package based systems leave off, providing an unprecedented level of control ‘hands
free’.

