
Agility in Infrastructure Engineering
A CFEngine Special Topics Handbook

CFEngine AS

� �
Agility is a widely used term in today’s fast moving IT industry. It reflects a need and a desire
to respond quickly to changes in the environment. This document explains the management
factors that affect speed, agility and scale in common scenarios, and what CFEngine can do
to help you be agile.
 	

Last updated December 2011

Copyright c© 2011 CFEngine AS

i

Table of Contents

1 Understanding Agility . 1
1.1 What make agility possible? . 1
1.2 The capacity of a system . 2
1.3 Speed . 2
1.4 Precision . 4
1.5 Comprehension . 5
1.6 Efficiency . 5

2 Aspects of CFEngine that bring agility 7
2.1 What agility means in different environments . 7

2.1.1 Desktop management . 7
2.1.2 Web shops . 8
2.1.3 Cloud providers . 9
2.1.4 High Performance Computing . 9
2.1.5 Government . 10
2.1.6 Finance . 10
2.1.7 Manufacturing . 10

2.2 Separating What from How (DevOps) . 11
2.3 Packaging limits agility . 12
2.4 How abstraction improves agility . 13
2.5 Increasing system capacity (by scaling) . 14

3 Agility in your work . 15
3.1 Easy versus simple . 15
3.2 How does complexity affect agility? . 15
3.3 An effective understanding helps agility . 16
3.4 Maximizing business imperatives . 17
3.5 What does agility cost? . 17
3.6 Who is responsible for agility? . 18

Chapter 1: Understanding Agility 1

1 Understanding Agility

We intuitively recognize agility as the capability to respond rapidly enough and flexibly enough
to a difficult challenge. If we imagine an animal surviving in the wild, a climber on a rock-face
or a wrestler engaged in combat, we identify the skills of anticipation, speed of response and
the ability to adapt or bend without breaking to meet the challenges.

• Anticipate.

• Act.

• Adapt.

In infrastructure management, agility represents the need to handle changing demand for
service, to repair an absence of service, and to improve and deploy new services in response to
changes from users and market requirements. It is tied to economic, business or work-related
imperatives by the need to maintain a competitive lead.

The compelling event that our system must respond to might represent danger, or merely
a self-imposed deadline. In either case, there is generally a penalty associated with a lack of
agility: a blow, a fall or a loss.

1.1 What make agility possible?

To understand agility, we have to understand time and the capacity for change. Agility is
a relative concept: it’s about adapting quickly enough, in the right context, with the right
measure and in the right way. Below, we’ll try to gain an engineering perspective on agility to
see what enables it and what throttles it.

� �
To respond to a challenge there are four stages that need attention:

• To comprehend the challenge.

• To solve the challenge.

• To respond to the challenge.

• To confirm or verify the response.
 	
Each of these phases takes actual clock-time and requires a certain flexibility. Our goal is

to keep these phases simple and therefore cheap for the long-term. Affording the time and
flexibility needed is the key to being agile. Technology can help with this, if we adopt sound
practices.

� �
Intuitively, we understand agility to be related to our capacity to respond to a situation.

Let’s try to pin this idea down more precisely.
 	

2 Agility in Infrastructure Engineering

1.2 The capacity of a system

The capacity of a system is defined to be its maximum rate of change. Most often, this refers
to speed of the system response to a single request1.

In engineering, capacity is measured in changes per second, so it represents the maximum
speed of a system within a single thread of activity2.

1.3 Speed

Speed is the rate at which change takes place. For a configuration tool like CFEngine, speed
can be measured either as

Clock speed
The actual elapsed wall-clock time-rate at which work gets done, including any
breaks and pauses in the schedule.

This depends on how often checks are made, or the interval between them, e.g.
in CFEngine, the default schedule is to verify promises every five minutes.

System speed
The average speed of the system when it is actually busy working on a problem,
excluding breaks and pauses. For example, once CFEngine has been scheduled at
the end of a five minute interval, it might take a few seconds to make necessary
changes.

Engineers can try to define an engineering scale of agility as the ratio of available speed
to required speed and ratio of number ways a system can be changed to the number of ways
imperatives require us to change.

� �
Agility is proportional to both how much speed we can muster compared to what is required,

and the number of change-capabilities we possess, compared to what we need to meet a
challenge. In other words: how well equipped are we? As engineers, we could write something
like this:

Available speed under control Changes available

Agility =˜ ----------------------------- * -----------------------

Required speed Changes Required
 	
Although such a scale might be hard to measure and follow in practice, the definition makes
simple engineering sense3, and brings some insight into what we need to think about. What
it suggests is that agility is a combination of speed and precision.

1 Capacity is often loosely referred to as ‘bandwidth’ because of its connection to signal propagation in commu-
nication science, but this is not strictly correct, as bandwidth refers to parallel channels.

2 For example, for a single coding frequency, the capacity of a communications channel is measured in bits per
second, and the bandwidth is the number multiplied by the number of parallel frequencies.

3 If available speed matches need, and we have the capability to make all required changes, then we can claim
exactly 100% agility. If we have less than required, then we get a smaller number, and if we have excess speed
or changeability then we can even claim a super-efficiency.

Chapter 1: Understanding Agility 3

What is required speed? It is is the rate of change we have to be able to enact in order to
achieve and maintain a state (keep a promise) that is aligned with our intent. This requires a
dependence on technology and human processes.

The weakest link in any chain of dependencies limits the speed. The weakest link might be
a human who doesn’t understand what to do, or a broken wire or a misconfigured switch, so
there are many possible failure modes for agility. An organization is an information rich society
with complex interplays between Man and Machine; agility challenges us to think about these
weakest links and try to bolster them with CFEngine’s technology.

For example:

• If we think in terms of services, it is the Service Level you have to achieve in order to
comply with a Service Level Agreement.

• If we think of a support ticket, it is the speed we have to work at in order to keep the
impact of an unpredicted change within acceptable levels.

What we call ‘acceptable’ is a subjective judgement, i.e. a matter for policy to decide. So
there are many uncertainties and relativisms in such definitions. It would be inconceivable to
claim any kind of industry standard for these.

How agility depends on technology measures.

We can write some scaling laws for the dependencies of agility to see where the failure
modes might arise.

4 Agility in Infrastructure Engineering

� �
The speed available to meet a challenge is (on average) the maximum speed we can reliably

maintain over time divided by the number of challenges we have to share between.

Expected capacity * reliability

Average available speed =˜ -------------------------------

Consumers or challenges
 	
This expression says that the rate at which we get work done on average depends no only on

how we share maximum capacity amongst a number of different consumers, clients, processes,
etc, but also on how much of the time this capacity is fully available, perhaps because systems
are down or unavailable.

The appearance of reliability in this expression therefore tells us that maintenance of the
system, and anticipation of failure will play a key role in agility. Remarkably this is usually un-
expected for most practitioners, and most of system planning goes into first time deployment,
rather than maintaining operational state.

1.4 Precision

Acting quickly is not enough: we also need to be accurate in responding to change4. We need
to be able to:

• Model the desired outcome accurately in terms of universal policy coordinates: Why,
When, Where, What, How.

• Maximize the chance that the promised outcome will be achieved.

Precision is maximized when:

• Changes are ‘precise’, i.e. they can be made at a highly granular level, without disturbing
areas that are not relevant (few side-effects).

• Policy is able to model or describe the desired state accurately, i.e. within the relevant
area, the state is within acceptable tolerances.

• If any assumptions are hidden, they are describable in terms of the model, not determined
by the limitations of the software5.

• The agent executes the details of the model quickly and verifiably, in a partially unpre-
dictable environment, i.e. it should be fault tolerant.

• If the model cannot be implemented, it is possible to determine why and decide whether
the problem lies in an incorrect assumption or a flaw in the implementation.

4 In the 20th century, science learned that there is no such thing as determinism – the idea that you can guarantee
an outcome absolutely. If you still think in such terms, you will be quickly disappointed. The best we can
accomplish is to maximize the likelihood of a predictable result, relative to the kind of environment in which
we work.

5 In some other configuration software, assumptions are hard-coded into the tools themselves, making the
outcome undocumented.

Chapter 1: Understanding Agility 5

� �
CFEngine is a fault tolerant system – it continues to work on what it can even when some

parts of its model don’t work out as expected6.
 	
1.5 Comprehension

The next challenge is concerns a human limitation. One of the greatest challenges in any
organization lies in comprehending the system.

� �
Comprehensibility increases if something is predictable, or steady in its behaviour, but it

decreases in proportion to the number of things we need to think about – which includes the
many different contexts such as environments, or groups of machines with different purposes
or profiles.

Predictability (Reliability) Predictability

Comprehensibility =˜ ---------------------------- = ----------------

Contexts Diversity
 	
Our ability to comprehend behaviour depends on how predictable it is, i.e. how well it meets
our expectations. For technology, we expect behaviour to be as close as possible on our
intentions. CFEngine’s maintenance of promises ensures that this is done with best possible
effort and a rapid cycle of checking.

To keep the number of contexts to a minimum, CFEngine avoids mixing up what policy is
being expressed with how the promises are kept. It uses a declarative language to separate
the what from the how. This allows ordinary users to see what was intended without having
to know the meaning of how, as was the case when scripting was used to configure systems.

1.6 Efficiency

Finally, if we think about the efficiency of a configuration, which is another way of estimating
its simplicity, we are interested in how much work it takes to represent our intentions. There
are two ways we can think about efficiency: the efficiency of the automated process and the
human efficiency in deploying it.

If the technology has a high overhead, the cost of maintaining change is high and efficiency
is low:

� �
The efficiency of the technology decreases with the more resources it uses, e.g. like memory

and CPU. Resources used to run the technology itself are pure overhead and take away from
the real work of your system.

Resources used

Resource Efficiency =˜ 1 - ---------------

Total resources
 	
6 Other systems that claim to be deterministic simply stop with error messages. What is the correct behaviour?

Clearly, this is a subjective choice. The important thing is that your system for change behaves in a predictable
way.

6 Agility in Infrastructure Engineering

It is a design goal of CFEngine to maintain minimal overhead in all situations. The second
aspect of efficiency is how much planning or rule-making is needed to manage the relevant
issues.

� �
The efficiency of a model decreases when you put more effort into managing a certain

number of things. If you can manage a large number of things with a few simple constraints,
that is efficient.

Number of objects affected

Model Efficiency =˜ -------------------------------

Number of rules and constraints
 	
General patterns play a role too in simplifying, because the reduce the number of special

rules and constraints down to fewer more generic rules. If we make good use of patterns, we
can make few rules that cover many cases. If there are no discernible patterns, every special
case is a costly exception. This affects not just the technology cost, but also the cognitive
cost (i.e. the comprehensibility).

Efficiency therefore plays a role in agility, because it affects the cost of change. Greater
efficiency generally means greater speed, and more greater likelihood for precision.

Chapter 2: Aspects of CFEngine that bring agility 7

2 Aspects of CFEngine that bring agility

We can now summarize some qualities of CFEngine that favour agility:

� �
1. Ability to express clear intentions about desired outcome (comprehension).

2. Availability of insight into system performance and state (comprehension).

3. Ability to manage large numbers of hosts and resources with a few generic patterns
(efficiency).

4. Ability to bundle related details into simple containers (comprehension without loss of
adaptability).

5. Ability to accurately customize policy down to a low level without programming (adapt-
ability).

6. Ability to recover quickly from faults and failures. The default, parallelized execution
framework verifies promises every 5 minutes for rapid fault detection and change deploy-
ment (clock speed)1 .

7. A quick system monitoring/sampling rate – every 2.5 minutes (Nyquist frequency), for
automated hands-free response to errors.

8. Ability to recover cheaply. The lightweight resource footprint of CFEngine that consumes
few system resources required for actual business (system speed – low overhead, maximum
capacity).

9. Ability to increase number of clients without significant penalty (scalability and easy in-
crease of capacity).

10. A single framework for all devices and operating systems (ease of migrating from one
platform to another).
 	

2.1 What agility means in different environments

Let’s examine some example cases where agility plays a role. Agility only has meaning relative
to an environment, so in the following sections, we cite the remarks of CFEngine users (in
quotes), and their example environments.

Users’ expectations for agility can differ dramatically in the present; but if we think just a
few years down the line, and follow the trends, it seems clear that limber systems must prevail
in IT’s evolutionary jungle.

2.1.1 Desktop management

”The desktop space can be a very volatile environment, with multiple platforms.”

1 Two related concepts that are frequently referred to are the classic reliability measures: Mean Time Before
Failure (MTBF) or proactive health and Mean Time To Repair (MTTR), speed of recovery: (i) If we are
proactive or quick at recovering from minor problems, larger outages can be avoided. Recovery agility plays a
role in avoiding cascade failure.

(ii) If the time to repair is long, or the repair is inaccurate, this could result if more widespread problems.
Inaccurate change or repair often leads to attempts to ‘roll-back’, causing further problems.

8 Agility in Infrastructure Engineering

Speed:

Speed is essential when there is a need to respond to a security threat that affects
all of the desktop systems; e.g. when dealing with malware that requires the
distribution of updated ‘virus.dat’ files, etc. CFEngine can be very helpful by
automating the process of distributing and restarting the application responsible
for virus detection and mitigation. Systems that have been breached, need to be
returned to known and secure state quickly to avoid loss. CFEngine can quickly
detect and correct host based intrusions using file-scanning techniques and can
secure hosts for examination, or just repair them quickly.

Another case for agility lies in user request processing. For example, when a
new user joins a workplace and needs resources such as desktop, laptop, phone,
Internet connection, VPN connection, VM instances, etc. Speed is of the essence
to minimize employee downtime.

Precision:

Desktop environments can involve many different platforms: Windows, multiple
flavours of Linux and Macintosh, etc. A uniform low-cost way of ‘provisioning’ and
maintaining all of these, as well as responding to common threats is of significant
value.

Precision is important to ensure that the resources made available are indeed the
correct ones. Inaccuracy can be a potential security issue, or merely a productivity
question.

Precision also comes into play when an enterprise rolls out new patches or pro-
ductivity upgrades. These upgrades need to be uniformly and precisely distributed
to all of the desktop systems during a given change window. By design, desktop
clients running CFEngine automatically check for changes in system state and
can precisely propagate desired state. In the case of system restoration due to
corruption or hardware failure, CFEngine can greatly reduce the time needed to
return to the most current enterprise build.

2.1.2 Web shops

Modern web-based companies often base their entire financial operations around an active web
site. Down-time of the web service is mission critical.

Speed:

The frequency of maintenance is not usually critical in web shops, since configu-
ration changes can be planned to occur over hours rather than minutes. During
software updates and system repairs, however, speed and orchestration are issues,
as time lost during upgrades is often revenue lost, and a lack of coordination of
multiple parts could cause effective downtime.

It is therefore easy to scale the management of a web service, as change is rarely
considered to be time-critical.

Resource availability for the web service is an issue on busy web servers, however
web services are typically quite slow already and it is easy to load balance a web
service, so resource efficiency of the management software is not usually consid-
ered a high priority, until the possible savings become significant with thousands
of hosts.

Chapter 2: Aspects of CFEngine that bring agility 9

Credit card information is subject to PCI-DSS regulation and requires a continuous
verification for auditing purposes, but these systems are often separated from the
main web service. Speed of execution can be seen as an advantage by some
auditors where repairs to security matters and detection of breaches are carefully
monitored.

Precision:

The level of customization in a web shop could be quite high, as there is a stack of
interdependent services including databases and name services that have to work
seamlessly, and the rate of deployment of new versions of the software might be
relatively high.

Customization and individuality is a large part of a website’s business competi-
tiveness. Maintaining precise

2.1.3 Cloud providers

Speed: The cloud was designed for shorter time-scales, and relatively quick turnover
of needs. That suggests that configuration will change quite often. For
Infrastructure-as-a-Service providers and consumers, set up and tear-down rates
are quite high so efficient and speedy configuration is imperative.

Precision:

For Software and Platform as a service providers, stability, high performance and
regulation are key issues, and scaling up and down for demand is probably the
fastest rate of change.

2.1.4 High Performance Computing

High Performance clusters are typically found in the oil and gas industry, in movie, financial,
weather and aviation industries, and any other modelling applications where raw computation
is used to crunch numbers.

Speed:

The lightweight footprint of CFEngine is a major benefit here, as every CPU cycle
and megabyte of memory is precious, so workflow is not disrupted.

”A single node in the compute grid being out of sync with the others can cause
the entire grid to cause failed jobs or otherwise introduce unpredictability into
the environment, as it may produce results that differ from its peers. Thus it
is imperative that repairs to an incorrect state happen as soon as possible, to
minimize the impact of these issues.”

Precision: ”Precision is exquisitely important in an HPC grid. When making a configu-
ration change, due to the homogeneity of the environment, small changes can
have enormous impacts due to the quantity of affected systems. I liken this
to the ”monoculture” problem in replanted forests – everything is the same, so
what would ordinarily be a small, easily-contained problem like a fungus outbreak,
quickly spreads into an uncontrollable disaster. Thus, with HPC systems it is
imperative that any changes deployed are precise, to ensure that no unintended
consequences will occur. This is clearly directly related to comprehensibility of

10 Agility in Infrastructure Engineering

the environment – it is difficult or impossible to make a precise change when you
don’t fully comprehend the environment.”

2.1.5 Government

Speed:

Government is not known for speed.

Precision:

”Government systems are reviewed and audited under FISMA and so one has
often thought in terms of the ability to reduce complexity to make the problem
manageable. Government typically wants the one-size-fits-all solution to system
management and could benefit from something that can manage complexity and
diversity while providing some central control (I bet you hate that word). The only
thing we might have in common with finance is auditing but I’m sure the methods
and goals are completely different. Finance is big money trying to make more big
money. Government is focused more on compliance with its own regulations.”

2.1.6 Finance

Speed:

One of the key factors in finance is liability. Fear of error, has led to very slow
processing of change.

High availability in CFEngine is used for continuous auditing and security. Passing
regulatory frameworks like SOX, SAS-70, ISO 20k, etc can depend on this non-
intrusive availability. Liability is a major concern and significant levels of approval
are generally required to make changes, with tracking of individual responsibility.
Out-of-hours change windows are common for making upgrades and making in-
tended changes. Scalability of reporting is a key here, but change happens slowly.

Precision:

Security and hence tight control of approved software are major challenges in
government regulated institutions. Agility has been a low priority in the past, but
this will have to change as the rest of the world’s IT services accelerate.

2.1.7 Manufacturing

SCADA (supervisory control and data acquisition) generally refers to industrial control systems
(ICS): computer systems that monitor and control industrial, infrastructure, or facility-based
processes, as described below.

Speed:

Manufacturing is a curious mix of all the mention areas and more. In addition to
the above, there is an tool component. The tools can design, build, test, track,
and ship a physical unit. Downtime of any component is measured in missed
revenue, so speed of detection and repair is crucial.

Precision:

”We need to ensure agility and accuracy of reporting. We need to know what is
going on at any microsecond of the day. One faulty tool can throw a wrench in
the whole works. The digital equivalent of the steam whistle to stop the line.

Chapter 2: Aspects of CFEngine that bring agility 11

From there, all the tool information is fed upstream to servers, from there to
databases, then reports, that statistical analysis, and so on. Each piece needs to
move with the product and incorporate it. It is a steady chain of events where
are all information is liquid and relevant.

Not only do you have the security requirements, from virus updates to top secret
classification, but these tools need to never stop, ever. Also, these tools need
constant reconfiguration depending on the product they are working on: e.g. you
can’t use the same set of procedures on XBox chip as a cellphone memory module.
And all the tools are different too: one may be a probe to detect microscopic
fractures in the layers, one tool may just track it’s position in line. Supply and
demand, cost and revenue.”

2.2 Separating What from How (DevOps)

If you have to designs a programmatic solution to a challenge, it will cost you highly in terms
of cognitive investment, testing and clarity of purpose to future users. Thinking process (how)
instead of knowledge (what) is a classic carry-over from the era of 2nd Wave industrialization2.

� �
Think of CFEngine as an active knowledge management system, rather than as a relatively

passive programming framework.

For ‘DevOps’: programming is for your application, consider its deployment to be part of
the documentation.
 	

Many programmatic systems and ‘APIs’ force you to explain how something will be accom-
plished and the statement about ‘what’ the outcome will be is left to an implicit assumption.
Such systems are called imperative systems.

CFEngine is a declarative system. In a declarative system, the reverse is true. You begin
by writing down What you are trying to accomplish and the How is more implicit. The way
this is done is by separating data from algorithm in the model. CFEngine encourages this with
its language, but you can go even further by using the tools optimally.

CFEngine allows you to represent raw data as variables, or as strings within your policy.
For example:

bundle agent name

–

vars:

”main˙server” string =¿ ”abc.123.com”;

”package˙source[ubuntu]” string =¿ ”repository.ubuntu.com”;

”package˙source[suse]” string =¿ ”repository.suse.com”;

Promises that use these data

#

packages:

2 See http://www.cfengine.com/blog/sysadmin-3.0-and-the-third-wave

http://www.cfengine.com/blog/sysadmin-3.0-and-the-third-wave

12 Agility in Infrastructure Engineering

processes:

files:

services: , etc

˝

By separating ‘what’ data like this out of the details of how they are used, it becomes easier
to comprehend and locate, and it becomes fast to change, and the accuracy of the change is
easily perceived. Moreover, CFEngine can track the impact of such a change by seeing where
the data are used.� �

CFEngine’s knowledge management can tell you which system promises depend on which
data in a clear manner, so you will know the impact of a change to the data.
 	

You can also keep data outside your policy in databases, or sources like:

• LDAP

• NIS

• DNS

• System files

For example, reading in data from a system file is very convenient. This is what Unix-like
system do for passwords and user management.

What you might lose when making an input matrix is the why. Is there an explanation that
fits all these cases, or does each case need a special explanation? We recommend that you
include as much information as possible about ‘why’.

2.3 Packaging limits agility

Atomicity enables agility. Atomicity, or the avoidance of dependency, is a key approach to
simplicity. Today this is often used to argue to packaging of software.

Handling software and system configuration as packages of data makes certain processes
appear superficially easy, because you get a single object to deal with, that has a name and a
version number. However, to maintain flexibility we should not bundle too many features into
a package.

� �
A tin of soup or a microwave meal might be a superficially easy way to make dinner, for many

scenarios, but the day you get a visitor with special dietary requirements (vegetarian or allergic
etc) then the prepackaging is a major obstacle to adapting: the recipe cannot be changed and
repackaged without going back to the factory that made it. Thus oversimplification generally
tends to end up sending up back to work around the technology.
 	

CFEngine’s modelling language gives you control over the smallest ingredients, but also
allows you to package your own containers or work with other suppliers’ packages. This
ensures that adaptability is not sacrificed for superficial ease.

Chapter 2: Aspects of CFEngine that bring agility 13

For example: your system’s package model can cooperate with CFEngine make asking
CFEngine to promise to work with the package manager:

packages:

”apache2”;

”php5”;

”opera”;

If you need to change what happens under the covers, it is very simple to do this in CFEngine.
You can copy the details of the existing methods, because the details are not hard-coded, and
you can make your own custom version quickly.

packages:

”apache2”

package˙method =¿ my˙special˙package˙manager˙interface;

2.4 How abstraction improves agility

Abstraction allows us to turn special cases into general patterns. This leads to a compression
of information, as we can make defaults for the general patterns, which do not have to be
repeated each time.

Service promises are good example of this3, for example:

services:

”www”;

In this promise, all of the details of what happens to turn on the web service have been hidden
behind this simple identifier ‘www’. This looks easy, but is it simple?

In this case, it is both easy and simple. Let’s check why. We have to ask the question:
how does this abstraction improve speed and precision in the long run?

Obviously, it provides short term ease by allowing many complex operations to take place
with the utterance of just a single word4. But any software can pull that smoke and mirrors
trick. To be agile, it must be possible to understand and change the details of what happens
when this services is promised. Some tools hard-code processes for this kind of statement,
requiring an understanding of programming in a development language to alter the result. In
CFEngine, the definitions underlying this are written in the high-level declarative CFEngine
language, using the same paradigm, and can therefore be altered by the users who need the
promise, with only a small amount of work.

3 Service promises, as described here, were introduced into version 3.3.0 of CFEngine in 2012.
4 All good magic stories begin like this.

14 Agility in Infrastructure Engineering

Thus, simplicity is assured by having consistency of interface and low cost barrier to chang-
ing the meaning of the definition.

2.5 Increasing system capacity (by scaling)

Capacity in IT infrastructure is increased by increasing machine power. Today, at the limit
of hardware capacity, this typically means increasing the number of machines serving a task.
Cloud services have increased the speed agility with which resources can be deployed – whether
public or private cloud – but they do not usually provide any customization tools. This is where
CFEngine brings significant value.

The rapid deployment of new services is assisted by:

• Virtualization hypervisor control or private cloud management (libvirt integration).

• Rapid, massively-parallelized custom configuration.

• Avoidance of network dependencies.

Related to capacity is the issue of scaling services for massive available capacity.

By scalability we mean the intrinsic capacity of a system to handle growth. Growth in a
system can occur in three ways: by the volume of input the system must handle, in the total
size of its infrastructure, and by the complexity of the processes within it.

For a system to be called scalable, growth should proceed unhindered, i.e. the size and
volume of processing may expand without significantly affecting the average service level per
node.

Although most of us have an intuitive notion of what scalability means, a full understanding
of it is a very complex issue, mainly because there are so many factors to take into account.
One factor that is often forgotten in considering scalability, is the human ability to comprehend
the system as it grows. Limitations of comprehension often lead to over-simplification and
lowest-common-denominator standardization.

Scalability is addressed in a separate document: Scale and Scalability, so we shall not
discuss it further here.

Chapter 3: Agility in your work 15

3 Agility in your work

3.1 Easy versus simple� �
Just as we separate goals from actions, and strategy from tactics, so we can separate what
is easy from what is simple. Easy brings short-term gratification, but simple makes the future
cost less.
 	

Easy is about barriers to adoption. If there is a cost associated with moving ahead that
makes it hard:

• A psychological cost

• A cognitive cost

• It takes too long

• It costs too much money

Simple is about what happens next. Once you have started, what happens if you want to
change something?

Total cost of ownership is reduced if a design is simple, as there are only a few things to
learn in total. Even if those things are hard to learn, it is a one-off investment and everything
that follows will be easy.

Unlike some tools, with CFEngine, you do not need to program ‘how’ to do things, only
what you want to happen. This is always done by using the same kinds of declarations, based
on the same model. You don’t need to learn new principles and ideas, just more of the same.

3.2 How does complexity affect agility?

In the past1, it was common to manage change by making everything the same. Today, the
individualized custom experience is what today’s information-society craves. Being forced into
a single mold is a hindrance to adaptability and therefore to agility. To put it another way, in
the modern world of commerce, consumers rule the roost, and agility is competitive edge in a
market of many more players than before.

Of course, it is not quite that simple. Today, we live in a culture of ‘ease’, and we focus
on what can be done easily (low initial investment) rather than worrying about long term
simplicity (Total Cost of Ownership).

At CFEngine, we believe that ‘easy’ answers often suffer from the sin of over-simplification,
and can lead to risky practices. After all, anyone can make something appear superficially easy
by papering over a mess, or applying raw effort, but this will not necessarily scale up cheaply
over time. Moreover, making a risky process ‘too easy’ can encourage haste and carelessness.

Any problem has an intrinsic complexity, which can be measured by the smallest amount
of information required to manage it, without loss of control.

1 Perhaps not just in the past. We are emerging from an industrial era of management where mass producing
everything the same was the cheapest approach to scaling up services. However, today personal freedom
demands variety and will not tolerate such oversimplification.

16 Agility in Infrastructure Engineering

� �
• Ease is the absence of a barrier or cost to action.

• Simplicity is a strategy for minimizing Total Cost of Ownership.
 	
Making something truly simple is a very hard problem, but it is an investment in future

change. What is easy today might be expensive to make easy tomorrow. But if something
is truly simple, then the work is all up front in learning the basics, and does not come as an
unexpected surprise down the line.

At CFEngine, we believe in agility through simplicity, and so we invest continuous research
into making our technology genuinely simple for trained users. We know that a novice user
will not necessarily find CFEngine easy, but after a small amount of training, CFEngine will be
a tool for life, not just a hurried deployment.

Simplicity in CFEngine is addressed in the following ways:

• The software has few dependencies that complicate installation and upgrading.

• Changes made are atomic and minimize dependencies.

• Each host works as an independent entity, reducing communication fragility.

• The configuration model is based on Promise Theory – a very consistent and simple
approach to modelling autonomous cooperative systems.

• All hosts run the same software agents on all operating platforms (from mobile phones
to mainframes), and understand a single common language of intent, which they can
translate into native system calls. So there are few exceptions to deal with.

• Comprehensive facilities are allowed for making use of patterns and other
total-information-reducing tactics.

A certain level of complexity might be necessary and desirable – complexity is relative.
Some organizations still try to remain agile by avoiding complexity. However, the ability to
respond to complex scenarios often requires us to dabble with diversity. Avoiding it merely
creates a lack of agility, as one is held back by the need to over-simplify.

3.3 An effective understanding helps agility

All configuration issues, including fitness for purpose, boil down to three things: why, what
and how. Knowing why we do something is the most important way of avoiding error and risk
of failure. Simplicity then comes from keeping the ‘what’ and the ‘how’ separate, and reducing
the how to a predictable, repairable transaction. This is what CFEngine’s convergent promise
technology does.

Knowledge is an antidote to uncertainty. Insight into patterns, brings simplicity to the
information management, and insight into behaviour allows us to estimate impact of change,
thus avoiding the risk associated with agility.� �

In configuration ‘what’ represents transitory knowledge, while ‘how’ is often more lasting
and can be absorbed into the infrastructure. The consistency and repairability of ‘how’ makes
it simpler to change what without risk.
 	

Chapter 3: Agility in your work 17

3.4 Maximizing business imperatives

Agility allows companies and public services to compete and address the needs of continuous
service improvement. This requires insight into IT operations from business and vice versa.
Recently, the ‘DevOps’ movement in web arenas has emphasized the need for a more stream-
lined approach to integrating business-driven change and IT operations. Whatever we choose
to call this, and in whatever arena, ‘connecting the dots between business and IT’ is a major
enabler for agility to business imperatives.

Some business issues are inherently complex, e.g. software customization and security,
because they introduce multifaceted conflicts of interest that need to resolved with clear
documentation about why.

� �
Be careful about choosing a solution because it has a low initial outlay cost. Look to the

long term cost, or the Total Cost of Ownership over the next 5 years.

Many businesses have used the argument: everything is getting cheaper so it doesn’t matter
if my software is inefficient – I can brute force it in a year’s time with more memory and a
faster CPU. The flaw in this argument is that complexity and scale are also increasing, and
you will need those savings down the line even more than you do now.
 	

The ability to model our intentions in a clearly understandable way enables insight and
understanding; this, in turn, allows us to anticipate and comprehend challenges. CFEngine’s
knowledge management features help to make the configuration itself a part of the documen-
tation of the system. Instead of relying on command line tools to interact, the user documents
intentions (as ‘promises to be kept’). These promises, and how well they have been kept, can
be examined either from the original specification or in the Mission Portal.

In the industrial age, the strategy was to supply sufficient force to a small problem in order
to ‘control’ it by brute force. In systems today the scale and complexity are such that no such
brute force approach can seriously be expected to work. Thus one is reduced to a more even
state of affairs: learning to work with the environment ‘as is’, with clear expectations of what
is possible and controlling only certain parts on which crucial things depend.

3.5 What does agility cost?

CFEngine is designed to have a low Total Cost of Ownership, by being exceptionally lightweight
and conceptually simple. The investment in CFEngine is a ‘learning curve’ that some find
daunting. Indeed, at CFEngine, we work on reducing this initial learning curve all the time –
but what really saves you in the end is simplicity without over-simplification.

18 Agility in Infrastructure Engineering

� �
At a recent deployment in the banking sector, CFEngine replaced an incumbent software

solution where 200 machines were required to make the management infrastructure scale to
the task.

CFEngine replaced this with 3 machines, and a reduced workforce. After the replacement
the clock-time required for system updates went from 45 minutes to 16 seconds.
 	

The total cost of providing for agility can be costly or it can be cheap. By design, CFEngine
aims to make scale and agility inexpensive in the long run.

3.6 Who is responsible for agility?

The bottom line is: you are! Diversity and customization are basic freedoms that user-driven
services demand in today’s world, and having the agility to meet changing desires is going
to be an increasingly important and prominent feature of IT, as we delve further into the
information-based society.

� �
Competitive edge, response to demands, in both private sector and research, makes agility

the actual product of a not-too-distant tomorrow.
 	
Who or what makes agility a reality? The simple answer to this question is everyone and

everything. Change is a chain of dependent activities and the weakest link in the chain is the
limiting factor. Often, that is human knowledge, since it is the part of the chain that we take
most for granted.

CFEngine has been carefully designed to support agile operations for the long term, by
investing in knowledge management, speed and efficiency.

