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The freedom trend: F = me³

Personal, untethered...



  

Unseen infrastructure: networks

● Roads
● Tracks
● Electricity
● Cable
● Wireless
● …
● Freedom comes with hidden costs: 

CONFIGURATION of the magical infrastructure 
and mobile freedom



  

Freedom principle in action

● Applications drive sysadmin today
● This is just part of the trend

● Mainframe → workstation → laptop → mobile
● Integrated systems → shell commands
● Software-suite → FOSS → “app”
● Pre-programmed menus →  scripts → standalone 

promises
● Centralized control → local or federated control



  

Configuring for “freedom”

● The problems we face are increasing scale and 
complexity as freedom is thrust upon us by 
social or environmental forces – our desire for 
flexibility

● What allows us to handle this complexity?

● Atomize – keep it simple and light

● Untether – give me the freedom to work/live

● This is not the way it used to be done in IT, so 
we need to go back and understand why FOSS 
config systems are different.



  

Chapter 1: primæval soup

Going back to the beginning of things



  

Homework 1:
How do you configure a glass of water?

MODELLING HINT (melt first):
molecules:

  "water"
    atoms => { "hydrogen", "hydrogen", "oxygen" };

bonds:

  "hydrogen"
    valency => "+1", # oxidation number
  container => glass;

  "oxygen"
    valency => "2",
  container => glass;



  

Homework  2:
Explain the difference between ice and a cloud?

ISOMORPHIC SCENARIO:
molecules:

  "computer"
    atoms => { "motherboard", "disk", "disk" };

bonds:

  "motherboard"
       disk_valency => "2",
    network_valency => "1",
          container => host_1;

  "disk"
       disk_valency => "+1",
          container => host_1;



  

The “promise” model (cfengine)

● Atomic elements + convergence principles are a 
sufficient description of the problem.

● The principles for managing diversity are:

● Non-conflicting building blocks 

– (primitive elements) files, processes, database tables, etc

● Desired maintainable properties (repairable)

– What basic properties can be promised

● Stable arrangements (configuration)

– Converge spontaneously by attraction to desired state



  

Chapter 2:

Stable recreatable patterns

Exploiting packages and services



  

High level languages 

● After water, interesting complexity emerged...
● Re-digitizing configuration descriptions at a 

higher level
● In the history of the world, domain specific 

languages (DNA/RNA) 

● In chemistry, there are multiple languages:
● Genes (to configure peptides/proteins)
● Proteins (to configure tissues)



  

“High level” 
configuration language

peptides:

  "amylin"

      comment => "pancreatic beta cells",
   amino_code =>
             "KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY";

amino_acids:

  "K"
      comment => "Lysine",
       codons => { "AAA", "AAG" };



  

Does this digitization go too far?

● Pre-fab components reduce flexibility!

● Given a supply of amylin, as a black box

● Can't reconfigure it into Tryptone even though there 
is an underlying freedom to do so

● Either need an easy supply of all black boxes (off the 
shelf warehouse) or we've failed the flexibility test

● We constantly trade detail for flexibility

● There is a risk of oversimplifying



  

Homework 3:

How do you configure a dinosaur?



  

 (bring it up to the present day) Homework 3:

How do you configure AIX?



  

Or a moose?



  

Distributed build + repair
stability enables freedom

● Underlying these languages are hidden stable 
processes
● Electrical attraction in water
● RNA/DNA copying fidelity in proteins
● Jigsaw shapes that fit/don't fit

● The coding of these mechanisms provides local 
 autonomy of build + repair
● We can distribute the processes in PARALLEL
● No umbilical required (dissociation)
● Infrastructure or free-floating mobile device



  

The Myth of Centralized 
Management

● Single point of control, single point of failure
● Serialization and Amdahl's law

● How does centralization actually help?
● Hearts and minds – unviable dinosaurs + old 

push based technologies



  

Chapter 3:

The IT-atious era 
and beyond...



  

IT automation today (cfengine '93)

● Old push based technologies are out
● Don't scale
● Don't support inevitable desire for freedom 

● Distributed decentralized network thinking is in
● Atoms: files, processes, packages, machines, 

networks …phone settings (digital “DSL”)
● Bonds: stable documented relationships 

(promises)
● Self-healing = trusted dependability 



  

The role of FOSS
● Starting without commercial interest gives 

freedom to think clearly without pressure
● e.g. Big four reactive alarm system trap

● Connects ideas to a critical audience to prove 
new technology
● Zero price = zero barrier to adoption
● Source code less important than flexibility
● Community of writers less important than 

discussion and verification

● A re-branding of the scientific discourse



  

Our world:  freedom vapours 
condense around us … the real cloud

● We now know how to to support IT freedoms

● Invisible infrastructure √√
● Lightweight devices that enable creativity √√
● Servers, phones, pads, apps... (the real cloud)

● This is complexity management, a form of 
knowledge or information management

Homework 4: 
How do you configure a web page?



  

Chapter 4:

At the KT boundary

Knowledge-Technology
Knowledge-Transfer



  

The new role of commerce

● Division of labour:
● Machines: implementation
● Humans: knowledge

● Agile and re-usable
● No expertise required
● Make black boxes

● BUT: if you can touch it, it needs to be managed!

● Charge for the value of the simplicity
● Oversimplifying just holds you back



  

Freedom + commerce

● Make many small-smart boxes
● The kinds of promises they need to keep will evolve 

relevant to the environment of the day...

● Easy to use, simple but powerful
● Seeking appropriate compromises

● This is the start of knowledge management

Redesigning the configuration language for Cfengine 3: 
free interface design, to conceal without removing 
configuration complexity: build your own coloured box



  

Mutating FOSS ideas and habits

● Build and monitoring → integrated services

● Independent monitoring is better?

● You don't fly a second plane to measure altitude

● Most monitoring tools do not offer any kind of 
scientific rigour in measurement anyway

● Doing and Knowing need to come together in a 
much less ad hoc way

● Here FOSS loyalties can get in the way of progress



  

Automation rehumanizes 
system administration

● “Dehumanization is not replacing humans by 
machines but in making humans act like machines 
in the first place.”

● The future challenge is now Knowledge
● Planning, knowing, insight – freedom to change
● Disseminating, training – freedom to change jobs
● Quality assuring – freedom to trust not micromanage
● Understanding the beast you made!

● Good models bring simplicity and agility
● Pedagogical and didactic skills return

● Humanities students can play an increasing role



  

Successes and Failures

● Unix commands – 
freedom to develop

● Apps
● Mammals
● Freedom to change
● Small reliable building 

blocks

● Dinosaurs – inflexible 
brute force fragile to 
catastrophe

● Forced / pushed 
compliance

● Big black boxes

Final Homework: 
How do you configure success?



  

Summary
Challenge: Free adaptability, stability and 

scalable complexity

Untether dependencies + simple clear promises

→ clear expectations 
→  collaboration 

→ social ecosystem 
→ personal enablement

→ Freedom

The real cloud is all of us



  

Free Speech or Free Beer?
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