

The Future of Free/Open Source
Configuration Management

Mark Burgess

Cfengine
&

Dept of Computer Science
Oslo University College

The freedom trend: F = me³

Personal, untethered...

Unseen infrastructure: networks

● Roads
● Tracks
● Electricity
● Cable
● Wireless
● …
● Freedom comes with hidden costs:

CONFIGURATION of the magical infrastructure
and mobile freedom

Freedom principle in action

● Applications drive sysadmin today
● This is just part of the trend

● Mainframe → workstation → laptop → mobile
● Integrated systems → shell commands
● Software-suite → FOSS → “app”
● Pre-programmed menus → scripts → standalone

promises
● Centralized control → local or federated control

Configuring for “freedom”

● The problems we face are increasing scale and
complexity as freedom is thrust upon us by
social or environmental forces – our desire for
flexibility

● What allows us to handle this complexity?

● Atomize – keep it simple and light

● Untether – give me the freedom to work/live

● This is not the way it used to be done in IT, so
we need to go back and understand why FOSS
config systems are different.

Chapter 1: primæval soup

Going back to the beginning of things

Homework 1:
How do you configure a glass of water?

MODELLING HINT (melt first):
molecules:

 "water"
 atoms => { "hydrogen", "hydrogen", "oxygen" };

bonds:

 "hydrogen"
 valency => "+1", # oxidation number
 container => glass;

 "oxygen"
 valency => "2",
 container => glass;

Homework 2:
Explain the difference between ice and a cloud?

ISOMORPHIC SCENARIO:
molecules:

 "computer"
 atoms => { "motherboard", "disk", "disk" };

bonds:

 "motherboard"
 disk_valency => "2",
 network_valency => "1",
 container => host_1;

 "disk"
 disk_valency => "+1",
 container => host_1;

The “promise” model (cfengine)

● Atomic elements + convergence principles are a
sufficient description of the problem.

● The principles for managing diversity are:

● Non-conflicting building blocks

– (primitive elements) files, processes, database tables, etc

● Desired maintainable properties (repairable)

– What basic properties can be promised

● Stable arrangements (configuration)

– Converge spontaneously by attraction to desired state

Chapter 2:

Stable recreatable patterns

Exploiting packages and services

High level languages

● After water, interesting complexity emerged...
● Re-digitizing configuration descriptions at a

higher level
● In the history of the world, domain specific

languages (DNA/RNA)

● In chemistry, there are multiple languages:
● Genes (to configure peptides/proteins)
● Proteins (to configure tissues)

“High level”
configuration language

peptides:

 "amylin"

 comment => "pancreatic beta cells",
 amino_code =>
 "KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY";

amino_acids:

 "K"
 comment => "Lysine",
 codons => { "AAA", "AAG" };

Does this digitization go too far?

● Pre-fab components reduce flexibility!

● Given a supply of amylin, as a black box

● Can't reconfigure it into Tryptone even though there
is an underlying freedom to do so

● Either need an easy supply of all black boxes (off the
shelf warehouse) or we've failed the flexibility test

● We constantly trade detail for flexibility

● There is a risk of oversimplifying

Homework 3:

How do you configure a dinosaur?

 (bring it up to the present day) Homework 3:

How do you configure AIX?

Or a moose?

Distributed build + repair
stability enables freedom

● Underlying these languages are hidden stable
processes
● Electrical attraction in water
● RNA/DNA copying fidelity in proteins
● Jigsaw shapes that fit/don't fit

● The coding of these mechanisms provides local
 autonomy of build + repair
● We can distribute the processes in PARALLEL
● No umbilical required (dissociation)
● Infrastructure or free-floating mobile device

The Myth of Centralized
Management

● Single point of control, single point of failure
● Serialization and Amdahl's law

● How does centralization actually help?
● Hearts and minds – unviable dinosaurs + old

push based technologies

Chapter 3:

The IT-atious era
and beyond...

IT automation today (cfengine '93)

● Old push based technologies are out
● Don't scale
● Don't support inevitable desire for freedom

● Distributed decentralized network thinking is in
● Atoms: files, processes, packages, machines,

networks …phone settings (digital “DSL”)
● Bonds: stable documented relationships

(promises)
● Self-healing = trusted dependability

The role of FOSS
● Starting without commercial interest gives

freedom to think clearly without pressure
● e.g. Big four reactive alarm system trap

● Connects ideas to a critical audience to prove
new technology
● Zero price = zero barrier to adoption
● Source code less important than flexibility
● Community of writers less important than

discussion and verification

● A re-branding of the scientific discourse

Our world: freedom vapours
condense around us … the real cloud

● We now know how to to support IT freedoms

● Invisible infrastructure √√
● Lightweight devices that enable creativity √√
● Servers, phones, pads, apps... (the real cloud)

● This is complexity management, a form of
knowledge or information management

Homework 4:
How do you configure a web page?

Chapter 4:

At the KT boundary

Knowledge-Technology
Knowledge-Transfer

The new role of commerce

● Division of labour:
● Machines: implementation
● Humans: knowledge

● Agile and re-usable
● No expertise required
● Make black boxes

● BUT: if you can touch it, it needs to be managed!

● Charge for the value of the simplicity
● Oversimplifying just holds you back

Freedom + commerce

● Make many small-smart boxes
● The kinds of promises they need to keep will evolve

relevant to the environment of the day...

● Easy to use, simple but powerful
● Seeking appropriate compromises

● This is the start of knowledge management

Redesigning the configuration language for Cfengine 3:
free interface design, to conceal without removing
configuration complexity: build your own coloured box

Mutating FOSS ideas and habits

● Build and monitoring → integrated services

● Independent monitoring is better?

● You don't fly a second plane to measure altitude

● Most monitoring tools do not offer any kind of
scientific rigour in measurement anyway

● Doing and Knowing need to come together in a
much less ad hoc way

● Here FOSS loyalties can get in the way of progress

Automation rehumanizes
system administration

● “Dehumanization is not replacing humans by
machines but in making humans act like machines
in the first place.”

● The future challenge is now Knowledge
● Planning, knowing, insight – freedom to change
● Disseminating, training – freedom to change jobs
● Quality assuring – freedom to trust not micromanage
● Understanding the beast you made!

● Good models bring simplicity and agility
● Pedagogical and didactic skills return

● Humanities students can play an increasing role

Successes and Failures

● Unix commands –
freedom to develop

● Apps
● Mammals
● Freedom to change
● Small reliable building

blocks

● Dinosaurs – inflexible
brute force fragile to
catastrophe

● Forced / pushed
compliance

● Big black boxes

Final Homework:
How do you configure success?

Summary
Challenge: Free adaptability, stability and

scalable complexity

Untether dependencies + simple clear promises

→ clear expectations
→ collaboration

→ social ecosystem
→ personal enablement

→ Freedom

The real cloud is all of us

Free Speech or Free Beer?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

