
CFEngine 3 Nova Pilot Handbook Supplement
CFEngine Enterprise Documentation

Updated 5. January 2011

CFEngine� �
This document supplements the ‘CFEngine 3 Nova Pilot Handbook’ with examples for all report types

available in the CFEngine 3 Nova Mission Portal.
 	
Copyright c© 2011 CFEngine AS. The features described herein are in provided for user convenience

and imply no warranty whatsoever to the extent of applicable law.

i

Table of Contents

1 Standard reports in CFEngine 3 Nova . 1

1.1 Bundle profile report . 1

1.2 Business value report . 2

1.3 Class profile report . 3

1.4 Compliance by promise report . 4

1.5 Compliance summary report . 5

1.6 File change log report . 6

1.7 File change diffs report . 7

1.8 Last saw hosts report . 9

1.9 Patches available report . 10

1.10 Patch status report . 11

1.11 Performance report . 12

1.12 Promises repaired log report . 13

1.13 Promises repaired summary report . 14

1.14 Promises not kept log report . 15

1.15 Promises not kept summary report . 16

1.16 Setuid/gid root programs report . 17

1.17 Software installed report . 18

1.18 Variables report . 19

2 CDP reports . 21

2.1 ACLs report: File access controls . 21

2.2 Commands report: Scheduled commands to execute 24

2.3 File changes report: File changes observed on the system 25

2.4 File diffs report: Delta/difference comparison showing file changes 26

2.5 Registry report: Promised Windows registry setting status 27

2.6 Services report: System service status . 29

Chapter 1: Standard reports in CFEngine 3 Nova 1

1 Standard reports in CFEngine 3 Nova

Standard reports in CFEngine 3 Nova can be accessed through the ‘Reports finder’ in the

‘Engineering’ room. The finder lists all standard report categories and each category contains

information about different aspects of the Mission. When you click one of them, the ‘Report finder’

will present a query form that is adapted to the chosen report category. CFEngine uses regular

expressions in these queries, for maximum flexibility and to minimize system impact. The details of

these queries and the content of the resulting reports are outlined in the following sections.

1.1 Bundle profile report

Promises are the fundamental statements in CFEngine, they make up the definition of the desired

state of a system. A bundle is a collection of promises in a ‘sub-routine-like’ container. The purpose

of bundles is to allow greater flexibility to break down the contents of policies and give them names.

Bundles also allow to re-use promise code by parameterizing it.

The ‘Bundle profile report’ is useful for checking when specific bundles were last verified and for

seeing statistics about the frequency of verification. Click on Bundle profile in the ‘Reports finder’

to open a query window:

Figure: Go to Bundle profile query

The Bundle profile query can filter by bundle pattern (pattern in bundle name) and host class (i.e.

the class/context of a bundle). Leaving the fields blank will result in a report listing all bundles in your

policies.

Figure: Bundle profile query

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of bundles that

suit the query criteria entered above. It displays the host names on which these bundles can be

found (‘Host’), the name of the bundles (‘Bundle’), the time stamp at the momement of verification

(‘Last verified’), the time passed since last verification (‘Hours ago’), the average time between

each verification (‘Avg interval’), and the uncertainty of that average (‘Uncertainty’, measured

in one standard deviation of ‘Avg interval’). You can add your personal note in the right column,

Chapter 1: Standard reports in CFEngine 3 Nova 2

documenting any thoughts or issues that you might have about the query result. The ‘Last verified’

value is yellow if more than six hours have passed since last verification.

Figure: Bundle profile report

1.2 Business value report

One of the capabilities of CFEngine 3 Nova is to add business or organizational value to the configuration

model. The notion of business value is not necessarily a clear concept, but a simple approach is to

attach a monetary value to the outcome of promises.

CFEngine’s default values for promises kept, promises repaired and promises not kept are 1, 0.5,

and -1, respectively. The values are summed and recorded at a set time interval, and the results are

summarized for every host and day.

Click on Business value in the ‘Reports finder’ to open a query window:

Figure: Business value query

The Business value query can filter by date and host class (i.e. the class/context of a host).

Leaving the fields blank will result in a report listing the business value of all promises that have had

value attached to them over all hosts and days.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that suit

the query criteria entered above. The result presents each host name (‘Host’), date (‘Day’), and the

Chapter 1: Standard reports in CFEngine 3 Nova 3

sum of the value of the promises kept (‘Kept’), repaired (‘Repaired’), and not kept (‘Not kept’). You

can add your personal note in the right column, documenting any thoughts or issues that you might

have about the query result.

Figure: Business value report

We will look at an example of how to attach business value of specific promises at a later stage,

when it is time to edit a file in the integrated policy editor.

1.3 Class profile report

CFEngine classes are certain true/false (Boolean) propositions that determine in what context, or

setting, a promise is made. Each time CFEngine runs (by default every five minutes), it discovers and

classifies properties of the environment in which it runs. These discovered properties are called ’hard

classes’ and cannot be changed by users. CFEngine also operates with soft classes, i.e. user-defined

types.

The Class profile report is useful for looking at hosts in specific contexts, for instance to find out

which machines run on windows. Click on Class profile in the ‘Reports finder’ to open a query

window:

Chapter 1: Standard reports in CFEngine 3 Nova 4

Figure: Class profile query

The class profile query can filter by (pattern in) class name and host class (i.e. the context of a

host). Leaving the fields blank will result in a report listing all hosts and classes.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that

suit the query criteria entered above. The result presents the host names (‘Host’), ‘Class context’,

probability of occurence (‘Occurs with probability’), ‘Uncertainty’ (standard deviation of ‘Occurs

with probabilty’), and the last time the class was observed (‘Last seen’).

Figure: Class profile report

1.4 Compliance by promise report

Promises are the fundamental statements in CFEngine, the policy atoms. Promises can be made about

all kinds of different subjects, from file attributes, to the execution of commands, access control deci-

sions and knowledge relationships. If there is no promise, nothing happens. It is considered compliant

if CFEngine is able to keep the promise, and conversely, not compliant, or not kept, in the opposite

case.

The ‘Compliance by promise’ report is useful for checking the current status of your system in

high detail. You can find out which parts of a bundle work and which do not. The report also predicts

the probability of compliance based on the history of specific promises, allowing you to assess the degree

to which the problem is of a more transient or permanent nature. Click on Compliance by promise in

the ‘Reports finder’ to open a query window:

Chapter 1: Standard reports in CFEngine 3 Nova 5

Figure: Compliance by promise query

The compliance by promise query can filter by (patterns in) promise handle,

any/compliant/repaired/non-compliant promises (drop-down menu), and host class (i.e.

the context of a host). Leaving the fields blank will result in a report listing all hosts and and promises.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that suit

the query criteria entered above. The result presents the host names (‘Host’), the promise identifier

‘Promise handle’, ‘Last known state’ (compliant or not compliant), likelyhood of a promise being

compliant (‘Probability kept’), uncertainty of the likelyhood (‘Uncertainty’, measured in one stan-

dard deviation of ‘Probability kept’), and the time stamp of the last time the promise was run.

Figure: Compliance by promise report

1.5 Compliance summary report

CFEngine policies are collections of promises contained in a text file, they are the CFEngine scripts that

define what state you want your system to be in. The compliance summary report gives an overview

of policy status. It shows the current status of your system in a coarse manner, allowing you to quickly

identify which areas need follow-up. Click on Compliance summary in the ‘Reports finder’ to open

a query window:

Chapter 1: Standard reports in CFEngine 3 Nova 6

Figure: Compliance summary query

The compliance summary query can filter by (pattern in) promise handle and host class (i.e. the

context of a host). Leaving the fields blank will result in a report listing all hosts and and policies.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that suit the

query criteria entered above. The result presents the host names (‘Host’), policy file name (‘Policy’),

percentage of promises kept within the listed policies (‘Kept’), percentage of promises repaired within

the listed policies (‘Repaired’), percentage of promises not kept within the listed policies (‘Not kept’),

and the time stamp of the last status check (‘Last seen’).

Figure: Compliance summary report

1.6 File change log report

File change monitoring is about detecting when file information on a computer system changes. Aware-

ness of changes is often considered a major part of management, especially if they are unexpected or

inadvertent (expected changes are usually not a problem). With CFEngine you can either set a general

tripwire to detect all changes, or, in the case of the ‘File change log’, monitor specific files with

changes promises. The report gives you relative detail of change as it presents the name of files that

have been changed, when they were changed and on what host they were changed.

Chapter 1: Standard reports in CFEngine 3 Nova 7

The file change log query can filter by (patterns in) file name and host class (i.e. the class/context

of a host). Leaving the fields blank will result in a report listing changes detected on all monitored

hosts and and policies.

Figure: File change log query

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that suit

the query criteria entered above. The result presents the host names (‘Host’), name of the file where

a change was detected (‘File’), and time stamp of change detection (‘Change detected at’). You

can add your personal note in the right column, documenting any thoughts or issues that you might

have about the query result.

Figure: File change log report

1.7 File change diffs report

A diff is a file comparison utility that outputs the differences between two files. It is typically used to

show the changes between one version of a file and a former version of the same file. Diff displays the

Chapter 1: Standard reports in CFEngine 3 Nova 8

changes made per line for text files. Once a file change has been identified, for instance as seen in the

file change log, you can browse the details of that change in a file change diff report.

The file change diff query can filter by (pattern in) file name, (pattern in) diff content, and host

class (i.e. the class/context of a host). Leaving the fields blank will result in a report listing changes

detected on all monitored hosts and and policies.

Figure: File change diffs query

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of hosts that suit

the query criteria entered above. The result presents the host names (‘Host’), name of the file where

a change was detected (‘File’), the time stamp of change detection (‘Change detected at’), and

the actual diff (whether a line was added or deleted, the line number, and the content of the change;

‘Change added (+), deleted (-); Line no; Content ’).

Figure: File change diffs report

Chapter 1: Standard reports in CFEngine 3 Nova 9

1.8 Last saw hosts report

Sometimes it is not possible to connect to a machine under CFEngine’s managment, either due to net-

work errors or temporary lack of network entirely (for instance on ships at sea or submarines). CFEngine

3 Nova’s Mission Portal monitors all connections, incoming and outgoing, between all managed hosts,

and creates a log of when neighbouring hosts were last observed online. This information is used to set

the host availabilty status and, through analysis of the connection history, give an idea of the regularity

of connections between hosts.

The Last saw hosts report is useful for checking the communication pattern between managed hosts

and when they last were in touch with each other. Click on Last saw hosts in the Report finder to

open a query window as decribed previously.

Figure: Last saw hosts query

The Last saw hosts query can filter by (patterns in) remote host name, remote host IP address,

remote host key, minimum hours ago (since the last connection was made), and host class (i.e. the

class/context of a host). Leaving the fields blank will result in a report listing all connections made to

and from the managed machines (including the hub).

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of all communication

that suits the query criteria entered above. Every connection is logged on the concerned nodes as

incoming (Initiated by them) or outgoing (Initiated by us), the same connection will therefore appear

twice in the report (once for each node). The results are presented in the following column format:

‘Host’ (host name), ‘Initiated’ (identifies whether the connection is incoming (by them (-)) or

outgoing (by us (+)), ‘Remote host name’, ‘Remote host IP address’, ‘Last seen’ (timestamp of

the connection), ‘Hours ago’ (interval between current time and Last seen), ‘Avg interval’ (average

time between each connection), ‘Uncertainty’ (standard deviation of Average interval), and ‘Remote

host key’ (identifying key of the remote host).

Chapter 1: Standard reports in CFEngine 3 Nova 10

Figure: Last saw hosts report

1.9 Patches available report

Software packaging is a core paradigm in operating system release management today, and CFEngine

supports a generic approach to integration with native operating support for packaging. Package

promises allow CFEngine to make promises the state of software packages conditionally, given the

assumption that a native package manager will perform the actual manipulations. Since no agent can

make unconditional promises about another, this is the best that can be achieved.

Some package systems also support the idea of patches. These might be formally different objects

to packages; a patch might contain material for several packages and be numbered differently. When

you select patching-policy, the package name can be a regular expression that will match possible patch

names, otherwise identifying specific patches can be cumbersome.

The patches available report is useful to get an overview of patches claimed to be available by the

local package manager. Click on Patches available in the ‘Reports finder’ to open a query window:

Figure: Patches available query

Chapter 1: Standard reports in CFEngine 3 Nova 11

The Patches available query can filter by (patterns in) package name, package version, package

architecture, and host class. Leaving the fields blank will result in a report listing all patches that can

be installed on the system.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of patches that

suit the query criteria entered above. The report presents the following columns: ‘Host’ (host name),

‘Name’ (name of the package/patch), ‘Version’ (patch version), and ‘Architecture’.

Figure: Patches available report

1.10 Patch status report

Patch management can be a delicate business: sometimes a patch can cause new problems, or perhaps

even more problems than it fixes. IT managers therefore often like to be in control of what patches

are applied to a system. The Patch status report gives system administrators a complete overview of

applied patches according to the local package manager, and, in conjunction with the patches available

report, allows them to conciously decide which patches to apply or not.

Click on Patch status in the ‘Reports finder’ to open a query window:

Figure: Patch status query

Chapter 1: Standard reports in CFEngine 3 Nova 12

The Patch status query can filter by (patterns in) package name, package version, package archi-

tecture, and host class. Leaving the fields blank will result in a report listing all patches applied to the

system.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of patches that

suit the query criteria entered above. The report presents results in the same format as the Patches

available report: ‘Host’ (host name), ‘Name’ (name of the package/patch), ‘Version’ (patch version),

and ‘Architecture’.

Figure: Patch status report

1.11 Performance report

CFEngine 3 Nova uses serveral monitoring probes to reflect on general system performance1. One probe

looks at the time it takes to execute selected promises; results are summarized in the ‘Performance

report’. The user can thus evaluate which parts of a policy put charge on the system in terms of time

spent completing a task. Longer tasks, such as command execution and file copying, are measured by

default, but other tasks have to be measured explicitly by stating so in a policy. Note however that

most promises made in CFEngine are executed so fast we are not able to measure the time it takes to

complete them.

Click on Performance in the ‘Reports finder’ to open a query window:

Figure: Performance query

1 See also section on Vital signs in the CFEngine 3 Nova Owner’s Manual.

Chapter 1: Standard reports in CFEngine 3 Nova 13

The Performance query can filter by (patterns in) job name and host class. Leaving the fields blank

will result in a report listing the performance of all monitored jobs.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of events that suit

the query criteria entered above. ‘Host’ (host name), ‘Event’ (job name), ‘Last time’ (most recent

performance value, i.e. the time it took to complete the job), ‘Avg time’ (average of all Last time),

‘Uncertainty’ (expressed as one standard deviation of ‘Avg time’), and ‘Last performed’ (timestamp

of last execution). You can add your personal note in the right column, documenting any thoughts or

issues that you might have about the query result.

Figure: Performance report

1.12 Promises repaired log report

The Status room in the Nova Mission Portal gives an overview of the general status of your system,

including six hour summaries of promises kept, repaired, and not kept from the last week. The Promises

repaired log is useful to get a complete overview of the history of promises repaired, including execution

order and events that are more than a week old. Click on Promises repaired log in the ‘Reports

finder’ to open a query window:

Figure: Promises repaired log query

Chapter 1: Standard reports in CFEngine 3 Nova 14

The Promise repaired log query can filter by (patterns in) promise handles, host class (i.e. the

class/context of a host), and a desired time interval. Leaving the fields blank will result in a report

listing all promises that were repaired and the time of occurence.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of promises that suit

the query criteria entered above. The results are presented as ‘Host’ (host name), ‘Promise handle’

(identifier of the promise), ‘Report’ (what was repaired), and ‘Time’ (timestamp of the repair action).

You can add your personal note in the right column, documenting any thoughts or issues that you

might have about the query result.

Figure: Promises reparied log report

1.13 Promises repaired summary report

If the Promises repaired log is too detailed for your needs, the Promises repaired summary report

eliminates the time stamp of the promises repaired and presents a cumulative summary of promises

repaired, i.e. the total number times a promise has been repaired. Click on Promises repaired summary

in the ‘Reports finder’ to open a query window:

Figure: Promises repaired summary query

Chapter 1: Standard reports in CFEngine 3 Nova 15

The Promise repaired summary query can filter by (patterns in) promise handles, host class (i.e.

the class/context of a host), and a desired time interval. Leaving the fields blank will result in a report

listing all promises that were repaired and their cumulative number of occurences.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of promises that

suit the query criteria entered above. The results are presented as ‘Promise handle’ (identifier of the

promise), ‘Report’ (what was repaired), and ‘Occurrences’ (number of occurrences of repair).

Figure: Promises repaired summary report

1.14 Promises not kept log report

The Status room in the Nova Mission Portal gives an overview of the general status of your system,

including six hour summaries of promises kept, repaired, and not kept from the last week. The Promises

not kept log is useful to get a complete overview of the history of promises not kept, including execution

order and events that are more than a week old. Click on Promises not kept log in the ‘Reports

finder’ to open a query window:

Figure: Promises not kept log query

The Promises not kep log query can filter by (patterns in) promise handles, host class (i.e. the

class/context of a host), and a desired time interval. Leaving the fields blank will result in a report

listing all promises that were not kept and the time of occurence.

Chapter 1: Standard reports in CFEngine 3 Nova 16

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of promises that suit

the query criteria entered above. The results are presented as ‘Host’ (host name), ‘Promise handle’

(identifier of the promise), ‘Report’ (what was not kept), and ‘Time’ (time stamp of the event). You

can add your personal note in the right column, documenting any thoughts or issues that you might

have about the query result.

Figure: Promises not kept log report

1.15 Promises not kept summary report

If the Promises not kept log is too detailed for your needs, the Promises not kept summary report

eliminates the time stamp of the promises repaired and presents a cumulative summary of promises

repaired, i.e. the total number times a promise was not kept. Click on Promises not kept summary

in the ‘Reports finder’ to open a query window:

Figure: Promises not kept summary query

The Promise not kept summary query can filter by (patterns in) promise handles, host class (i.e.

the class/context of a host), and a desired time interval. Leaving the fields blank will result in a report

listing all promises that were not kept and their cumulative number of occurences.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of promises that

suit the query criteria entered above. The results are presented as ‘Promise handle’, ‘Report’ (what

was not kept), and ‘Occurences’ (the number of times the promise was not kept).

Chapter 1: Standard reports in CFEngine 3 Nova 17

Figure: Promises not kept summary report

1.16 Setuid/gid root programs report

setuid and setgid (short for ”set user ID upon execution” and ”set group ID upon execution”,

respectively) are Unix access right flags that allow users to run an executable with the permissions of

the executable’s owner or group. They are often used to allow users on a computer system to run

programs with temporarily elevated privileges in order to perform a specific task. The ‘Setuid/gid

root programs report’ is useful to get an overview of what processes have been elevated to root

privileges and potentially uncover security issues.

Click on Setuid/gid root programs in the ‘Reports finder’ to open a query window:

Figure: Setuid/gid root programs query

The Setuid/gid root programs query can filter by (patterns in) file name or host class. Leaving the

fields blank will result in a report listing all hosts and files that have their permissions elevated to root.

Chapter 1: Standard reports in CFEngine 3 Nova 18

Figure: Setuid/gid root programs report

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of promises that

suit the query criteria entered above. The results are presented as host name and files that have their

permissions elevated to root.

1.17 Software installed report

The ‘Software installed report’ will list the software packages claimed to be installed according

to the local package manager. Click on Software installed in the ‘Reports finder’ to open a query

window:

Figure: Software installed query

The Software installed query can filter by (patterns in) software name, version, architecture, or

host class. Leaving the fields blank will result in a report listing all hosts and software installed on the

system.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview that suits the query

criteria entered above. The results are presented as ‘Host’ (host name), ‘Name’ (of software package),

‘Version’ (of software package), and ‘Architecture’ (of machine on which software runs).

Chapter 1: Standard reports in CFEngine 3 Nova 19

Figure: Software installed report

1.18 Variables report

The ‘Variables report’ is useful for tracking your variables and checking their values, for instance

to see if they behave in the expected manner. Click on Variables in the ‘Reports finder’ to open a

query window:

Figure: Variables query

The Variables query can filter by (patterns in) scope (bundle where the variable is used), Lvalue

(name of variable), Rvalue (content of variable), type, or host class. Leaving the fields blank will result

in a report listing all variables that were last observed on the system.

Once you have clicked Generate report, CFEngine 3 Nova will list an overview of variables that

suit the query criteria entered above. The results are presented in table form/blocks of scope (i.e. in

which bundle the variables appear) with the following column format: ‘Host’ (name of host where the

variable is defined), ‘Type’ (type of the variable, ‘Name’, and ‘Value’.

Chapter 1: Standard reports in CFEngine 3 Nova 20

Figure: Variables report

Chapter 2: CDP reports 21

2 CDP reports

Content-Driven Policies (CDP) were introduced to make policy management easier. In contrast to

policies written in the CFEngine language, they are composed of semi-colon separated fields in a text

file that the user fills with content, like a spreadsheet or tabular file. Each line in the file is parsed

and results in a specific type of promise being made. Reports based on data from CDP policies can be

found in ‘Engineering room’: click the Engineering icon in the Mission Portal, then the CDP reports

finder in the Engineering room:

Figure: Go to Engineering

Figure: Go to CDP reports finder

Figure: CDP reports finder

We will now go through the different CDP reports and their corresponding input files.

2.1 ACLs report: File access controls

An access control list (ACL) is a list of permissions attached to an object. An ACL specifies which

users or system processes are granted access to objects, as well as what operations are allowed on given

objects. Each entry in a typical ACL specifies a subject and an operation. For instance, if a file has an

ACL that contains (Alice, delete), this would give Alice permission to delete the file.

Chapter 2: CDP reports 22

Click on ACLs in the ‘CDP Reports finder’ to access the ACLs CDP report:

Figure: ACLs report (bug in presentation)

The report lists an overview of host name (‘Host’), path of the affected object (‘Path’), the

permission setting (‘Permission (ACL)’), owner of the affected object (‘Owner’), action to execute

on the object (‘Action’), the context in which the promise was made (‘Class expression’), state of

compliance (‘State’), and the time the promise was last checked (‘Last checked’).

The default CFEngine 3 Nova ACLs policies allow you to set permissions to directories and files

using two different input files (‘acl˙directory˙list.txt’ and ‘acl˙file˙list.txt’, respectively).

We will limit ourselves to look at one of these in the following example as they are conceptually identical.

The file ‘acl˙file˙list.txt’ can be found under the ‘cdp˙inputs’ catalog in the policy editor,

click it to open:

Figure: Open the ACLs input file

Chapter 2: CDP reports 23

The content of the file looks like this (lines have been split and indented for presentability):

#

ACLs On Files

#

FORMAT: path;entity˙type1:entity˙name1:perms1,

entity˙type2:entity˙name2:perms2,...;owner;action;class˙expression

#

EXAMPLE: C:“tmp;user:Administrator:rwx,user:SYSTEM:r;

Administrator;fix;windows

#

Windows 2003

c:“WINDOWS“system32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:r;SYSTEM;fix;Windows˙Server˙2003.!Hr09

c:“WINDOWS“system32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:rw;SYSTEM;fix;Windows˙Server˙2003.Hr09

Windows 2008

c:“Windows“System32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:r;SYSTEM;fix;Windows˙Server˙2008˙R2.!Hr11

c:“Windows“System32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:rw;SYSTEM;fix;Windows˙Server˙2008˙R2.Hr11

We need to look at the header of the file to understand its structure. We saw in the CDP reports

introduction that the input consisted of lines containing semi colon separated fields, so anything with

a ‘;’ before or after it is a field entry. The structure of these fields are explained in the FORMAT section

of the file header, here we have:

FORMAT: path;entity˙type1:entity˙name1:perms1,

entity˙type2:entity˙name2:perms2,...;owner;action;class˙expression

Splitting this up into separate fields:

path Path of file to set permissions on.

entity type1:entity name1:perms1

This field defines the permissions (‘perms1’) that a user (‘entity˙type1’), and member

of the group (‘entity˙name1’), has on the file defined in ‘path’.

entity type2:entity name2:perms2,...

Same as entity type1:entity name1:perms1, but for different user, group, and permission

settings.

owner Defines the owner of the file defined in ‘path’

action Tells CFEngine what to do if the file permissions differ from what was defined in the

ACLs policy. Can take the values ‘fix’ (set permissions as defined in ACLs policy),

‘warn’ (log and display a warning that the file permissions differ from what was defined in

ACLs policy), and ‘nop’ (no operation; no log entry, but print a warning in command-line

interface).

Chapter 2: CDP reports 24

class expression

Context in which the permissions are set, i.e. a class expression (boolean) that needs to

be fulfilled for the permissions to be set.

2.2 Commands report: Scheduled commands to execute

You may use the Commands CDP to schedule script execution on specific hosts. The Commands CDP

uses a combination of class expressions to set the context (i.e. time and place) of execution.

Click on Commands in the ‘CDP Reports finder’ to access the Commands CDP report:

Figure: Commands report

The report lists an overview of host name (‘Host’), the command to execute (‘Command’), the

class to define if execution fails (‘Failclass’), action to execute if there is an error (‘Action’; see

explanation of the CDP input file below for possible values), the context in which the promise was

made (‘Class expression’), state of compliance (‘State’), and the time the promise was last checked

(‘Last checked’).

The Commands CDP input file, ‘command˙list.txt’, can be found in the left menu in the

‘cdp˙inputs’ catalog. The content looks like this (lines have been split and indented for presentability):

#

Command Execution

#

FORMAT: command˙path;on˙error˙define˙class;action;class˙expression

#

EXAMPLE: c:“windows“system32“cmd.exe /c ”echo hello”;hello˙failed;fix;

DomainController

#

NOTE: You may use this Content-Driven Policy to schedule script

execution on a class of hosts by using a combination of

host and time classes in class˙expression, e.g. set

class˙expression to ”windows.Tuesday.Hr10.Min30˙35”.

#

Chapter 2: CDP reports 25

c:“windows“system32“cmd.exe /c ”eho hello”;hello˙failed;fix;windows.Hr11

c:“windows“system32“cmd.exe /c ”echo hello”;hello˙failed;fix;windows.!Hr11

c:“windows“system32“cmd.exe /c ”echo hello failed ¿ c:“reportfile.txt”;

report˙failed;fix;hello˙failed.windows

c:“windows“system32“cmd.exe /c ”echo hello succeeded ¿ c:“reportfile.txt”;

report˙failed;fix;!hello˙failed.windows

/usr/bin/sleep 5;sleep˙failed˙solaris;fix;solaris

/bin/sleep 5;sleep˙failed˙solaris;fix;linux

Again, we need to look at the header of the file to understand its structure:

FORMAT: command˙path;on˙error˙define˙class;action;class˙expression

Separating the fields:

command path

Path of command to execute.

on error define class

Class to define if there is an error in command execution.

action Tells CFEngine what to do if there is an error in command execution. Can take the values

‘fix’ (attempt to re-execute the command), ‘warn’ (log and display a warning that the

command could not be executed), and ‘nop’ (no operation; no log entry, but print a

warning in command-line interface).

class expression

Context in which the command is to be executed, i.e. a class expression (boolean)

that needs to be fulfilled for the command to take place. In the above example

(windows.Tuesday.Hr10.Min30˙35) the command will only be executed on Windows

machines on Tuesdays between 10.30am and 10.35am.

2.3 File changes report: File changes observed on the system

We saw that awareness of changes often is considered a major part of infrastructure management in

the walk-through of the CFEngine 3 Nova standard reports. The file changes CDP policy differs slightly

from the Files changes log report in that it will restore the original file upon detecting a change and

report whether the file remains compliant or not.

Click on File changes in the ‘CDP Reports finder’ to access the File changes CDP report:

Chapter 2: CDP reports 26

Figure: File changes report

The report lists an overview of host name (‘Host’), the path of the concerned file (‘Path’), the

context in which the promise was made (‘Class expression’), time stamp of when a change was

detected (‘Last Change Detected’), state of compliance (‘State’), and the time the promise was last

checked (‘Last checked’).

The File changes CDP input file, ‘file˙change˙list.txt’, can be found in the left menu in the

‘cdp˙inputs’ catalog. The content looks like this:

#

File Changes Detection and Revert

#

FORMAT: file˙path;class˙expression

#

EXAMPLE: C:“pwd.txt;windows

#

NOTE: The file is always restored on change, and change

reports will be generated.

Use file˙diff Content-Driven Policy to allow changes.

#

/etc/shadow;linux—solarisx86

Looking at the header of the file:

FORMAT: file˙path;class˙expression

Separating the fields:

file path Path of file to monitor and repair changes on.

class expression

Context in which the change detection/repair is to be executed, i.e. a class expression

(boolean) that needs to be fulfilled for the event to take place.

2.4 File diffs report: Delta/difference comparison showing file changes

The file diff CDP policy does the same as the File change CDP policy, except that it does not repair

the file to original state if a change is detected. Click on File diffs in the ‘CDP Reports finder’ to

access the File diffs report:

Chapter 2: CDP reports 27

Figure: File diffs report

The report lists an overview of host name (‘Host’), the path of the concerned file (‘Path’), the

context in which the promise was made (‘Class expression’), time stamp of when a change was

detected (‘Last Change Detected’), state of compliance (‘State’), and the time the promise was last

checked (‘Last checked’).

The File diff CDP input file, ‘file˙diff˙list.txt’, can be found in the left menu in the

‘cdp˙inputs’ catalog. The content looks like this:

#

File Difference Reporting

#

FORMAT: file˙path;class˙expression

#

EXAMPLE: C:“users.txt;windows

#

NOTE: The file is always allowed to change.

Use file˙change Content-Driven Policies to revert a

changed file. Detailed change reports will

be generated.

#

/etc/group;linux—solarisx86

Looking at the header of the file:

FORMAT: file˙path;class˙expression

Separating the fields:

file path Path of file to monitor and warn about changes on.

class expression

Context in which the change detection/warning is to be executed, i.e. a class expression

(boolean) that needs to be fulfilled for the event to take place.

2.5 Registry report: Promised Windows registry setting status

The Windows Registry is a hierarchical database that stores configuration settings and options on

Microsoft Windows operating systems. It contains settings for low-level operating system components

as well as the applications running on the platform. Registry keys are similar to folders: in addition to

Chapter 2: CDP reports 28

values, each key can contain subkeys, which may contain further subkeys, and so on. Keys are referenced

with a syntax similar to Windows’ path names, using backslashes to indicate levels of hierarchy. Each

subkey has a mandatory name, which is a non-empty string that cannot contain any backslash, and

whose letter case is insignificant.

Click on Registry in the ‘CDP Reports finder’ to access the Registry report:

Figure: Registry report

The report lists an overview of host name (‘Host’), the key identifier (‘Key’), the key value (‘Value’),

action to take if there is an error in the key (‘Action’; see explanation of the CDP input file below

for possible values), the context in which the promise was made (‘Class expression’), the state of

compliance (‘State’), and the time the promise was last checked (‘Last checked’).

The Registry CDP input file, ‘registry˙list.txt’, can be found in the left menu in

the ‘cdp˙inputs’ catalog. The content looks like this (lines have been split and indented for

presentability):

#

Windows Registry Management

#

FORMAT: key;name,type,data;action;class˙expression

#

EXAMPLE: HKEY˙CURRENT˙USER“Control Panel“Desktop;ScreenSaverIsSecure,

REG˙SZ,1;fix;windows

#

NOTE: Currently, type must be REG˙SZ (string).

#

HKEY˙CURRENT˙USER“Control Panel“Desktop;ScreenSaverIsSecure,REG˙SZ,1;

fix;windows.!Hr11

HKEY˙CURRENT˙USER“Control Panel“Desktop;ScreenSaverIsSecure,REG˙SZ,0;

fix;windows.Hr11

HKEY˙CURRENT˙USER“Control Panel“Desktop;ScreenSaveTimeOut,REG˙SZ,600;

Chapter 2: CDP reports 29

fix;windows.!Hr11

HKEY˙CURRENT˙USER“Control Panel“Desktop;ScreenSaveTimeOut,REG˙SZ,1200;

fix;windows.Hr11

Looking at the header of the file:

FORMAT: key;name,type,data;action;class˙expression

Separating the fields:

key The path to the key in question.

name,type,data

Name, type, and value of the key.

action Tells CFEngine what to do if there is a difference between the registry entry and the

definition in the Registry CDP. Can take the values ‘fix’ (set the registry entry as defined

in the Registry CDP), ‘warn’ (log and display a warning that the there is a discrepancy

between the registry entry and the Registry CDP), and ‘nop’ (no operation; no log entry,

but print a warning in command-line interface).

class expression

Context in which the promise is to be executed, i.e. a class expression (boolean) that

needs to be fulfilled for the command to take place.

2.6 Services report: System service status

Services are programs that once started run continuously in the background. They perform specific

functions which are designed not to require user intervention and are ready for input or monitor changes

in your system and respond to them. For example, the Apache server has a daemon called httpd that

listens on port 80 on your machine. When it receives a request for a page it sends the appropriate data

back to the client machine.

With the three lines of semicolon separated fields, we ensure the correct status of three services

on all our Windows machines and are given specialized reports on the outcome. The Content-Driven

Policy services report is shown below. Click on Services in the ‘CDP Reports finder’ to access the

Services report:

Chapter 2: CDP reports 30

Figure: Services report

The report lists an overview of host name (‘Host’), ‘Service Name’, the runstatus of the serviece

(‘Runstatus’), action to take if there is a difference from policy (‘Action’; see explanation of the CDP

input file below for possible values), the context in which the promise was made (‘Class expression’),

the state of compliance (‘State’), and the time the promise was last checked (‘Last checked’).

The Registry CDP input file, ‘service˙list.txt’, can be found in the left menu in the

‘cdp˙inputs’ catalog. The content looks like this (lines have been split and indented for

presentability):

#

Windows Service Management

#

FORMAT: service˙name;run˙status;action;class˙expression

#

EXAMPLE: Dnscache;start;fix;windows

#

NOTE: Service name is not the ”Display name”

-- see the properties of the service.

run˙status can be start/stop/disable. If start then

the serivce is started, if disable then service is

stopped and ”Startup type” is set to disable,

if stop, then service is stopped ”Startup type” is left

unchanged.

#

Dnscache;stop;fix;windows.Hr10

wuauserv;stop;fix;windows.Hr10

Dnscache;start;fix;windows.!Hr10

wuauserv;start;fix;windows.!Hr10

Looking at the header of the file:

FORMAT: service˙name;run˙status;action;class˙expression

Separating the fields:

service name

Name of the service (not necessarily the same as the display name, see properties of the

service).

run status The run status of the service defines whether it should be running or not. Can take the

values ‘start’, ‘stop’, or ‘disable’ (will stop the service and change its startup mode

to disable, i.e. will not be restarted upon reboot of the machine, for example).

action Tells CFEngine what to do if there is a difference between the run status what has been

defined in the Services CDP. Can take the values ‘fix’ (set the run status as defined

in the Services CDP), ‘warn’ (log and display a warning that the there is a discrepancy

Chapter 2: CDP reports 31

between the run status and the Services CDP), and ‘nop’ (no operation; no log entry,

but print a warning in command-line interface).

class expression

Context in which the promise is to be executed, i.e. a class expression (boolean) that

needs to be fulfilled for the command to take place.

