
CFEngine 3 Nova Evaluation Guide
CFEngine Enterprise Documentation

Updated 7. May 2012

CFEngine AS

Copyright c© 2012 CFEngine AS. The features described herein are in provided for user convenience

and imply no warranty whatsoever to the extent of applicable law.

i

Table of Contents

1 Introduction . 1

2 Get started . 2

2.1 Accessing CFEngine 3 Nova . 2

2.2 CFEngine terms used in this document . 3

2.3 Status room . 3

2.3.1 Business Value and Host Status . 4

2.3.2 Compliance Summary . 4

2.3.3 Services/Goals . 4

2.4 Engineering room . 4

2.4.1 Host Status (last hour) . 5

2.4.2 Promise compliance summary for reachable hosts 5

2.4.3 Finders . 5

2.5 Planning room . 6

2.6 Library room . 7

2.7 Shell access (evaluation feature only) . 8

3 Standard reports in CFEngine 3 Nova . 10

3.1 Reports finder . 10

3.2 Example - Software report . 10

4 Content Driven Policy (CDP) reports . 13

4.1 Example - ACLs (file access controls) . 13

5 Introduction to CFEngine policies . 15

5.1 Content Driven Policy . 15

5.2 Standard CFEngine policy . 16

5.3 Example - Install packages from remote repository . 17

5.4 Example - Install packages from local repository . 19

6 Next steps . 22

Appendix A Policy editor (beta) . 23

A.1 The Policy Editor (beta) . 23

A.2 Example - Edit a CDP input file . 25

A.3 Example - Create a standard policy . 26

Chapter 1: Introduction 1

1 Introduction

CFEngine comes in two software editions: CFEngine Community and CFEngine 3 Nova. CFEngine

3 Nova is a commercial subscription offering, with simple productivity enhancements and reporting

extensions. Features include compliance management, reporting and business integration, and tools for

handling necessary complexity. CFEngine 3 Nova has features to support Cloud Computing for public

and private clouds, as well as greater integration facilities with database resources.

The evaluation program aims to familiarize the user with CFEngine 3 Nova through examples and

practical use of the Nova Mission Portal, a web based graphical user interface. You do not need

experience with CFEngine 3, the current document provides a step-by-step guide to help you find

and use the product’s major features. Of course, the deeper knowledge of system administration and

CFEngine 3 language that you possess, the more you will get out of this evaluation.

The Mission Portal is the centerpiece of user interaction with CFEngine 3 Nova, designed to suit the

needs of the next generation of system administrators and IT managers alike. The evaluation program

will allow the user to quickly:

• View the status of all servers (e.g. availability, compliance, performance)

• Consult out-of-the-box reports, such as:

- Software installed (by machine)

- Compliance

- File diffs

- Promises not kept

• Understand and write a simple CFEngine Policy file

For the purpose of this evaluation program, CFEngine 3 Nova has been set up in a network com-

prising several nodes. One node serves as a central hub to distribute CFEngine configuration policies

and collect reports from the other nodes (clients). They run on different operating systems, comprising

several linux flavors and windows servers.� �
If you have not already done so, you may request access to the CFEngine Nova Evaluation Program

by entering your information at http://cfengine.com/evaluation.
 	

http://cfengine.com/evaluation

Chapter 2: Get started 2

2 Get started

2.1 Accessing CFEngine 3 Nova

You should have received an email with account information after making an evaluation agreement with

CFEngine. In it, you will find information on how to access your dedicated CFEngine 3 Nova instance,

the CFEngine support ticketing system, and other online resources. Go to the url indicated in this email

to access the Nova Mission Portal, use your credentials to log in.

Figure: Nova Mission Portal login screen

The normal Nova Mission Portal is divided into four main sections called rooms. Here we have

added a fifth room which is specific to the evaluation environment (i.e. is not shipped with the actual

product): shell access to machines. Each room offers insight into different aspects of operations and

is a beginning from which you can refine your overview and search through information.

Figure: Nova Mission Portal

- Status: a top level overview of compliance status and business value

- Engineering: a place to see the current state of system repair

- Planning: a place to plan and make policy changes

- Library: a knowledge and document bank that connects information together

Chapter 2: Get started 3

- Shell: web based ssh access to the machines in the network (only available in evaluation environ-

ment).

You can always use the breadcrumb in the top left corner to navigate and see where you are in the

Mission Portal.

2.2 CFEngine terms used in this document

CFEngine uses a declarative language that describes the desired state of a system. Individual statements

are called promises. Promises can be kept (CFEngine was able to keep the promise about the desired

state), not kept (CFEngine was not able to keep the promise about the desired state) or repaired

(promise was initially not kept, CFEngine fixed this). The desired state of your system is thus described

in collections of promises, assembled in CFEngine policy files with the extension ‘.cf’.

2.3 Status room� �
Action item: Click the Status icon in the main page of the Mission Portal to enter the ‘Status’ room.

Figure: Go to Status room
 	
The status room gives an overview of IT goals and how close you are to an ideal state. Each section

in the room is described below.

Figure: Status room

Chapter 2: Get started 4

2.3.1 Business Value and Host Status

The two pie charts show the business value of the promises kept/not kept and well as host status,

respectively. Business value is associated with the value of promises as defined in policy files. In the

Host Status chart, each node in the network represents a slice of the pie and is classified into red,

yellow, green and blue according to the level of their compliance:

- Red: more than 20% of the promises were not kept

- Yellow: 20% or more of the promises were repaired and total compliance is above 80%

- Green: more than 80% of the promises were kept

- Blue: there is no contact between the hub and the client host (host unreachable)

2.3.2 Compliance Summary

The row of bar meters shows the compliance (average percentage of promises kept, repaired or not

kept) of all registered hosts in blocks of 6 hours for the past week. It summarizes performance and

anomalous behavior in a simple red (promises not kept), yellow (promises repaired) and green (promises

kept) scale. Click on a bar to see which promises were kept/not kept.

2.3.3 Services/Goals

A summary of Mission goals as defined in user policy files (these examples are from

‘company˙knowledge.cf’). You can look at editing policy files in Appendix A [Policy editor (beta)],

page 23.

2.4 Engineering room

� �
Action item: Click NOVA MISSION PORTAL on the top left (or MISSION PORTAL in the

breadcrumb) to go back to the main Mission Portal page. Click the Engineering icon in the main page

of the Mission Portal to enter the ‘Engineering’ room.

Figure: Go to Engineering room
 	
Mission engineering illustrates the state of the system in relation to the desired state at all scales.

Zoom in to specific areas and examine the impact of promises, query data, and extract reports. Each

section in the room is described below.

Chapter 2: Get started 5

Figure: Engineering room

2.4.1 Host Status (last hour)

- The hosts are classified into red, yellow, green and blue according to the status of their compliance

(as defined in Section 2.3.1 [Business Value and Host Status], page 4). Clicking a link produces

a list of the hosts in that category.

- Hosts known: Shows the total number of hosts (red, green, yellow or blue) that are in the network

- Worst available host rank: Display the hosts (that have been in contact with the hub) with the

most promises not kept over the last hour.

- Hub replication status: Display status of redundant monitoring hubs (not activated in evaluation

environment).

2.4.2 Promise compliance summary for reachable hosts

The row of bar meters shows the compliance (average percentage of promises kept, repaired or not

kept) of registered hosts. It summarizes performance and anomalous behavior in a simple red (promises

not kept), yellow (promises repaired), and green (promises kept) scale. The ”Chng” bar relates to the

amount of changes made to files monitored by a CFEngine policy in the last hour (change watch). It is

green if no changes have been made. The level of yellow increases as changes occur (but it will never

be red). For the ”Seen” bar, CFEngine monitors the average time between connections to the clients

and reports deviations as green, yellow or red according to the size of the deviation. The ”Anom” bar

relates to anomalies and is generated from monitoring data (vital signs) for the last week. CFEngine

uses the average value of each vital sign to report deviations as green, yellow or red according to the

size of the deviation.

2.4.3 Finders

The Mission ‘Engineering’ room comes with finder functions (modules that make it simple and intuitive

to browse and search for objects of a particular type): Host, Class, Promises, Reports, Summary reports,

and CDP (Content Driven Policies) reports. We will take a closer look at Reports and CDP reports in

this document, but feel free to explore the different finder functions on your own.

Chapter 2: Get started 6

2.5 Planning room

� �
Action item: Click NOVA MISSION PORTAL on the top left (or MISSION PORTAL in the

breadcrumb) to go back to the main Mission Portal page. Click the Planning icon in the main page

of the Mission Portal to enter the ‘Planning’ room.

Figure: Go to Planning room
 	
The ‘Planning’ room allows you to make changes to policies, goals and implement specific tactics

to achieve the desired state. Interact with data, approve changes and anomalies. Get an overview of

users logged on to the Mission Portal, as well as their current activity. Each section in the room is

described below.

Figure: Planning room

Policy Goals: List of policy goals as defined in policy files; these examples are from

‘company˙knowledge.cf’ (same as in the ‘Status’ room).

Chapter 2: Get started 7

Icons:

- Edit policies: Edit policy files in the integrated policy editor

- Track records: Overview of promises repaired or not kept

- Approve policies: Add your approval to adopt a policy revision (attaches your comments to a

revision number)

- Service catalogue: See which bundles contribute to policy goals

Logged on: Shows users currently logged on to the Mission Portal and their activity as stated in their

activity log (see below).

Activity log: Shows the latest activity entries. Type in a new activity to keep colleagues posted on

current work.

2.6 Library room� �
Action item: Click NOVA MISSION PORTAL on the top left (or MISSION PORTAL in the

breadcrumb) to go back to the main Mission Portal page. Click the Library icon in the main page of

the Mission Portal to enter the ‘Library’ room.

Figure: Go to Library room
 	
The Library room contains finders for documents, topics, a notes archive, and a link to the CFEngine

community web pages.

Figure: Library room

- Docs: Overview of documentation that was packaged with CFEngine 3 Nova.

- Find Topic: Opens a finder where you can search for topics either by scrolling through the alpha-

betical list or by typing in a search box (same as the search box on top right of page).

- Notes Archive: Get an overview of all notes made by Mission Portal users.

- Community: External link to the CFEngine community

Chapter 2: Get started 8

2.7 Shell access (evaluation feature only)

Although the Mission Portal is the centerpiece of user interaction with CFEngine 3 Nova, system

administrators often also wish to have shell access to their machines. We have therefore added a web

based application specific to the Mission Portal in the evaluation environment (i.e. not found in the

actual product) to provide a shell interface. You may explore the environment and verify the behavior

of the Mission Portal by using this application.� �
Action item: Click NOVA MISSION PORTAL on the top left (or MISSION PORTAL in the

breadcrumb) to go back to the main Mission Portal page. Click the Shell icon to enter the web based

shell application.

Figure: Go to shell application
 	
The following screen will appear once the application is loaded:

Figure: Shell menu

The shell application has restricted access on the hub (policy host) for security reasons. Root

access has been granted on the clients, so you should be able to perform most tasks from this interface

(although some restrictions have been put in place to contain access to the evaluation environment

only).

� �
Action item: Type the number of the node you wish to log on to and press Enter.
 	

The following screen will appear after a successful login:

Chapter 2: Get started 9

Figure: CFEngine Pilot Login Menu

� �
Action item: Explore the environment through the command line interface. Type exit to finish the

session on the current node. The following screenshot will appear:

Figure: Shell logout/connect

Click Connect to access the ‘CFEngine Pilot Login Menu’ again and choose another node to log on

to. Alternatively you can navigate away from the shell access by clicking NOVA MISSION PORTAL

on the top left (or MISSION PORTAL in the breadcrumb).
 	

Chapter 3: Standard reports in CFEngine 3 Nova 10

3 Standard reports in CFEngine 3 Nova

A significant capability of CFEngine 3 Nova is automated system reporting: it collects history, state and

change data about computers and ties them together. A report is a tabular summary of CFEngine’s

internal information, tailored to a particular purpose, searchable, and describes attributes and qualities

of managed hosts.

3.1 Reports finder

Standard reports in CFEngine 3 Nova can be accessed through the ‘Reports finder’:� �
Action item: Enter the ‘Engineering’ room as shown in Section 2.4 [Engineering room], page 4,

locate and click the Reports icon to open the finder.

Figure: Click to open the Reports finder.
 	

The finder lists all the standard report categories, each category contains information about different

aspects of the Mission. When you click one of them, the ‘Report finder’ will present a query form

that is adapted to the chosen report category.

3.2 Example - Software report� �
Action item: Scroll down and click Software installed towards the bottom of the ‘Report finder’

to open a query window.
 	

Chapter 3: Standard reports in CFEngine 3 Nova 11

Figure: Software installed query

� �
Action item: Click Generate report in the query window without filling in any of the search fields.
 	

The above action will make a report listing all hosts and software packages claimed to be installed ac-

cording to the local package manager. The results are presented in table form, with the columns ‘Host’

(host name), ‘Name’ (of software package), ‘Version’ (of software package), and ‘Architecture’ (of

machine on which software runs). Sort the entries on the page by clicking the column headers.

Figure: Software installed report

There are two ways of narrowing down the listing in these reports: one is to enter filtering criteria

directly in the report query window, the other is to click on ‘New Search’ in the top right corner of the

report itself and enter the filtering criteria there. We will do the latter:� �
Action item: Click New Search in the ‘Software installed’ report and enter your search criteria as

a regular expression (for instance, enter ‘apache.*’ in the ‘Name’ field to see what version of apache

is running on the different hosts). Click Generate report.
 	

Chapter 3: Standard reports in CFEngine 3 Nova 12

Figure: Narrow the search by entering search criteria

Once you have clicked ‘Generate report’, CFEngine 3 Nova will list an overview of all machines

running some version of apache.

The combination of the extensive reports and detailed filtering is a flexible and powerful tool, made

to give as general or granular an overview as the user needs it to be. A summary and explanation to

all the standard reports can be found in the Nova Evaluation Guide Supplement.

http://cfengine.com/manuals/novaevaluationguidesupplement.html

Chapter 4: Content Driven Policy (CDP) reports 13

4 Content Driven Policy (CDP) reports

Content-Driven Policies (CDPs) were introduced to make policy management easier. In contrast to

policies written in the CFEngine language, they are composed of semi-colon separated fields in a text

file that the user fills with content, like a spreadsheet or tabular file. Each line in the file is parsed and

translated to be part of a regular CFEngine policy. We will take a closer look at CDP input files in a

later section.

CDP reports are similar to standard reports, except that they reflect the effects of CDP input files

instead of regular CFEngine policy files.� �
Action item: Enter the ‘Engineering’ room as shown in Section 2.4 [Engineering room], page 4, then

click the CDP reports icon to access the ‘CDP reports finder’.

Figure: Go to CDP reports finder
 	

Figure: CDP reports finder

4.1 Example - ACLs (file access controls)

CFEngine 3 Nova comes with several default CDPs, we will use the ‘ACLs report’ as an example. An

access control list (ACL) is a list which specifies which users or system processes are granted access to

objects, as well as what operations are allowed on given objects. Each entry in a typical ACL specifies

a subject and an operation. For instance, if a file has an ACL that contains (Alice, delete), this would

give Alice permission to delete the file.� �
Action item: Click on ACLs in the ‘CDP Reports finder’ to access the ACLs report (there is no

query window for CDP reports).
 	

Chapter 4: Content Driven Policy (CDP) reports 14

Figure: ACLs report

The report lists an overview of host name (‘Host’), path of the affected object (‘Path’), the

permission setting (‘Permission (ACL)’), owner of the affected object (‘Owner’), action that

CFEngine should execute on the object (‘Action’), the context in which the promise was made

(‘Class expression’), state of compliance (‘State’), and the time the promise was last checked

(‘Last checked’).

Chapter 5: Introduction to CFEngine policies 15

5 Introduction to CFEngine policies

There are two types of policies that tell CFEngine what to do:

- Content Driven Policy (CDP): A text file containing semi-colon separated fields (‘.txt’ file ex-

tension) that specify actions

- Standard CFEngine policy file: Uses Standard CFEngine policy (‘.cf’ file extension) to specify

actions

In the following, you will find a short introduction to both CDP and standard policies. You may

choose to view and edit policy files in a beta version of the integrated Policy Editor (Section A.1 [The

Policy Editor (beta)], page 23) or in an editor of your choice. The evaluation environment provides

ssh access through a web interface so you may explore the environment or access policy files there

(Section 2.7 [Shell access (evaluation feature only)], page 8). In the following, we will see a short

introduction to both CDP and standard policies.

5.1 Content Driven Policy

As explained previously, content driven policies consist of semi-colon separated fields in a text file. The

files also contain a header that explains the format and meaning of the fields and typically looks like

this (lines have been split and indented for presentability):

ACLs On Files

#

FORMAT: path;entity˙type1:entity˙name1:perms1,

entity˙type2:entity˙name2:perms2,...;owner;action;class˙expression

#

EXAMPLE: C:“tmp;user:Administrator:rwx,user:SYSTEM:r;

Administrator;fix;windows

#

Windows 2003

c:“WINDOWS“system32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:r;SYSTEM;fix;Windows˙Server˙2003.!Hr09

c:“WINDOWS“system32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:rw;SYSTEM;fix;Windows˙Server˙2003.Hr09

Windows 2008

c:“Windows“System32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:r;SYSTEM;fix;Windows˙Server˙2008˙R2.!Hr11

c:“Windows“System32“drivers“etc“hosts;user:Administrator:rw,user:SYSTEM:rw,

user:Guest:rw;SYSTEM;fix;Windows˙Server˙2008˙R2.Hr11

Anything with a ‘;’ before or after it is a field entry. We need to look at the header of the file to

understand the structure and meaning of the fields (under the FORMAT and EXAMPLE sections). In this

case we have (line has been split and indented for presentability):

Chapter 5: Introduction to CFEngine policies 16

FORMAT: path;entity˙type1:entity˙name1:perms1,

entity˙type2:entity˙name2:perms2,...;owner;action;class˙expression

Splitting this up into separate fields:

path Path of file to set permissions on.

entity type1:entity name1:perms1

This field defines the permissions (‘perms1’) that a user (‘entity˙type1’), and member

of the group (‘entity˙name1’), has on the file defined in ‘path’.

entity type2:entity name2:perms2,...

Same as entity type1:entity name1:perms1, but for different user, group, and permission

settings.

owner Defines the owner of the file defined in ‘path’

action Tells CFEngine what to do if the file permissions differ from what was defined in the

ACLs policy. Can take the values ‘fix’ (set permissions as defined in ACLs policy),

‘warn’ (log and display a warning that the file permissions differ from what was defined in

ACLs policy), and ‘nop’ (no operation; no log entry, but print a warning in command-line

interface).

class expression

Context in which the permissions are set, i.e. a class expression (boolean) that needs to

be fulfilled for the permissions to be set.

The advantage of CDPs is that it requires no knowledge of CFEngine syntax to quickly set up a basic

policy. They function as an abstraction layer and allow system administrators to define specific functions

with parameters that can be manipulated by others. The list format also allows for quick editing of

multiple parameters, without having to go through tens or hundreds of lines of regular CFEngine code.

5.2 Standard CFEngine policy

Standard CFEngine policies consist of a declarative language that describes the desired state of a

system. Individual statements are called promises, they can be grouped in bundles and have parametrized

body templates (‘bundle’ and ‘body’ are keywords in CFEngine that correspond to these). Below is

an example of a simple CFEngine policy:

body common control

–

bundlesequence =¿ – ”test” ˝;

˝

Comments are defined by the hash tag (#), they will not be parsed by CFEngine.

bundle agent test # This is a bundle of type agent, named ’test’

–

files: # This is the promise type, i.e. we make a promise about files

”/tmp/testfile” # This is the promiser (i.e. the concerned object)

Chapter 5: Introduction to CFEngine policies 17

create =¿ ”true”; # This tells CFEngine to create the file

˝

This policy contains the bare minimum of a standalone CFEngine policy and will create the file

‘/tmp/testfile’. A closer look at the different parts of the policy:

- The compulsory ‘body common control’, containing (at least) a bundlesequence.

- Then follows a compulsory ‘bundle’, of type ‘agent’ and with the arbitrary name ‘test’ (the

bundle type reflects the affected CFEngine component and can take several values, here we use

‘agent’).

- The bundle contains a promise type (here ‘files:’), a promiser (i.e. the affected object, here

‘/tmp/testfile’) and an attribute about desired state (here ‘create =¿ ”true”’; will create the

file if it does not already exist).

5.3 Example - Install packages from remote repository

In this example we will use the web based shell access to create and include a policy so that it installs

a software package from the operating system standard repository.

� �
Action item: Go to ‘Shell access’ as described in Section 2.7 [Shell access (evaluation feature only)],

page 8. Enter the number 1 and press Enter to log on to the host called policyhub. You will need to

check out the files in the subversion repository connected to policyhub, type in the following to do so:

pilot@policyhub-1:˜$ svn co http://localhost/svn/CFEnginePilot

Username and password for the subversion repository is ’pilot’ and ’pilot’.
 	
You now have read and write access to the policy files in the ‘˜/CFEnginePilot’ directory. Enter

the following to change directories and create a new policy file, ‘pilot˙packages.cf’ (we use the vim

editor in this example):

� �
Action item: Type in the following in the command line:

pilot@policyhub-1:˜$ cd CFEnginePilot

pilot@policyhub-1:˜/CFEnginePilot$ vim pilot˙packages.cf
 	
Let us make a policy to install apache (httpd) on centos machines:

Chapter 5: Introduction to CFEngine policies 18

� �
Action item: Press i to enter edit mode in vim, then enter the following content in the file (comments

(text behind the hash tag (#)) are optional):

bundle agent pilot˙packages # bundle type agent, named ’pilot˙packages’

–

vars: # promise type vars (promise about variables)

”match˙package” slist =¿ – # variable name is ’match˙package’ (this is the

promiser) and has type ’list of strings’

”httpd” # list entry value is httpd (for apache on centos)

˝;

packages: # promise type packages

centos:: # class, or context, in which the promise

applies (here on all centos machines)

”$(match˙package)” # expand the variable ’match˙package’ (this is

the promiser)

handle =¿ ”pilot˙remote˙package˙install”,

package˙policy =¿ ”add”, # add all packages in variable

package˙method =¿ yum; # specify what package method

to use (here yum)

˝

Press Esc to exit the vim edit mode, then type :wq to write to file and quit.
 	
The next step is to include this policy in ‘promises.cf’:� �
Action item: Open ‘promises.cf’:

pilot@policyhub-1:˜/CFEnginePilot$ vim promises.cf

Press i to enter edit mode in vim, then add the following lines to the first bundle (bundle common

pilot) as indicated:

bundle common pilot –

vars:

”bundlesequence” slist =¿ –

”pilot˙simple˙edit˙policy”,

”pilot˙packages”, # add this line

”pilot simple custom install”,

”pilot˙simple˙custom˙report˙policy”,

˝;

”inputs” slist =¿ –

”pilot˙simple˙edit˙policy.cf”,

”pilot˙packages.cf”, # add this line

”pilot simple custom install.cf”,

”pilot˙simple˙custom˙report˙policy.cf”,

˝;

˝

Press Esc to exit the vim edit mode, then type :wq to write to file and quit.
 	

Chapter 5: Introduction to CFEngine policies 19

We now need to check the syntax of the file by running the syntax checker (cf-promises) on

‘promises.cf’:

� �
Action item: Type the following in the command line interface (line has been split and indented for

presentability):

pilot@policyhub-1:˜/CFEnginePilot$

/var/cfengine/cf-promises -f ˜/CFEnginePilot/promises.cf
 	
cf-promises will only output an error message if there is a syntax error in the policy, i.e. the command

prompt will be blinking and waiting for input on a new line if everything is fine. If applicable, please

correct any errors by opening and editing ‘pilot˙packages.cf’ as shown previously and proceed to

the next step when all problems have been solved.

The next step to add ‘pilot˙packages.cf’ to the repository and commit the changes:

� �
Action item: Type in the following in the command line:

pilot@policyhub-1:˜/CFEnginePilot$ svn add pilot˙packages.cf

pilot@policyhub-1:˜/CFEnginePilot$ svn ci -m ”added remote package install”
 	
The policy will be executed at the next run of cf-agent (here in the evaluation environment we have

set the interval to every two minutes). You can check that the policy has been implemented either

through the mission portal or the web ssh interface:

� �
Action item:

- Mission Portal: Software reports (Section 3.2 [Example - Software report], page 10) are only

updated every six hours so this is not a convenient place to look for immediate changes. We

can use the ‘Promises repaired (log)’ report instead: Open the reports finder as shown in

Section 3.1 [Reports finder], page 10, scroll down and click Promises repaired (log). Enter the

bundle name (pilot packages) or promise handle (pilot remote package install) as search criteria

and click Generate report. The report should list the promise (not be empty).

- Web ssh: Choose the centos machine from the web ssh menu (as shown in Section 2.7 [Shell access

(evaluation feature only)], page 8) and look for ‘/var/cfengine/inputs/pilot˙packages.cf’.
 	
5.4 Example - Install packages from local repository

In this example we will look at installing a custom package from a local repository. The package will

install a text file in a given location, showing that the package has been successfully deployed. The

example is transferable to other custom packages such as weblogic and includes installation on different

operating systems (OS; CentOS, SuSE and Ubuntu). The following CFEngine policy has been written

for this purpose (some lines have been split and indented for presentability):

Chapter 5: Introduction to CFEngine policies 20

bundle agent pilot˙simple˙custom˙install –

vars:

any::

”pkg˙version” string =¿ ”1.0.0-1”;

centos—ubuntu—SuSE::

”pkg˙name” string =¿ ”cfengine-testpackage”;

ubuntu::

”pkg˙file” string =¿ ”cfengine-testpackage˙$(pkg˙version)˙

amd64.deb”;

centos—SuSE::

”pkg˙file” string =¿ ”cfengine-testpackage-$(pkg˙version).

x86˙64.rpm”;

files:

centos—SuSE—ubuntu::

”$(sys.workdir)/software˙repository/$(pkg˙file)”

comment =¿ ”Copy test package to Linux hosts”,

copy˙from =¿ remote˙cp(”$(def.dir˙custompkgs)/

$(pkg˙file)”, ”$(sys.policy˙hub)”),

classes =¿ if˙ok(”package˙downloaded”);

packages:

package˙downloaded.(centos—SuSE)::

”$(pkg˙name)”

comment =¿ ”Add package to rpm based hosts”,

package˙policy =¿ ”add”,

package˙version =¿ ”$(pkg˙version)”,

package˙select =¿ ”¿=”,

package˙architectures =¿ – ”x86˙64” ˝,

package˙method =¿ rpm˙version(”$(sys.workdir)/

software˙repository/”);

package˙downloaded.ubuntu::

”$(pkg˙name)”

comment =¿ ”Add package to dpkg based hosts”,

package˙policy =¿ ”add”,

package˙select =¿ ”¿=”,

package˙version =¿ ”$(pkg˙version)”,

package˙architectures =¿ – ”.*” ˝,

package˙method =¿ dpkg˙version(”$(sys.workdir)/

software˙repository/”);

˝

Chapter 5: Introduction to CFEngine policies 21

This policy is divided into three main parts, each involving different promise types (i.e. promises about):

- vars: Promises about variables

- In the context any:: (valid for all OSs): pkg˙version - the version of the package

- In the context centos—ubuntu—suse (valid for CentOS, Ubunto and SuSE): pkg˙name - the

name of the package

- In the context ubuntu (valid for Ubuntu): pkg˙file - the OS-specific package file name

- In the context centos—suse (valid for CentOS and SuSE): pkg˙file - the OS-specific

package file name

- files: Promises about files

Promise to copy the OS-specific package files from the OS-specific work directories and set the

class package˙downloaded to true if the operation was successful

- packages: Promises about packages Promise to install the OS-specific package using the OS-

specific package manager

The policy has already been prepared and is ready for use in the evaluation environment. To execute

this policy:

� �
Action item: If you have not already checked out the subversion repository as shown in the previous

example Section 5.3 [Example - Install packages from remote repository], page 17, please do so. Open

‘promises.cf’ as shown in the same example, then uncomment the following two lines (remove the

hash tag (#)) in bundle common pilot:

- # pilot˙simple˙custom˙install

- # pilot˙simple˙custom˙install.cf.

Save and commit to subversion as shown in the same example.
 	
The policy will be executed at the next run of cf-agent (here in the evaluation environment we have

set the interval to every two minutes). You can check that the policy has been implemented either

through the mission portal or the web ssh interface:

� �
Action item:

- Mission Portal: Software reports (Section 3.2 [Example - Software report], page 10) are only

updated every six hours so this is not a convenient place to look for immediate changes. We

can use the ‘Promises repaired (log)’ report instead: Open the reports finder as shown in

Section 3.1 [Reports finder], page 10, scroll down and click Promises repaired (log). Enter the

bundle name (pilot packages) or promise handle (pilot remote package install) as search criteria

and click Generate report. The report should list the promise (not be empty).

- Web ssh: Choose the centos machine from the web ssh menu (as shown in Section 2.7 [Shell

access (evaluation feature only)], page 8) and look for ‘/etc/cfengine˙installed.txt’.
 	

Chapter 6: Next steps 22

6 Next steps

We recommend that users familiarize themselves with the CFEngine 3 documentation and continue to

learn about the CFEngine language and CFEngine 3 Nova. Documents of interest include:

- Nova Evaluation Guide Supplement

- CFEngine 3 Nova Owner’s Manual

- CFEngine 3 Concept guide

- CFEngine 3 Reference Manual

We also recommend that you attend a CFEngine 3 Training Course and/or employ CFEngine

Consulting to help them plan your Nova implementation.

Use our contact form, or send an email to contact@cfengine.com, to be contacted about purchasing

CFEngine 3 Nova.

http://cfengine.com/tech
http://cfengine.com/manuals/novaevaluationguidesupplement.html
http://cfengine.com/manuals/Enterprise-2-2-OwnersManual.html
http://cfengine.com/manuals/cf3-conceptguide.html
http://cfengine.com/manuals/cf3-Reference.html
http://cfengine.com/training
http://cfengine.com/consultancy
http://cfengine.com/consultancy
http://info.cfengine.com/ContactUs.html
mailto:contact@cfengine.com

Appendix A: Policy editor (beta) 23

Appendix A Policy editor (beta)

A.1 The Policy Editor (beta)

CFEngine 3 Nova has a beta version of an integrated editor, made for working on CFEngine policies.

It provides syntax high-lighting and look-up to make policy writing easier.� �
Action item: To access the policy editor, enter the ‘Planning’ room as described in Section 2.5

[Planning room], page 6, then click the Edit policies icon.

Figure: Go to Edit policies
 	
The policy editor comes with a tie-in for Subversion version control repositories; the Nova Mission

Portal will prompt you for the path and credentials to perform an SVN checkout.� �
Action item: Enter the path ‘http://localhost/svn/CFEnginePilot’, username ‘pilot’, and pass-

word ‘pilot’. Click Add.

Figure: Add SVN repository
 	

Appendix A: Policy editor (beta) 24

� �
Action item: Click on Checkout to complete the checkout procedure.

Figure: SVN checkout
 	
The Policy Editor appears after a successful checkout. It consists of three main columns: on the

left, a list of all the policies in the checked out repository (‘Nova Policies’); in the center, the editor

space (where policy files will appear as sheets/tabs); on the right, basic file and Subversion commands.

We take a closer look at these functions in the following sections.

Figure: The Policy Editor

Appendix A: Policy editor (beta) 25

A.2 Example - Edit a CDP input file

If you have not already opened the Policy Editor, follow the instruction in Section A.1 [The Policy

Editor (beta)], page 23 to do so. The file ‘acl˙file˙list.txt’ can be found under the ‘cdp˙inputs’

catalog in the policy editor.� �
Action item: Click cdp inputs in the file menu, then click acl file list.txt to open the file in the editor

window.
 	

Figure: Open the ACLs input file

The content of the file looks like this:

Figure: ACLs input file

We will now modify a field in this policy and check the result in the Mission Portal. The first

two lines below # Windows 2003 concern the file ‘c:“WINDOWS“system32“drivers“etc“hosts’, lets

change the action taken by CFEngine if the promise is not compliant.� �
Action item: Change the next to last field from ‘fix’ to ‘warn’. Click the Save icon on the right,

then Commit (add a comment in the pop up, for example ’Changed to warn’), click Run now and

wait for the execution to have finished (can take up to a minute). To check the result, go back to the

main page, enter the ‘Engineering’ room (Section 2.4 [Engineering room], page 4), click the CDP

reports icon and finally click ACLs File access controls in the ‘CDP reports’ finder.
 	

Appendix A: Policy editor (beta) 26

The result should look like the following figure (note that the value in the ‘Action’ column says

‘warn’ instead of ‘fix’).

Figure: ACLs report

A.3 Example - Create a standard policy

If you have not already opened the Policy Editor, follow the instruction in Section A.1 [The Policy

Editor (beta)], page 23 to do so. We will create a custom report as an example of writing a standard

CFEngine policy. Custom reports are useful when your reporting needs differ from the CFEngine 3

Nova standard reports. Data processing and extraction from CFEngine’s embedded databases must be

scripted by the user if the procedure is not covered in any of the reports found in the Mission Portal.

Output to files or logs may be customized on a per-promise basis and users can design their own log

and report formats.� �
Action item: Click New in file menu in the right column of the policy editor, a tab (‘Untitled-1’)

will appear in the center, and enter the following in the text space (you can always hit Ctrl + h to see

a list of available keyboard shortcuts).
 	
bundle agent pilot˙simple˙custom˙report˙policy –

promise type: make a promise about variables, see details below

vars:

”file˙to˙check” string =¿ ”/tmp/somefile.txt”;

promise type: promise about classes (context), see details below

classes:

”file˙exists” expression =¿ fileexists(”$(file˙to˙check)”);

promise type: make a promise about reports, see details below

reports:

!file˙exists:: # context in which the promise should be executed

in this case if the file does not exist

”WARNING: File $(file˙to˙check) does not exist on host $(sys.uqhost)”

handle =¿ ”pilot˙simple˙report˙policy”,

comment =¿ ”Simple reports policy to show up in Mission Portal”;

˝

Appendix A: Policy editor (beta) 27

The astute reader will remark that there is no ‘body common control’ statement in the above

policy. The reason is that we will use this bundle in the global policy ‘promises.cf’, which already

contains the compulsory body common control. We can therefore omit that statement here. This

policy consists of a bundle with three main parts:

1. Variable definition: Define a variable called file˙to˙check, of type string, containing a value

that represents a file name (‘/tmp/somefile.txt’).

2. Class definition: check whether the file exists through the CFEngine function fileexists and

set a class (boolean) called file˙exists based on the result.

3. Report definition: Generate a report if the file does not exist (consists of a warning; it uses

the file˙to˙check and sys.uqhost variables to display the appropriate file- and host names,

respectively.� �
Action item: Save this file as ‘pilot˙simple˙custom˙report˙policy.cf’: click Save in the right

menu and enter the file name.
 	
We now need to add the policy to ‘promises.cf’ to verify the results in the Mission Portal:� �

Action item:

1. Open ‘promises.cf’ by clicking it in the policy listing on the left

2. Uncomment the corresponding line by removing the hash tag (#) in front of it (only if you have

created and saved the file as instructed above)

”bundlesequence” slist =¿ –

”pilot˙simple˙edit˙policy”

”pilot˙simple˙custom˙report˙policy”, #Uncomment this line

˝;

”inputs” slist =¿ –

”pilot˙simple˙edit˙policy.cf”

”pilot˙simple˙custom˙report˙policy.cf”, #Uncomment this line

˝;

3. Save ‘promises.cf’

4. Run syntax check by clicking Check syntax on the right

5. If everything is fine, commit the changes by clicking Commit on the right (you will be prompted

for a comment, enter for example ’Added custom report’)
 	
The policy will have been adopted and executed at the next CFEngine run (every five minutes

by default). Again, you may execute the policy immediately by clicking the Run now button in the

right column (this might take a while, please be patient and wait until the execution is finished before

checking the reports for updates). You can check that the policy has been run by searching for its

handle in a report.� �
Action item: Open the ‘Report finder’ as shown previously, scroll to and click Compliance by

promise, enter the handle (‘pilot˙simple˙custom˙report˙policy’) in the ‘By handle’ query field

and click Generate.
 	

