
CFEngine Enterprise 3.0 Owner’s Manual
CFEngine Enterprise Documentation

Updated 15. February 2015

CFEngine AS

Copyright c© 2012 CFEngine AS. The features described herein are in provided for user convenience

and imply no warranty whatsoever to the extent of applicable law.

i

Table of Contents

1 Introduction . 1

1.1 About CFEngine Enterprise . 1

2 Requirements . 3

2.1 Hardware requirements . 3

2.2 Operating system support . 3

3 Installing CFEngine Enterprise . 5

3.1 Installation procedure . 5

3.2 How to assess success of this procedure . 7

4 Quickstart - The Mission Portal . 9

4.1 Hosts App . 10

4.1.1 Policy Context Selector . 12

4.1.2 Navigation Tree . 12

4.1.3 Status tab . 14

4.1.4 Reports tab . 15

4.1.5 Events tab . 16

4.1.6 Vitals tab . 16

4.1.7 Host Info tab . 17

4.2 SQL Reports App . 17

4.3 Docs App . 18

4.4 Policies App . 19

4.5 Knowledge App . 20

4.6 User Management . 20

4.7 Settings . 23

4.7.1 Mission Portal Settings . 23

4.7.2 Manage Apps . 24

4.7.3 Hub Replication Status . 24

4.7.4 Host Identifier . 24

4.7.5 Other Settings . 25

5 Role Based Access Control (RBAC) . 27

5.1 Defining Roles . 27

5.2 Entities Filtered . 28

5.3 Limitations . 28

ii CFEngine Enterprise 3.0 Owner’s Manual

6 Virtualization and Cloud . 29

6.1 What are virtualization and cloud computing? . 29

6.2 Why build virtualization support into CFEngine? . 29

6.3 What can CFEngine do with virtual machines? . 29

6.4 Guest environments promises . 30

6.5 Virtualization types supported . 33

6.6 Distinct states . 33

6.7 Example deployment . 33

7 Windows-specific features in CFEngine Enterprise 35

7.1 Windows service management . 35

7.2 Windows event logging . 36

7.3 Windows special variables . 37

7.4 Windows hard classes . 37

7.5 Notes on windows policies . 38

8 REST API . 41

8.1 Basic Properties of the API . 41

8.1.1 HTTP + JSON . 41

8.1.2 Requests . 41

8.1.3 Responses . 41

8.1.4 Pagination . 42

8.1.5 Time . 42

8.1.6 Authentication . 42

8.1.7 Authorization . 42

8.2 Differences between the CFEngine Nova 2.2 REST API and the CFEngine

Enterprise 3.0 API . 42

8.2.1 Read vs. Read/Write . 42

8.2.2 Built-in Reports vs. Reporting Engine . 42

8.2.3 Content-Type . 42

8.2.4 New Users . 43

8.2.5 Base Path . 43

8.2.6 Still available . 43

8.2.7 Mission Portal . 43

8.3 Checking Status . 43

8.4 Managing Settings . 44

8.4.1 Viewing settings . 44

8.4.2 Example: Configuring LDAP . 45

8.4.3 Example: Configuring Active Directory . 45

8.4.4 Example: Changing The Log Level . 46

8.5 Managing Users and Roles . 46

8.5.1 Example: Listing Users . 46

8.5.2 Example: Creating a New User . 47

8.5.3 Example: Updating an Existing User . 47

8.5.4 Example: Retrieving a User . 48

8.5.5 Example: Adding a User to a Role . 48

8.5.6 Example: Deleting a User . 49

iii

8.5.7 Example: Creating a New Role . 49

8.6 Browsing Host Information . 49

8.6.1 Example: Listing Hosts With A Given Context 49

8.6.2 Example: Looking Up Hosts By Hostname . 50

8.6.3 Example: Looking Up Hosts By IP . 51

8.6.4 Example: Removing Host Data . 51

8.6.5 Example: Listing Available Vital Signs For A Host 51

8.6.6 Example: Retrieving Vital Sign Data . 52

8.7 SQL Queries . 53

8.7.1 Synchronous Queries . 54

8.7.1.1 Example: Listing Hostname and IP for Ubuntu Hosts 54

8.7.2 Asynchronous Queries . 55

8.7.2.1 Issuing The Query . 55

8.7.2.2 Checking Status . 56

8.7.2.3 Getting The Completed Report . 56

8.7.3 Subscribed Queries . 56

8.7.3.1 Example: Creating A Subscribed Query . 57

8.7.3.2 Example: Listing Report Subscriptions . 57

8.7.3.3 Example: Removing A Report Subscription 58

8.8 API Reference . 58

8.8.1 /api . 58

8.8.2 /api/settings . 59

8.8.3 /api/user . 59

8.8.4 /api/user/:id . 59

8.8.5 /api/role . 60

8.8.6 /api/role/:id . 60

8.8.7 /api/host . 60

8.8.8 /api/host/:host-id . 60

8.8.9 /api/host/:host-id/context . 60

8.8.10 /api/host/:host-id/context/:context-id . 61

8.8.11 /api/host/:host-id/vital . 61

8.8.11.1 /api/host/:host-id/vital/:vital-id . 61

8.8.12 /api/promise . 61

8.8.13 /api/promise/:promise-id . 61

8.8.14 /api/query . 62

8.8.15 /api/query/async . 62

8.8.16 /api/query/async/:async-query-id . 62

9 Call-Collect . 63

10 Monitoring extensions . 65

10.1 Vital Signs Time Series . 65

10.2 Long term trends . 66

10.3 Custom promises to measure . 66

10.3.1 Extraction strings and logging . 66

10.3.2 Extracting one-off numerical data . 67

10.3.3 Extraction to list variable . 68

10.4 Uses for custom monitoring . 68

iv CFEngine Enterprise 3.0 Owner’s Manual

11 File Access Control Lists . 71

11.1 ACL Introduction . 71

11.2 File ACL example . 71

11.2.1 Concepts . 72

11.2.2 Entity types . 73

11.2.3 Owners . 73

11.2.4 Changing owner . 73

11.2.5 Permissions . 73

11.2.6 Deny permissions . 73

11.2.7 Changing permissions . 74

11.2.8 Effective permissions . 74

11.2.9 Inheritance . 74

11.3 CFEngine 3 Generic ACL Syntax . 74

11.3.1 Generic syntax examples . 76

11.4 POSIX ACL type . 77

11.4.1 POSIX-specific ACL syntax . 77

11.4.2 Generic syntax mapping . 77

11.4.3 POSIX ACL examples . 78

11.5 NT ACL type . 78

11.5.1 NT-specific ACL syntax . 79

11.5.2 Generic syntax mapping . 80

11.5.3 NT ACL examples . 81

12 Server extensions . 83

12.1 Server access resource type . 83

12.2 Function remotescalar . 83

12.3 Example remote scalar lookup . 84

13 Upgrading CFEngine Enterprise . 87

14 Frequently Asked Questions . 89

14.1 How do I install the prerequisites for the hub manually? 89

14.2 I did bootstrap the hub before obtaining a license file - what should I do?

. 89

15 Troubleshooting . 91

15.1 Problems bootstrapping . 91

15.2 Mission Portal Logs . 91

15.3 Apache HTTP error log is your friend . 91

15.4 Some report pages return HTTP error 404 . 91

15.5 CFEngine processes are running but I cannot connect to the Mission

Portal web page . 92

15.6 First time login to Mission Portal fails . 92

15.7 Cannot send emails from the Mission Portal . 92

15.8 Warning messages on web pages in SLES/OpenSuSE Hub 92

15.9 Knowledge map remains unpopulated . 92

v

15.10 I get a promise failed with the message Can’t stat

/var/cfengine/master˙software˙updates/SOME-OS on some hosts . . 93

15.11 I get messages of connection failures to a database on my hub. 93

Appendix A Configuration of external authentication 95

A.1 Configure LDAP . 95

A.2 Configure Active Directory . 96

Appendix B SQLite Database Schema . 97

Chapter 1: Introduction 1

1 Introduction

Welcome to CFEngine Enterprise 3.0, the next generation of enterprise configuration management

software! This document will take you through the necessary steps to get CFEngine Enterprise 3.0 up

and running and show additional features of CFEngine Enterprise compared to CFEngine Community.

The following links will take you to commonly used sections, see above for a complete table of contents:

- Chapter 2 [Requirements], page 3

- Chapter 3 [Installing CFEngine Enterprise], page 5

- Chapter 4 [Quickstart - The Mission Portal], page 9

- Chapter 5 [Role Based Access Control (RBAC)], page 27

- Chapter 6 [Virtualization and Cloud], page 29

- Chapter 7 [Windows-specific features in CFEngine Enterprise], page 35

- Chapter 8 [REST API], page 41

- Chapter 13 [Upgrading CFEngine Enterprise], page 87

We have made big changes to the Mission Portal to accommodate the needs of infrastructure

engineers and IT managers alike. The front page consists of a list of applications, or apps, that give

insight into different aspects of your infrastructure. Focus on a more intuitive UI with enhanced help

functions has made the Mission Portal both easier and more powerful to use.

CFEngine 3 Free Enterprise is our commercial enterprise product offered for free for up to 25

managed hosts. It differs from our commercial offer in that it has different licensing terms, differ-

ent support and it is limited to a maximum of 25 hosts. This product is described in full detail at

http://cfengine.com/enterprise-download. Please note that CFEngine Enterprise should not be

installed as an upgrade to CFEngine Community. In that case uninstall CEngine Community, do a clean

install of CFEngine Enterprise and then move your existing policies to the new Enterprise hub. See the

Enterprise FAQ for more information.

1.1 About CFEngine Enterprise

CFEngine Enterprise is a commercially licensed version of the core CFEngine software1 with enterprise

library extensions. All of the documentation for CFEngine 3 applies to CFEngine Enterprise.

The aim of CFEngine Enterprise is to offer a knowledge-enhanced framework for configuration man-

agement that goes beyond mere technical configuration to support the needs of businesses. Features

include compliance management, reporting and business integration, and tools for handling necessary

complexity. CFEngine Enterprise has features to support Cloud Computing for public and private clouds,

as well as greater integration facilities with database resources.

1 Major version 3

http://cfengine.com/enterprise-download
http://cfengine.com/enterprise/faq

Chapter 2: Requirements 3

2 Requirements

2.1 Hardware requirements

The default CFEngine Enterprise architecture uses a single hub, or policy server, to publish changes of

policy and to aggregate knowledge about the environment, but you can set up as many as you like to

manage different parts of your organization independently. The CFEngine technology is not centralized

by nature. Most users choose to centralize updating of policy and report aggregation for convenience

however.

The default architecture and configuration skeleton of CFEngine Enterprise is expected to scale to

a few thousand hosts with a dedicated policy hub. For the hub (policy server) we recommend that you

have at least 2 GB of memory and a modern 64 bit cpu. For a large number of clients we recommend,

as a rule of thumb, to have 8 GB of memory available per 500 hosts bootstrapped to the hub. Please

contact your sales representative if you have any questions regarding these numbers.

For machines under CFEngine’s management (clients), a full installation of CFEngine Enterprise

requires about 25 MB of disk storage. Otherwise disk usage depends on your specific policies, especially

those that concern reporting. Each software component (agent) typically uses under 10 MB of memory,

but spikes in memory usage can occur if several agents run simultaneously. CFEngine recommends to

have at least 256 MB available memory on the clients.

2.2 Operating system support

CFEngine can be made to run on most operating systems. For efficiency CFEngine only supports

packages for a number of recent popular operating systems, which should be up to date with patches.

If we don’t have packages for your particular operating systems we can usually make packages by special

arrangement, please contact your sales representative.

CFEngine 3 Free Enterprise is only available for Linux Operating Systems (both hub and

client). Commercial CFEngine Enterprise customers have access to all the Operating Systems listed

in ‘¡VERSION-NUMBER¿-Release˙Notes˙CFEngine˙3˙Enterprise.txt’ (found in the software

download directory on cfengine.com).� �
See ‘¡VERSION-NUMBER¿-Release˙Notes˙CFEngine˙3˙Enterprise.txt’ (found in the software

download directory on cfengine.com) for details on supported architectures.
 	
The hub (policy server) is only available for derivatives of the top GNU/Linux distributions (Debian,

Red Hat, SuSE, Ubuntu), as these make available software that the hub relies on for data storage and

processing.

CFEngine Enterprise provides a version of CFEngine running natively on Windows, with support for

registry management, Windows services and file security, See Chapter 7 [Windows-specific features in

CFEngine Enterprise], page 35. Support for Solaris zones has been added through automated zone

detection and process model adaptation.

A working package manager is required on the hub/policy server to install an Apache Web Server,

php module, MongoDB, etc. You should start from a blank system (i.e. with none of these components

installed) to avoid potential interference with the installation process. No special software is otherwise

required on machines in your network, CFEngine bundles all critical dependencies in the CFEngine

Enterprise package.

cfengine.com
cfengine.com

Chapter 3: Installing CFEngine Enterprise 5

3 Installing CFEngine Enterprise

3.1 Installation procedure

CFEngine Enterprise is designed to be simple to install in its default configuration. The installation

process has two phases (or three phases for commercial customers who need to obtain a license):

- Unpack the software

- For commercial customers (skip for CFEngine 3 Free Enterprise): Obtain a license

- Bootstrap the agents to a hub (the hub serves as a policy server and report collector)

The following procedure counts for a fresh install, please see Chapter 13 [Upgrading CFEngine

Enterprise], page 87 for how to upgrade from earlier versions of CFEngine.

You should start from a blank system (see also Section 2.1 [Hardware requirements], page 3). If

you have been using CFEngine Community Edition and you have already developed a policy, set aside

this policy during the installation process. You will be able to integrate it back later.� �
CFEngine Enterprise 3.0 is provided in three packages (two hub packages and one client package),

please make sure to install them on the corresponding machines (e.g. one machine intended to serve

as hub (policy server) and other machines intended to serve as clients).
 	
These are the three packages (inside the respective hub and client directories found under each platform

in the software download directory):

- ‘hub/cfengine-nova-3.0.xxx.[rpm—deb]’

- ‘hub/cfengine-nova-expansion-3.0.xxx.[rpm—deb]’

- ‘client/cfengine-nova-3.0.xxx.[rpm—deb]’

The difference between the hub and client ‘cfengine-nova-3.0.xxx’ packages is that the agent

binaries for the hub are linked to the MongoDB library while the binary for clients are not. Installing

a client package on the hub will result in a database connection error, the Mission Portal will not be

available and reports will not be collected. Installing the hub package on clients will result in error reports

stating that the agent failed to connect to MongoDB (because it is not existent in client packages;

danger of filling up error logs), but otherwise functionality will be assured. Please take care to install

the correct packages on the corresponding nodes.

References to package managers assume that additional packages might need to be installed on the

hub (policy server). Root privilege is required for the installation.

1. Verify that the machine’s network connection is working and that port 5308 (used by CFEngine)

and port 80 (used for the Mission Portal) is open for both incoming and outgoing connections.� �
A common problem is that iptables are active by default on some operating systems. Remember

to stop this service or adapt it to allow for communication on the above ports. If applicable:

$ /etc/init.d/iptables stop

$ chkconfig iptables off
 	
On the hub, verify that package managers yum, zypper or apt-get are working. They will be

used to install a web server, database and php server. If you are not able to set up a package

6 CFEngine Enterprise 3.0 Owner’s Manual

manager and repository on the hub, please see Section 14.1 [How do I install the prerequisites for

the hub manually?], page 89

2. Copy the CFEngine Enterprise packages to the system. On the hub (policy server):

cfengine-nova-3.0.xxx.[rpm—deb] (NOTE: use hub package)

cfengine-nova-expansion-3.0.xxx.[rpm—deb]

On all other machines:

cfengine-nova-3.0.xxx.[rpm—deb] (NOTE: use client package)

3. Unpack the software:

Red Hat family

host# rpm -ihv packages

SUSE family

host# rpm -ihv packages

Debian family

host# dpkg --install packages

4. Skip this step for installation of CFEngine 3 Free Enterprise. On the hub, a public key has now

been created in ‘/var/cfengine/ppkeys/localhost.pub’ as part of the package installation.

Commercial customers should send this public key to CFEngine Support1 as an attachment in the

ticket system, to obtain a license file ‘license.dat’.� �
Save the returned license file to ‘/var/cfengine/masterfiles/license.dat’ on the hub before

continuing.
 	
5. The remaining steps apply to all hosts, but you should install the hub (policy server) first. For

large systems (¿ 1000 hosts) we recommend increasing the memory limit in php.ini on the hub

(for instance to 128 MB).

Find the hostname or IP address of the hub (policy server), here we assume ‘123.456.789.123’

is the address.

hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 123.456.789.123

Use the same command on all hosts, i.e. do not bootstrap the policy server with a localhost

address. If you mistype the address of the hub, we recommend doing the following steps to

re-boostrap.

hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 123.456.789.124

hub # killall cf-execd cf-serverd cf-monitord cf-hub

hub # rm -rf /var/cfengine/inputs/*

hub # rm -f /var/cfengine/policy˙server.dat

hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 123.456.789.123

CFEngine will output diagnostic information upon bootstrap (written to command line and syslog;

cf-agent will also return a value: ERROR: 1, SUCCESS: 0). Error messages will be displayed if

bootstrapping failed, pursue these to get an indication of what went wrong and correct accordingly.

If all is well you should see the following in the output:

1 You will obtain credentials to the CFEngine Support ticketing system and software download repository as a
part of your purchase.

Chapter 3: Installing CFEngine Enterprise 7

-¿ Bootstrap to 123.456.789.123 completed successfully

See Troubleshooting - Section 15.1 [Problems bootstrapping], page 91 if you have issues with this

step.� �
Commercial customers: Did you bootstrap before obtaining a license? See Section 14.2 [I did

bootstrap the hub before obtaining a license file - what should I do?], page 89
 	
6. CFEngine should now be up and running on your system. The Mission Portal will not be im-

mediately accessible, you should wait approximately 15 minutes for the system to converge

before attempting to connect to the hub IP-address through your web browser (the conver-

gence process can take up to 30 minutes). CFEngine will copy its default policy files into

‘/var/cfengine/masterfiles/’ on the hub (policy server) provided that the directory is empty

(fresh install). When the clients are bootstrapped, they will contact the hub and copy them to

their ‘/var/cfengine/inputs/’ directory.

7. To complete licensing setup, you should make a promise to accept the license terms by editing

‘/var/cfengine/masterfiles/promises.cf’ and

‘/var/cfengine/masterfiles/failsafe/failsafe.cf’ on the hub (policy server), changing

the line ‘host˙licenses˙paid =¿ ”¡NUMBER¿”;’ in ‘body common control’ to reflect the correct

number of licenses that you have subscribed to. For Free Enterprise ¡NUMBER¿ should be 25

(the maximum number of clients that can be bootstrapped without obtaining a license).

3.2 How to assess success of this procedure

1. Look at the process list on the systems with ‘ps waux — grep cf-’. You should be able to see

cf-execd running, and eventually other processes from the CFEngine suite like cf-monitord

cf-serverd. On the hub, you should also eventually see cf-hub. Note that it may take 5–10

minutes before all the processes get started.

2. Look for files in ‘/var/cfengine/inputs’ (Unix) or ‘C:“Program Files“Cfengine“inputs’

(Windows). If you are a commercial customer (not using the Free Enterprise edition) the li-

cense file will be copied out from the policy server to the clients as part of the normal distribution

of policy. Each machine should get a copy of the ‘license.dat’ file in ‘/var/cfengine/inputs’

(Unix) or ‘C:“Program Files“Cfengine“inputs’ (Windows).

3. On the hub, the file ‘/var/cfengine/promise˙knowledge.cf’ should have been created, and

should contain data.

4. Finally, after 10–15 minutes2, try to connect to the hub (policy server) with your web browser

(from the installation example: http://123.456.789.123, replace with your real IP address). You

should see a login page like the one shown in the figure below:

2 You may have to wait as long as 30 minutes

8 CFEngine Enterprise 3.0 Owner’s Manual

Figure: Mission Portal login screen

Please see Chapter 14 [Frequently Asked Questions], page 89 or Chapter 15 [Troubleshooting],

page 91 if you have any problems.

Chapter 4: Quickstart - The Mission Portal 9

4 Quickstart - The Mission Portal

The Mission Portal is the centerpiece of user interaction with CFEngine Enterprise. It can be ac-

cessed by connecting to the hub (policy server) with your web browser (from the installation example:

http://123.456.789.123, replace with your real IP address). You should see a login page, the default

user name and password is admin and admin.1 Once you have logged in you will see the Mission Portal

home page:

Figure: The Mission Portal

By default there are only three applications, or apps, shown on the home page (the above image also

shows the Policy and Knowledge apps, these can be made visible by enabling them in Section 4.7

[Settings], page 23). Each app offers insight into different aspects of operations:

- Hosts - A place to see the current state of system repair

- SQL Reports - Create reports based on a simple customizable SQL interface

- Docs - Access to both offline and online CFEngine documentation

- Policies - Show the promises that the system is currently trying to keep

- Knowledge - A knowledge bank that connects information together

In addition all Mission Portal apps have a top menu containing at least the App Selector on the left

and the Settings Menu on the right:

Figure: Top Menu

- App Selector - A shortcut to other available apps in the Mission Portal (no need to pass through

the Mission Portal home page)

- Settings Menu - Log out, access to Mission Portal settings, user management and roles (see

separate sections)

1 Make sure to change the password to prevent unauthorized access; see also Appendix A on configuration of
external authentication.

10 CFEngine Enterprise 3.0 Owner’s Manual

The apps labeled beta are under development and may not have a complete functionality set. We still

choose to include them in the product to show the potential of CFEngine Enterprise and get feedback

from our customers. A Mission Portal administrator can configure which apps will be available to other

users through Section 4.7 [Settings], page 23.

If you go on directly to explore the different apps, please note that some of the displays in the

Mission Portal may be blank when you log in just after installation. It may take some time for the

system to fully converge, do not get troubled if initially there are some promises repaired or not kept

(yellow and red colors).

The following will take you through the different Mission Portal apps and settings.

4.1 Hosts App

The Hosts App illustrates the state of the system in relation to the desired state at different scales.

Zoom in to specific areas and examine the impact of promises, query data, extract reports and examine

compliance relative to the policy/promises you have made. Speak authoritatively on resources and

avoid the cost of maintaining disconnected monitoring/reporting.

Figure: Hosts App

The app has three main areas of user interaction:

• Policy Context Selector: In addition to the App Selector and Settings Menu, the top menu

contains the Policy Context Selector. Use this to choose between three different policy contexts

and see information for –All˝, –User˝ or –System˝ (internal CFEngine) promises (Section 4.1.1

[Policy Context Selector], page 12)

Figure: Policy Context Selector

Chapter 4: Quickstart - The Mission Portal 11

• Navigation Tree: Hosts can be grouped and organized in a hierarchy defined by classes

(Section 4.1.2 [Navigation Tree], page 12)

Figure: Navigation Tree

• Content Area: Context sensitive area (affected by the selection made in the Policy Context

Selector and Navigation Tree). The header/title shows the selected context from the navigation

tree and underneath you will find five different content tabs:

- Status: Overview of host compliance and operational status (Section 4.1.3 [Status tab],

page 14)

- Reports: Access to default reports (Section 4.1.4 [Reports tab], page 15)

- Events: Track events based on (patterns in) promise handles (Section 4.1.5 [Events tab],

page 16)

- Vitals: Monitor host parameters (Section 4.1.6 [Vitals tab], page 16)

- Host Info: Detailed information about each host (inventory) (Section 4.1.7 [Host Info tab],

page 17)

In general we use colors to show the status of host compliance and operational status:

- Red: If less than 80% of promises were kept

- Yellow: If 20% or more of promises were repaired and host is now compliant

- Green: If more than 80% of promises were kept

- Blue: If there has not been any contact between the hub and the client within a set time interval

(host unreachable; default value is set to 15 minutes, see Section 4.7.1 [Mission Portal Settings],

page 23).

- Black: If cf-agent has not executed policy normally for the last three runs. This could be

due to CFEngine’s scheduling daemon, cf-execd, not running or an error in policy which aborts

execution. The hub will still able to contact the client to collect reports but the client will return

stale data since it has not completed runs at regular intervals.

12 CFEngine Enterprise 3.0 Owner’s Manual

4.1.1 Policy Context Selector

The Policy Context Selector affects all content related to host and promise status in the Hosts App.

There are three alternatives:

Figure: Policy Context Selector

- All: Navigation Tree, graphs, reports and events will contain data from all promises in you policy.

- User: Navigation Tree, graphs, reports and events will contain data from promises that users have

added.

- System: Navigation Tree, graphs, reports and events will contain data from CFEngine system

promises (labeled with a promise handle prefix cfe internal in the default policies located under

‘/var/cfengine/inputs/cfe˙internal/’).

System promises reside in bundles whos name is prefixed by cfe˙internal˙. Their promise handle

names are also prefixed by cfe˙internal˙. Bundles/promise handles that do not have this prefix will

be categorized as User bundles/promises. All shows the union of User and System bundles/promises.

In addition, the cf-agent verbose output of promise compliance has changed format to accomodate

the policy context feature:

- Old style verbose output:

nova¿ Outcome of version Promises.cf 2.2.3 (agent-0): Promises observed to be kept 100%, Promises repaired 0%, Promises not repaired 0%

- New style verbose output:

enterprise¿ Outcome of version Promises.cf 3.0.0 (agent-0): Promises observed - Total promise compliance: 100% kept, 0% repaired, 0% not kept (out of 6418 events). User promise compliance: 100% kept, 0% repaired, 0% not kept (out of 29 events). CFEngine system compliance: 100% kept, 0% repaired, 0% not kept (out of 6389 events).

The promise summary.log file has undergone similar format changes to include results for the dif-

ferent policy contexts.

4.1.2 Navigation Tree

The Navigation Tree allows the user to group and organize hosts in a hierarchy defined by CFEngine

classes (boolean classifiers that describe context).

Figure: Navigation Tree

The tree consists of two main parts:

Chapter 4: Quickstart - The Mission Portal 13

- The Tree Selector (top drop down menu): Choose between default trees or custom trees defined

by the user. Each tree can have a different subset of nodes. Type a name in the Add Tree text

field at the bottom of dropdown menu and press enter to add your own tree. Click X next to a

tree name to delete it.

- The tree itself, grouped by classes. The user can add up to four sublevels in the Navigation Tree

and edit or delete existing nodes.

Figure: Navigation Tree Expanded

- To add a node:

1. Put the mouse pointer over the node you wish to add a sublevel to, click the plus sign

shown beside the node.

2. A pop-up appears with fields to enter a label (name) to the node that you wish to

create and the class expression you wish to filter by. The class expression field contains

a button which opens a class finder to help you select classes.

- To delete a node: Put the mouse pointer over the node that you wish to delete, click the X

shown beside the node.

- To edit a node:

1. Put the mouse pointer over the node that you wish to edit, click the Pencil icon

shown beside the node.

2. A pop-up appears where you can edit the fields that you wish to change.

The trees and nodes that a user creates will not be visible to other users of the Mission Portal.

Click on any host in the tree to get a quick overview of that host in the Status, Vitals or Hosts

Info tabs.

14 CFEngine Enterprise 3.0 Owner’s Manual

4.1.3 Status tab

The Status tab shows the overall status of the hosts selected in the Navigation Tree and selected policy

context (–All˝, –User˝ or –System˝).

Figure: Status tab

This section contains:

• Time series graph: The row of bars shows the compliance of all registered hosts in blocks of

six hours for the last week or in blocks of five minutes for the last six hours1. The hosts are

classified into red, yellow and green according to the status of their compliance. The height of a

bar corresponds to the number of registered hosts. Note that the last column may have a lower

height than the others in the six hour view (i.e. show information for fewer hosts)2. Click on a

bar to see which promises were repaired or not kept.

• Host Compliance and Host Operations: The hosts are classified into red, yellow and green ac-

cording to the status of their compliance over the last hour as well as blue and black according to

their operational status (host unreachable and host with scheduling deviation, respectively).

• Clicking a link in any of the above categories (red/yellow/green/blue/black) produces a list of the

hosts in that category (in the above mentioned context).

1 Blue or black hosts will not appear here
2 This is because hosts check in at different times and some hosts may not yet be accounted for at the time of

generation of the graph.

Chapter 4: Quickstart - The Mission Portal 15

4.1.4 Reports tab

Reports are sorted into five main categories that contain drop down menus to select default reports.

All reports except Accounting ¿ Benchmarks and Accounting ¿ Business value are context sensitive,

i.e. will change based on your selection in the navigation tree and the policy context selector. Clicking

a report will bring up a search filter specific to that report.

Figure: Reports tab

Reports are updated at different intervals, the default values are every 5 minutes or every 6 hours.

Below is a list of standard reports, updated every 5 minutes unless otherwise noted:

• Policy

- Compliance by bundle: Status of promise bundles and when they were last verified

- Compliance by promise: Compliance of each promise individually

- Promises not kept (log): Log of individual promises that were not kept

- Promises not kept (summary): Cumulative summary of promises not kept

- Promises repaired (log): Log of individual promises that were repaired (fixes to the system)

- Promises repaired (summary): Cumulative summary of promises repaired

• Accounting

- Benchmarks: Execution time of selected promises (as defined in policy)

- Business value report: Accumulated value of promises kept (6 hrs)

- Compliance summary: Compliance of each agent run

• System

- Context classes: User defined classes observed on the system

- Last saw neighbors: Log of when neighboring hosts were last observed online

- Variables: Table of variable values last observed (6 hrs)

- Weakest hosts: Ranking of hosts according to the compliance over the last hour

• Software

- Installed: List of software packages claimed to be installed according to the local package

manager

- Patches available: A list of patches currently claimed to be available by the local package

manager

- Patch installed: A list of (un)applied patches according to the local package manager

16 CFEngine Enterprise 3.0 Owner’s Manual

• File watch

- Change summary: Log of all detected changes to files from changes promises

- Setuid: Current list of observed setuid/setgid root programs (6 hrs)

- Text changes: Delta/difference comparison showing file changes

4.1.5 Events tab

The Events tab allows you to create trackers to follow selected promises or classes. The trackers are

in real time and shows data as it is written to the database. They represent an easy way to monitor

specific promises or trace the impact of policy changes and roll outs at a more detailed level. A classes

tracker will list the hosts that satisfy the selected class.

Figure: Events tab

4.1.6 Vitals tab

CFEngine has integrated monitoring capability where many parameters are measured on each client.

These are presented visually in the Vitals tab. All parameters are listed if a single host is selected,

otherwise the hosts are ranked according to a selected parameter.

Figure: Vitals tab

See also Chapter 10 [Monitoring extensions], page 65.

Chapter 4: Quickstart - The Mission Portal 17

4.1.7 Host Info tab

The Host Info tab is an inventory listing of discovered properties about a host. Includes host identity,

operating system, architecture, CPU, interfaces, etc.

Figure: Hosts Info tab

4.2 SQL Reports App

The SQL Reports app gives the user full flexibility to create reports based on a simple customizable

SQL interface. The workflow consists in choosing what fields you want to see in the report and how to

filter them. You also have the option to save queries for later use or schedule queries to email reports

to stakeholders. Be ready for instantaneous audits and inspections at low cost by reducing the time

and work to gather reports.

Figure: SQL Reports

18 CFEngine Enterprise 3.0 Owner’s Manual

There are two main areas of interaction in this app:

- Left menu: List of saved and scheduled searches

- Content area: Choose parameters for the report, view the result and save or schedule a query.

Items in the content area are used to create a query and generate reports according to the following

description:

- Fields - Define your table columns (mandatory field)

- Filters - Filter the results of you query (use valid SQLite syntax)

- Group - Group your results according to selected criteria

- Sort - Sort your results according to a selected criteria

- Limit - Limit the number of entries in your report

- Show me the query - View and edit the SQL query directly� �
Please note that any queries containing the PromiseDefinitions table in combination with any other

table in the schema will produce erroneous output without an intermediate join to the PromiseStatus-

Last table. See Appendix B [SQLite Database Schema], page 97.
 	� �
Please note that manual edits of the SQL query in the Show me the query field will invalidate input

from the UI wizard. Conversely, any manual edit will be overwritten if you make changes in the UI

wizard.
 	
Once the query is defined you can run it to see the result, optionally save it for later use or schedule

it to be emailed at a chosen interval. The report will appear below the UI wizard if you choose to run

the query directly (limited to the number of entries chosen in the Limit field):

Figure: SQL Report Table

4.3 Docs App

The Docs app gives access to both offline and online CFEngine documentation. The documents are

scanned and parsed to be included in the integrated semantic index (see Section 4.5 [Knowledge App],

page 20). Look up on the fly or study in depth. Learn about CFEngine concepts, syntax and inherent

possibilities in CFEngine.

The left side shows an overview of all bundled documents, divided into categories that expand once

clicked. The selected document is displayed in the main content area to the right.

Chapter 4: Quickstart - The Mission Portal 19

Figure: Docs

4.4 Policies App� �
Please note that this is a beta app: it is under development and has basic intended functionality, but

may have bugs and an incomplete functionality set.
 	
The Policies app shows the promises that the system is currently trying to keep, with links to

CFEngine’s smart indexing and documentation. Show statistics about the quality and success of the

intended state. Stay close to the intended state of your system, by knowing what, where, when, how

and why your infrastructure is defined, deployed and configured.

Figure: Policies

The four tabs on the right content side give further insight into what the bundles on the left contain:

- Info: General information about what classes are used in the selected bundle, other affected

bundles, and hosts affected by the bundle.

20 CFEngine Enterprise 3.0 Owner’s Manual

- Stats: Overview of the number of promises made in the bundle and what promise types.

- Compliance: Compliance of the selected bundle on the affected hosts.

- Variables: List of variables used in the bundle.

4.5 Knowledge App� �
Please note that this is a beta app: it is under development and has basic intended functionality, but

may have bugs and an incomplete functionality set.
 	
The Knowledge app embodies CFEngine’s knowledge index, used to find answers and document

references and reports. Use CFEngine’s automated analysis of policy, collected data and local knowledge

to comprehend your tools and infrastructure with greater authority.

Figure: Knowledge App

On the left you find a search field and a menu with foldable generic categories and list of documents

and their content titles/headers. The right side presents the map itself, with references to the selected

topic underneath. The map displays visual relations to other topics and is clickable, navigate and learn

how topics are connected. The See also tab presents semantic links to other topics that might be

related, as well as references to the selected topic.

4.6 User Management

On a fresh install the default user admin belongs to the admin user group and has access everything in

the Mission Portal. The admin user can add users to the internal database, set up external authenti-

cation and define roles to limit access.

The following shows how to add, edit and delete users from the internal database. See the respective

sections, Appendix A [Configuration of external authentication], page 95 and Chapter 5 [Role Based

Access Control (RBAC)], page 27 for advanced user management.

Chapter 4: Quickstart - The Mission Portal 21

Figure: User Management

Click the Add User button to add a new user to the internal database:

Figure: Add User

Enter the user information as requested in the fields. If user roles have been defined (see Chapter 5

[Role Based Access Control (RBAC)], page 27), you can also choose to assign one or more roles to

the user by selecting an available group and clicking the ’¡’ button located between the list of assigned

and available roles. Finish by clicking Create User.

Users can be edited in the same way as above by clicking the Pencil button next to his or her user

name.

22 CFEngine Enterprise 3.0 Owner’s Manual

� �
For resetting user passwords, please note that the Mission Portal will attempt to email the new

password to the user. If this fails, the Mission Portal will display the new password on screen after the

email server has given the fail message. Please note that this might take a while, you should verify that

the recipient has gotten the email before moving on. If the password is displayed on the screen you will

need to convey it to the user manually and check your Mission Portal email settings (see Section 4.7.5

[Other Settings], page 25).
 	
The information a user is authorized to see is determined from his or her role memberships. A user

may be member of an arbitrary number of roles, each which may grant and deny access to certain

information. User-authentication is carried out when users log on to the Mission Portal, see also

Chapter 5 [Role Based Access Control (RBAC)], page 27.

Chapter 4: Quickstart - The Mission Portal 23

4.7 Settings

4.7.1 Mission Portal Settings

Figure: Mission Portal Settings

Mission Portal settings allow the user to set and configure the following items:

Authentication method

By default the Mission Portal will use the internal database to store user information. Default user

name and password on the Mission Portal login page are ”admin” and ”admin”.

External authentication (LDAP or Active Directory) is available for CFEngine 3 Nova 2.1 and later

versions. See Appendix A [Configuration of external authentication], page 95 for how to set this up.

Role-Based Access Control

CFEngine 3 Enterprise 2.2.0 introduced Role-Based Access Control (RBAC) for all hosts, reports and

promises shown in the Mission Portal. RBAC does not cover access control for making policy changes.

If you wish to use RBAC in combination with external authentication (LDAP or AD), we recommend

that you wait to turn on RBAC until you log on with the LDAP or AD user that has been designated a

Mission Portal admin (i.e do not turn RBAC on while logged in with an internal database user in this

case). RBAC can be globally switched on or off, but see also Section 4.6 [User Management], page 20

for more details.

Unreachable host threshold

Time after which a host is defined as unreachable (blue host; the hub is unable to reach this host due

to connection problems). Default threshold is 15 minutes.

Turn on/off the Analytics feature

Learn more about how users interact with the Mission Portal. This is completely anonymous and stored

locally, you have to actively download and send the report to CFEngine if you whish to share it with us.

24 CFEngine Enterprise 3.0 Owner’s Manual

Set the Enterprise API log level - Corresponds to the standard syslog levels.

Upload you company logo

Image that will be shown on the top of PDF reports that are exported from the Mission Portal. Browse,

choose and upload a file from your computer.

4.7.2 Manage Apps

Determine which apps should be active (on) or inactive (off) in the Mission Portal. The Policy and

Knowledge apps are turned off by default. These are global settings that affect all users.

Figure: Manage Apps

4.7.3 Hub Replication Status

Shows status of hub replication if it has been set through policy. Contact your sales representative if

you wish help with setting this up.

4.7.4 Host Identifier

The Host Identifier is used to choose what attribute will be used to identify hosts that are not directly

addressable from the hub (e.g. hosts behind a network address translator (NAT) or where two-way

initialization of communication is generally denied). See Chapter 9 [Call-Collect], page 63.

Figure: Host Identifier

Chapter 4: Quickstart - The Mission Portal 25

4.7.5 Other Settings

These settings are not availble through the Mission Portal, but can be accessed through files in the

web document root on the hub. They are related to default save path for CSV/PDF reports, timeout

for exported report generation, Mission Portal email configuration, URL for the Enterprise REST API

and default title for scheduled reports.

• Reports and Enterprise REST API (‘¡DOCROOT¿/application/config/appsettings.php’, sec-

tion labelled ”User defined constants”). You can specify:

- Path to save CSV and PDF files from reports on hosts page

- Path to save CSV and PDF files from scheduled reports

- Default FROM email address

- Default TITLE for scheduled reports

- Max allowed time for PDF generation in seconds

- URL for Enterprise REST API server

• Email settings (‘¡DOCROOT¿/application/config/email.php’). By editing this file you can

specify custom email settings adapted to your setup.

The complete list of options for ‘¡DOCROOT¿/application/config/email.php’ are as follows:

¡pre¿

¡?php if (! defined(’BASEPATH’)) exit(’No direct script access allowed’);

/*

* method used to send email

*/

$config[’useragent’] = ’cfengine’; // The ”user agent”.

$config[’protocol’] = ’mail’; // The mail sending protocol. Values: mail, sendmail,

or smtp.

$config[’mailpath’] = ’’; // The server path to Sendmail.

$config[’smtp˙host’] = ’’; // SMTP Server Address.

$config[’smtp˙user’] = ’’; // SMTP Username.

$config[’smtp˙pass’] = ’’; // SMTP Password.

$config[’smtp˙port’] = ’’; // SMTP Port, f.e. 25

$config[’smtp˙timeout’] = ’’; // SMTP Timeout (in seconds). f.e. 5

$config[’wordwrap’] = TRUE; // Enable word-wrap. Values: TRUE or FALSE (boolean).

$config[’wrapchars’] = 76; // Character count to wrap at. f.e. 76

$config[’mailtype’] = ’text’; // Type of mail. values: text or html

$config[’charset’] = ’utf-8’; // Character set (utf-8, iso-8859-1, etc.).

$config[’validate’] = TRUE; // Whether to validate the email address. Values: TRUE

// or FALSE (boolean)

$config[’priority’] = 3; // Email Priority. 1 = highest. 5 = lowest. 3 = normal.

// Values: 1, 2, 3, 4, 5

$config[’crlf’] = ’“r“n’; // Newline character. (Use ”“r“n” to comply with RFC 822).

// Values: ”“r“n” or ”“n” or ”“r”

26 CFEngine Enterprise 3.0 Owner’s Manual

$config[’newline’] = ’“r“n’; // Newline character. (Use ”“r“n” to comply

// with RFC 822). Values: “r“n” or ”“n” or ”“r”

$config[’bcc˙batch˙mode’] = FALSE; // Enable BCC Batch Mode. Values: TRUE or

// FALSE (boolean)

$config[’bcc˙batch˙size’] = ’’; // Number of emails in each BCC batch. f.e. 200

?¿

¡/pre¿

Email configuration example:

¡?php if (! defined(’BASEPATH’)) exit(’No direct script access allowed’);

/*

* method used to send email

*/

$config[’protocol’] = ’smtp’;

$config[’smtp˙port’] = ’25’;

$config[’user˙agent’]=’cfengine’;

$config[’smtp˙host’]=’10.10.10.10’;

$config[’smtp˙user’] = ’user’;

$config[’smtp˙pass’] = ’password’;

$config[’smtp˙crypto’] = ’tls’;

$config[’charset’] = ’iso-8859-1’;

$config[’wordwrap’] = TRUE;

?¿

Chapter 5: Role Based Access Control (RBAC) 27

5 Role Based Access Control (RBAC)

Role-Based Access Control (RBAC) limits user access to the Mission Portal settings page and access

to hosts, reports and promises in the different Mission Portal Apps. RBAC can be globally switched on

or off in the Mission Portal settings (see Section 4.7.1 [Mission Portal Settings], page 23).

On a fresh install the default user ”admin” belongs to the ”admin” user group and has access

everything in the Mission Portal. The ”admin” user can add users to the internal database, set up

external authentication (see Appendix A [Configuration of external authentication], page 95) and define

roles to limit access.

5.1 Defining Roles

A role is defined as reporting access to a set of hosts and promise bundles from the Mission Portal

and REST API. This does not give any rights with respect to changing the content or execution of the

policy. It should not be confused with the roles promise-type that can be used by cf-runagent and

cf-serverd.

Figure: User Roles

Click the Add Role button to add a new user role to the Mission Portal:

28 CFEngine Enterprise 3.0 Owner’s Manual

Figure: Add Role

Roles can be defined on either classes or bundles and involves setting permissions through an include

and exclude list for each. The effective permissions of a user is the cumulative set of permission granted

or denied by his roles, and is used to filter the information displayed in the following way:

• Create a union of the granted access for the roles.

• Override with the rules that deny access for the roles.

• If left unspecified, access is denied.

In order to scale, both entities are defined as a set of regular expressions to allow and deny.

Access to hosts is defined by regular expressions on classes, not the hostname, ip, or any other

name. This is done to ensure maximum scalability. Classes can be arbitrarily defined in the CFEngine

policy language, so this incurs no loss of flexibility, but ensures distributed computation.

In contrast to users, a role definition and membership can only be obtained from the internal Mission

Portal database. This means that any roles must be defined through the Mission Portal web interface,

and can not be obtained from e.g. LDAP at this time. The rationale is that querying complex LDAP

structures for role membership is too inefficient and error-prone. This may change in future releases, if

requested. Note that the possible members of a role can be obtained from other sources, as described

in the section on user administration. However, assigning possible members to roles must be done

through the Mission Portal user-interface.

5.2 Entities Filtered

The above discussion showed that RBAC is supported on the host and promise bundle level, each

applying to different parts of the Mission Portal. Both these entities are atomic with respect to RBAC

— either a user can see everything they contain, or nothing of it.

Access to a host is required to see any information about it, e.g. all its reports, host information,

and compliance category. If a user is not allowed access to a host, the Mission Portal would look the

same as if the host was not bootstrapped to that hub.

Information about the running policy is also available in the Mission Portal, either through the

Promise Finder or by clicking a promise handle from one of the reports. The searchable promises in

the Promise Finder and information pages about promises and bundles are filtered in the same manner

as the hosts, but defined based on promise bundles instead.

Note that the host and promise filtering is independent — no attempt is made to try to infer which

promises a role should have access to based on the hosts it has access to or vice versa.

5.3 Limitations

• Notes added in the Mission Portal are not filtered: they can be seen by all users (including notes

added to any host page).

• The Knowledge Map is only available for members of the ‘admin’ role when RBAC is switched on.

• Running cf-report from the command-line on the hub will bypass all RBAC checks.

Chapter 6: Virtualization and Cloud 29

6 Virtualization and Cloud

6.1 What are virtualization and cloud computing?

Virtualization refers to the ability to run multiple host instances on a single physical node. Cloud

computing typically refers to what is called ‘platform as a service’, or deployment of virtual machines

on demand, often as an on-line service.

In this document, virtualization support refers specifically to hypervisor technologies supported by

the open source library layer libvirt project, which includes interfaces for Xen, KVM, VMware-ESX,

and more. CFEngine thus integrates freely with other tools based on this library, such as virsh and the

Virtual Manager graphical user interface.

6.2 Why build virtualization support into CFEngine?

Virtualization engines (usually called supervisors or hypervisors) are seeing an explosion of development.

They exist as a number of projects in various stages of maturity. The libvirt project was designed as

an integration layer based on an XML specification.

The tools for management are still quite primitive and require much manual work. CFEngine has a

unique role to play in maintaining desired state in virtual machine systems.

In the cloud, virtual machines may be rented from remote commercial providers, and managed as

disposable resources. Convergent or ‘self-healing’ maintenance is an essential method for managing

machines that are geographically remote and awkward to access, e.g. machines in other time-zones

that it is impractical to monitor by legacy methods.

6.3 What can CFEngine do with virtual machines?

The simple answer is: most things that libvirt can do, with added convergence to a desired state: that

means, creating, destroying and starting and stopping machines. By starting virtual machines through

CFEngine, you can be sure that a given ‘virtual guest’ is running on one and only one physical host,

thus avoiding conflicts that are difficult to detect with centralized systems.

CFEngine does not support everything that libvirt does – it offers a simplified interface that is meant

for robustness, stability and hands-free repeatability.

� �
CFEngine does not use libvirt’s TLS based web communication layer. It manages every host as

an independent entity, in typical CFEngine fashion, using CFEngine’s own distributed cooperation to

provide the implicit communication. CFEngine does not currently support so-called ‘live migration’ of

virtual machines.
 	

30 CFEngine Enterprise 3.0 Owner’s Manual

6.4 Guest environments promises

A virtual machine is one example of what CFEngine calls an ‘guest environment’. You can promise to

create (and host) an guest environment with certain attributes, just as you can promise to host a file

or a process. Here is a simple example:

body common control

–

bundlesequence =¿ – ”my˙vm˙cloud” ˝;

˝

###

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml,

environment˙type =¿ ”xen”,

environment˙host =¿ ”my˙physical˙computer”, # ipv4˙10˙1˙2˙3

environment˙state =¿ ”create”;

˝

###

body environment˙resources virt˙xml

–

env˙spec˙file =¿ ”/srv/xen/centos5-libvirt-create.xml”;

˝

• The promiser (in this case ‘myUbuntu’) is the name of the virtual machine. This should be a

unique identifier, as we need to be able to refer to machines uniquely.

• The guest environment host is the name of the computer that is the host for the virtual machine.

• Normally when we want to ensure something on a machine, we use classes to decide where the

promise will be made. For guest environments, however, we need to make promises about the

uniqueness of the machine. When you make a machine instance you normally want it to be

running on one and only one host. So you want every machine to make a promise. On the

guest environment’s host, you want to promise that the guest environment is running, and on

every other machine you want to promise that it is not. In CFEngine, you simply include a unique

class belonging to host in the promise using environment˙host and CFEngine assumes that rest.

Unique classes might include

• Hostname class e.g. myhost˙CFEngine˙com

• IP address class e.g. ipv4˙123˙456˙789˙123

Chapter 6: Virtualization and Cloud 31

An alternative way to write this example is to quote the XML specification in CFEngine directly. This

has a few advantages: you can re-use the data and use it as a template, filling in CFEngine-variables.

You can thus adapt the configuration using CFEngine’s classes.

32 CFEngine Enterprise 3.0 Owner’s Manual

bundle agent my˙vm˙cloud

–

guest˙environments:

”myUbuntu” # the running instance name, defined in XML

environment˙resources =¿ virt˙xml(”$(this.promiser)”),

environment˙type =¿ ”xen”,

environment˙host =¿ ”myphysicalcomputer”;

environment˙state =¿ ”create”

˝

###

body environment˙resources virt˙xml(host)

–

env˙spec˙file =¿

”¡domain type=’xen’¿

¡name¿$(host)¡/name¿

¡os¿

¡type¿linux¡/type¿

¡kernel¿/var/lib/xen/install/vmlinuz-ubuntu10.4-x86˙64¡/kernel¿

¡initrd¿/var/lib/xen/install/initrd-vmlinuz-ubuntu10.4-x86˙64¡/initrd¿

¡cmdline¿ kickstart=http://example.com/myguest.ks ¡/cmdline¿

¡/os¿

¡memory¿131072¡/memory¿

¡vcpu¿1¡/vcpu¿

¡devices¿

¡disk type=’file’¿

¡source file=’/var/lib/xen/images/$(host).img’/¿

¡target dev=’sda1’/¿

¡/disk¿

¡interface type=’bridge’¿

¡source bridge=’xenbr0’/¿

¡mac address=’aa:00:00:00:00:11’/¿

¡script path=’/etc/xen/scripts/vif-bridge’/¿

¡/interface¿

¡graphics type=’vnc’ port=’-1’/¿

¡console tty=’/dev/pts/5’/¿

¡/devices¿

¡/domain¿

”;

˝

You should consult the libvirt documentation for the details of the XML specification.

Chapter 6: Virtualization and Cloud 33

6.5 Virtualization types supported

CFEngine currently supports virtualization only through libvirt, so it supports those technologies that

libvirt supports. Currently this includes most popular technologies. You must choose the type of

monitor that is to be responsible for keeping the guest environment promise. In CFEngine, you should

choose between a machine environment or network environment of the following types:

xen A Xen hypervisor virtual domain.

kvm A KVM hypervisor virtual domain.

esx A VMware hypervisor virtual domain.

test The libvirt test-hypervisor virtual domain.

xen˙net A Xen hypervisor virtual network.

kvm˙net A KVM hypervisor virtual network

esx˙net An ESX/VMWare hypervisor virtual network.

test˙net The test hypervisor virtual network.

zone A Solaris zone (future development)

ec2 An Amazon EC2 instance (future development)

eucalyptus

A Eucalyptus instance (future development)

Once again, you must consult the libvirt documentation for details.

6.6 Distinct states

Libvirt recognizes a number of distinct states are transliterated into CFEngine as

create Build and start an guest environment.

delete Halt and remove runtime resources associated with an guest environment.

running An existing guest environment is in a running state.

suspended An existing guest environment is in a ‘paused’ state.

down An existing guest environment is in a halted state.

The default promised state is for a machine to be running wherever the environment˙host class

is true, and suspended or down elsewhere.

6.7 Example deployment

Prerequisites: you need to make a ‘disk image’ for the machine, or a virtual disk of blocks that can be

allocated. This image does not have to contain any data, it will simply as a block device for the VM.

You can then install it by booting the machine from a network image, like a PXE/kickstart installation.

If you want to allocate disk blocks as the file grows, you can create a file with a hole. The following

command will creates a file of 2048MB, but the actual data blocks are allocated in a lazy fashion:

34 CFEngine Enterprise 3.0 Owner’s Manual

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M seek=2047 count=1

To reserve all the data blocks right away:

dd if=/dev/zero of=/srv/xen/my.img oflag=direct bs=1M count=2048

Libvirt uses an XML file format that cannot be circumvented. CFEngine promises to honor the

promises that are expressed in this file, as in the examples above. You need to find out about this

file format from the libvirt website. To get CFEngine to Honor these promises, you point it to the

specification that it should promise using spec˙file.

You need to set up a network for virtual machines to communicate with the outside world. This can

also be done with CFEngine, using the network promise types to build a bridge into a virtual network.

Then just run CFEngine to start, stop or manage the guest environments on each localhost. Run

in verbose mode to see how CFEngine maintains the states convergently.

cf-agent -v

Chapter 7: Windows-specific features in CFEngine Enterprise 35

7 Windows-specific features in CFEngine Enterprise

In this section, we will explore the Windows-specific features of the native Windows version of CFEngine

Enterprise, and how it integrates with Windows. We will also consider features that are more interesting

or popular on Windows than on other platforms.

Feature highlights include Windows service management and integration, event logging, Windows

registry repair, and fine-tuned file security support through access control lists. See the sections on

databases and ACLs to find information on Windows registry repair and NTFS ACLs, respectively. We

will look at some of the other added features next.

7.1 Windows service management

CFEngine Enterprise can maintain complete control of the state of all Windows services, in addition to

Unix daemons. Services prone to security issues or errors can easily be given a disabled state.

A service can also be given a running state, in which case CFEngine 3 Enterprise ensures that it

is running, and starts it if it is not, with parameters if desired. More advanced policy options are also

available, including support for starting and stopping dependencies, and configuring when the services

should be started (e.g. only when they are being used).

Furthermore, the CFEngine executor in CFEngine Enterprise now runs as a Windows service itself.

This means it runs in the background an starts with Windows, before any user logs in. It can be

configured, started and stopped from the “Services” listing in Windows.

Note that the name of a service in Windows may be different from its “Display name”. CFEngine

Enterprise policies use the name, not the display name, due to the need of uniqueness.

36 CFEngine Enterprise 3.0 Owner’s Manual

7.2 Windows event logging

Event logs are the Windows counterpart to syslog from Unix. The main difference is that event logs

aim to group similar log messages, giving each group an event id.

A program that creates logs, such as CFEngine Enterprise, must define the possible event IDs, and

their meaning. In many applications, only one event id is defined, a generic log message. However,

CFEngine Enterprise defines the following range of event IDs, which allows for automatic handling of

log messages.

Description Event ID Type

Promise kept 100 Information

Promise repaired 101 Information

Promise not repaired due warn only policy 102 Error

Promise not repaired due to error 103 Error

Report promise 104 Information

Generic information 105 Information

Generic verbose 106 Information

Generic warning 107 Warning

Chapter 7: Windows-specific features in CFEngine Enterprise 37

Generic error 108 Error

The CFEngine Enterprise event logs can be found under the “System” logs. Almost all monitoring

products for Windows supports reading event logs, and they can thus monitor logs from CFEngine

Enterprise as well. This makes it possible to do more advanced querying on the status of a machine

running CFEngine Enterprise, e.g. to show all promises that have not been kept in a certain time

interval. However, we recommend using the Knowledge Map to do more advanced things, as it is

specifically made for this purpose and supports all operating systems that CFEngine runs on.

7.3 Windows special variables

Three new special variables have been added to the Windows version of CFEngine Enterprise.

• sys.windir contains the Windows directory, e.g. “C:“WINDOWS”.

• sys.winsysdir contains the Windows system directory, e.g. “C:“WINDOWS“system32”.

• sys.winprogdir contains the program files directory, e.g. “C:“Program Files”.

Note that these variables are not statically coded, but retrieved from the current system. For

example, sys.winprogdir is often different on Windows versions in distinct languages.

7.4 Windows hard classes

The Windows version of CFEngine Enterprise defines hard classes to pinpoint the exact version of

Windows that it is running on, the service pack version and if it’s a server or workstation.

First of all, the class windows is defined on all Windows platforms. For Windows workstations, such

as Windows XP, WinWorkstation is defined. On Windows servers, such as Windows Server 2003,

38 CFEngine Enterprise 3.0 Owner’s Manual

WinServer is defined. In addition, if the server is a domain controller, DomainController is defined.

Note that if DomainController is defined, then WinServer is also defined, for natural reasons.

The class Service˙Pack˙X˙Y is defined according to the service pack version. For example, at the

time of writing, Service˙Pack˙3˙0 is set on an updated Windows XP operating system.

To allow taking specific actions on different Windows versions, one of the following hard classes is

defined.

• Windows˙7
• Windows˙Server˙2008˙R2
• Windows˙Server˙2008
• Windows˙Vista
• Windows˙Server˙2003˙R2
• Windows˙Home˙Server
• Windows˙Server˙2003
• Windows˙XP˙Professional˙x64˙Edition
• Windows˙XP
• Windows˙2000

Note that all defined hard classes for a given system is shown by running cf-promises -v.

7.5 Notes on windows policies

A potential problem source when writing policies for windows is that paths to executables often contain

spaces. This makes it impossible for CFEngine to know where the executable ends and the parameters

to it starts. To solve this, we place escaped quotes around the executable.

Additionally, Windows does not support that processes start themselves in in the background (i.e.

fork off a child process in the Unix world). The result is that CFEngine is always waiting for the

commands to finish execution before checking the next promise. To avoid this, use the background

attribute in the action body-part.

Both these things are demonstrated in the following example.

body common control

–

bundlesequence =¿ – ”main” ˝;

˝

bundle agent main

–

commands:

”“”C:“Program Files“Some Dir“program name.bat“” --silent --batch”

action =¿ background;

˝

body action background

–

Chapter 7: Windows-specific features in CFEngine Enterprise 39

background =¿ ”true”;

˝

Finally, one should note that Windows lacks support for certain features that are utilized in Unix

versions of CFEngine. These include symbolic links, file groups, user and group identifiers.

Thus, the parts of promises containing these features will be ignored. For example, the getgid()

function does not return anything on Windows. The reference manual documents exactly which

promises are ignored and not. Also, cf-agent from CFEngine 3 Enterprise prints warning messages on

ignored attributes when run in verbose mode.

Chapter 8: REST API 41

8 REST API

The CFEngine Enterprise API allows HTTP clients to interact with the Hub of a CFEngine Enterprise

3.0 installation. With the Enterprise API, you can..

- Check installation status

- Manage users, groups and settings

- Browse host (agent) information and policy

- Issue flexible SQL queries against data collected by the Hub from agents

- Schedule reports for email and later download

The Enterprise API is a REST API, but a central part of interacting with the API involves using

SQL. This is new in 3.0 and was done to provide users with maximal flexibility for crafting custom

reports based on the wealth of data residing on the Hub.

8.1 Basic Properties of the API

8.1.1 HTTP + JSON

The Enterprise API is a conventional REST API in the sense that it has a number of URI resources

that support one or more GET, PUT, POST, or DELETE operations. While reporting is done using

SQL, this query is always wrapped in a JSON request.

8.1.2 Requests

GET requests are one of listing or getting. Listing resources means that a number of results will be

returned, but each entry may contain limited information. An example of a listing query is /api/user

to list users. Notice that URI components are always non-plural. An exception to this is /api/settings,

which returns the singleton resource for settings. Getting a resource specifies an individual resource

to return, e.g. /api/user/homer. PUT request typically create a new resource, e.g. a user. POST

requests typically updates an existing resource. DELETE requests are also supported in some cases.

8.1.3 Responses

Enterprise 3.0 API responses are always of the following format, consisting of a meta object and a

data array.

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1350922925

˝,

”data”: [

...

]

˝

page refers to the current page number of the request. count is the number of results in the

current page, equaling the length of the data array. total is the number of results in all available pages

42 CFEngine Enterprise 3.0 Owner’s Manual

combined. timestamp is the time the request was processed by the API. The data array is resource

dependent, but will always contain objects. Response objects typically do not contain error codes. If the

response is not 200 OK, the appropriate HTTP error code returned along with a (possibly non-JSON)

payload.

8.1.4 Pagination

Pagination is handled by page and count query parameters to a GET request, e.g.

/api/user?page=5&count=30 to get the 5th page of pages of 30 entries each. The default page is 1

and the default count is 50 if these are not specified explicitly.

8.1.5 Time

All timestamps are reported in Unix Time, i.e. seconds since 1970.

8.1.6 Authentication

The API supports both internal and external authentication. The internal users table will always be

consulted first, followed by an external source specified in the settings. External sources are OpenLDAP

or Active Directory servers configurable through POST /api/settings.

8.1.7 Authorization

Some resources require that the request user is a member of the admin role. Roles are managed with

/api/role. Chapter 5 [Role Based Access Control (RBAC)], page 27 is configurable through settings.

Users typically have permission to access their own resources, e.g. their own scheduled reports.

8.2 Differences between the CFEngine Nova 2.2 REST API and the CFEngine

Enterprise 3.0 API

8.2.1 Read vs. Read/Write

The 2.2 API was read-only and users, roles and settings was managed by the Mission Portal. By

contrast, the 3.0 API is read/write and completely standalone from the Mission Portal. In the CFEngine

Enterprise 3.0, users, roles and settings belong in the API, and the Mission Portal uses this to determine

access to data. Additionally, some other resources support PUT, POST and DELETE, but most data

collected from agents are read-only.

8.2.2 Built-in Reports vs. Reporting Engine

The 2.2 API provided an almost one-to-one correspondence between the reports in the Mission Portal

and the API. One of the big changes in CFEngine Enterprise 3.0 is the advent of SQL reports. This is

provided to the Mission Portal through the API, and you can use it too. You may issue both synchronous

and asynchronous reporting requests, and optionally schedule reports to be received by email.

8.2.3 Content-Type

The 2.2 API has a HTTP content-type application/vnd.cfengine.nova-v1+json. In the 3.0

API the content-type is application/vnd.cfengine.enterprise-v1+json. This reflects a branding

change away from Nova to Enterprise.

Chapter 8: REST API 43

8.2.4 New Users

The 2.2 API used credentials from the Mission Portal database to authenticate and authorize users.

These users have been moved into the Hub database and security has been strengthened. We are now

using salted SHA256 passwords for the user table. Unfortunately, this means that internal users need

to be recreated. The Mission Portal now relies on the API for authentication and authorization. This

was partially done to support multi-hub installations.

8.2.5 Base Path

The 2.2 API had a base path /rest. In the 3.0 API the base path is /api.

8.2.6 Still available

In 3.0, the old 2.2 API is still available along side the new 3.0 API, so you can keep calling the old API

if needed.

8.2.7 Mission Portal

Starting in 3.0, most of the API is exercised by the Mission Portal web-UI.

8.3 Checking Status

You can get basic info about the API by issuing GET /api. This status information may also be useful

if you contact support, as it gives some basic diagnostics.

Request

curl -k --user admin:admin https://test.cfengine.com/api/

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351154889

˝,

”data”: [

–

”apiName”: ”CFEngine Enterprise API”,

”apiVersion”: ”v1”,

”enterpriseVersion”: ”3.0.0a1.81c0d4c”,

”coreVersion”: ”3.5.0a1.f3649b2”,

”databaseHostname”: ”127.0.0.1”,

”databasePort”: 27017,

”authenticated”: ”internal”,

”license”: –

”expires”: 1391036400,

”installTime”: 1329578143,

”owner”: ”Stage Environment”,

”granted”: 20,

”licenseUsage”: –

44 CFEngine Enterprise 3.0 Owner’s Manual

”lastMeasured”: 1351122120,

”samples”: 1905,

”minObservedLevel”: 7,

”maxObservedLevel”: 30,

”meanUsage”: 21.9689,

”meanCumulativeUtilization”: 109.8446,

”usedToday”: 7

˝

˝

˝

]

˝

8.4 Managing Settings

Most of the settings configurable in the API relate to LDAP authentication of users. Settings support

two operations, GET (view settings) and POST (update settings). When settings are updated, they

are sanity checked individually and as a whole. All or no settings will be updated for a request.

8.4.1 Viewing settings

Request

curl --user admin:admin http://test.cfengine.com/api/settings

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1350992335

˝,

”data”: [

–

”rbacEnabled”: true,

”ldapEnabled”: false,

”ldapActiveDirectoryDomain”: ”ad.cfengine.com”,

”ldapBaseDN”: ”DC=ad,DC=cfengine,DC=com”,

”ldapEncryption”: ”plain”,

”ldapHost”: ”ldap-server.cfengine.com”,

”ldapLoginAttribute”: ”sAMAccountName”,

”ldapMode”: ”activeDirectory”,

”ldapPassword”: ”password”,

”ldapPort”: 389,

”ldapPortSSL”: 636,

”ldapUsername”: ”test”,

”ldapUsersDirectory”: ”CN=Users”,

”blueHostHorizon”: 900,

Chapter 8: REST API 45

”logLevel”: ”error”

˝

]

˝

8.4.2 Example: Configuring LDAP

The setting ldapEnabled turns external authentication on or off. When turned on, the API will check to

see that the other LDAP related settings make sense, and attempt to authenticate using the configured

credentials. If it is not successful in doing this, no settings will be changed. The API will notify you

with a return code an a message describing the error.

Request

curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d

–

”ldapEnabled”: true,

”ldapActiveDirectoryDomain”: ”ad.cfengine.com”,

”ldapBaseDN”: ”DC=ad,DC=example,DC=com”,

”ldapEncryption”: ”ssl”,

”ldapHost”: ”ldap-server.cfengine.com”,

”ldapLoginAttribute”: ”sAMAccountName”,

”ldapMode”: ”standard”,

”ldapPassword”: ”password”,

”ldapUsername”: ”test”,

”ldapUsersDirectory”: ”ou”,

˝

Response

204 No Content

8.4.3 Example: Configuring Active Directory

Active Directory is configured in much the same way as OpenLDAP, but the additional field lda-

pActiveDirectoryDomain is required. ldapMode is also changed from standard to activeDirectory.

Request

curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d

–

”ldapEnabled”: true,

”ldapBaseDN”: ”DC=example,DC=com”,

”ldapEncryption”: ”plain”,

”ldapHost”: ”ad-server.cfengine.com”,

”ldapLoginAttribute”: ”uid”,

”ldapMode”: ”activeDirectory”,

”ldapPassword”: ”password”,

”ldapUsername”: ”test”,

”ldapUsersDirectory”: ”CN=Users”,

˝

46 CFEngine Enterprise 3.0 Owner’s Manual

Response

204 No Content

8.4.4 Example: Changing The Log Level

The API uses standard Unix syslog to log a number of events. Additionally, log events are sent to

stderr, which means they may also end up in your Apache log. Log events are filtered based on the log

level in settings. Suppose you wanted to have greater visibility into the processing done at the backend.

The standard log level is error. Changing it to info is done as follows.

Request

curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d

–

”logLevel”: ”info”

˝

Response

204 No Content

8.5 Managing Users and Roles

Users and Roles determine who has access to what data from the API. Roles are defined by regular

expressions that determine which hosts the user can see, and what policy outcomes are restricted.

8.5.1 Example: Listing Users

Request

curl --user admin:admin http://test.cfengine.com/api/user

Response

–

”meta”: –

”page”: 1,

”count”: 2,

”total”: 2,

”timestamp”: 1350994249

˝,

”data”: [

–

”id”: ”calvin”,

”external”: true,

”roles”: [

”Huguenots”, ”Marketing”

]

˝,

–

”id”: ”quinester”,

Chapter 8: REST API 47

”name”: ”Willard Van Orman Quine”,

”email”: ”noreply@@aol.com”,

”external”: false,

”roles”: [

”admin”

]

˝

]

˝

8.5.2 Example: Creating a New User

All users will be created for the internal user table. The API will never attempt to write to an external

LDAP server.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X PUT -d

–

”email”: ”snookie@mtv.com”,

”roles”: [

”HR”

]

˝

Response

201 Created

˝

8.5.3 Example: Updating an Existing User

Both internal and external users may be updated. When updating an external users, the API will

essentially annotate metadata for the user, it will never write to LDAP. Consequently, passwords may

only be updated for internal users. Users may only update their own records, as authenticated by their

user credentials.

Request

curl --user admin:admin http://test.cfengine.com/api/user/calvin -X POST -d

–

”name”: ”Calvin”,

˝

Response

204 No Content

˝

48 CFEngine Enterprise 3.0 Owner’s Manual

8.5.4 Example: Retrieving a User

It is possible to retrieve data on a single user instead of listing everything. The following query is similar

to issuing GET /api/user?id=calvin, with the exception that the previous query accepts a regular

expression for id.

Request

curl --user admin:admin http://test.cfengine.com/api/user/calvin

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1350994249

˝,

”data”: [

–

”id”: ”calvin”,

”name”: ”Calvin”,

”external”: true,

”roles”: [

”Huguenots”, ”Marketing”

]

˝,

]

˝

8.5.5 Example: Adding a User to a Role

Adding a user to a role is just an update operation on the user. The full role-set is updated, so if you

are only appending a role, you may want to fetch the user data first, append the role and then update.

The same approach is used to remove a user from a role.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X POST -d

–

”roles”: [

”HR”, ”gcc-contrib”

]

˝

Response

204 No Content

˝

Chapter 8: REST API 49

8.5.6 Example: Deleting a User

Users can only be deleted from the internal users table.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X DELETE

Response

204 No Content

8.5.7 Example: Creating a New Role

Once you’ve learned how to manage users, managing roles is pretty much the same thing. Roles

are defined by four fields that filter host data and policy data: includeContext, excludeContext,

includeBundles, excludeBundles. Each field is a comma separated list of regular expressions. See

the corresponding section on RBAC for an explanation of these fields. Updating, and deleting roles are

similar to updating and deleting users, using POST and DELETE.

Request

curl --user admin:admin http://test.cfengine.com/api/user/solaris-admins -X PUT -d

–

”email”: ”snookie@mtv.com”,

”roles”: [

”description”: ”Users managing 64-bit Solaris boxes”,

”includeContext”: ”solaris,x86˙64”,

]

˝

Response

204 No Content

8.6 Browsing Host Information

A resource /api/host is added as an alternative interface for browsing host information. For full flexibility

we recommend using SQL reports via /api/query for this, however, currently vital signs (data gathered

from cf-monitord) is not part of the SQL reports data model.

8.6.1 Example: Listing Hosts With A Given Context

Request

curl --user admin:admin http://test.cfengine.com/api/host?context-include=windows.*

Response

–

”meta”: –

”page”: 1,

”count”: 2,

50 CFEngine Enterprise 3.0 Owner’s Manual

”total”: 2,

”timestamp”: 1350997528

˝,

”data”: [

–

”id”: ”1c8fafe478e05eec60fe08d2934415c81a51d2075aac27c9936e19012d625cb8”,

”hostname”: ”windows2008-2.test.cfengine.com”,

”ip”: ”172.20.100.43”

˝,

–

”id”: ”dddc95486d97e4308f164ddc1fdbbc133825f35254f9cfbd59393a671015ab99”,

”hostname”: ”windows2003-2.test.cfengine.com”,

”ip”: ”172.20.100.42”

˝

]

˝

8.6.2 Example: Looking Up Hosts By Hostname

Contexts are powerful, as you can use them to categorize hosts according to a rich set of tags. For

example, each host is automatically tagged with a canonicalized version of its hostname and IP-address.

So we could lookup the host with hostname windows2003-2.test.cfengine.com as follows (lines split

and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host?context-include=

windows2003˙2˙stage˙cfengine˙com

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1350997528

˝,

”data”: [

–

”id”: ”dddc95486d97e4308f164ddc1fdbbc133825f35254f9cfbd59393a671015ab99”,

”hostname”: ”windows2003-2.test.cfengine.com”,

”ip”: ”172.20.100.42”

˝

]

˝

Chapter 8: REST API 51

8.6.3 Example: Looking Up Hosts By IP

Similarly we can lookup the host with hostname windows2008-2.test.cfengine.com by IP as follows

(lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host?

context-include=172˙20˙100˙43

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1350997528

˝,

”data”: [

–

”id”: ”1c8fafe478e05eec60fe08d2934415c81a51d2075aac27c9936e19012d625cb8”,

”hostname”: ”windows2008-2.stage.cfengine.com”,

”ip”: ”172.20.100.43”

˝

]

˝

8.6.4 Example: Removing Host Data

If a host has been decommissioned from a Hub, we can explicitly remove data associated with the host

from the Hub, by issuing a DELETE request (lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host/

1c8fafe478e05eec60fe08d2934415c81a51d2075aac27c9936e19012d625cb8 -X DELETE

Response

204 No Content

8.6.5 Example: Listing Available Vital Signs For A Host

Each host record on the Hub has a set of vital signs collected by cf-monitord on the agent. We can

view the list of vitals signs from as host as follows (lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host/

4e913e2f5ccf0c572b9573a83c4a992798cee170f5ee3019d489a201bc98a1a/vital

Response

52 CFEngine Enterprise 3.0 Owner’s Manual

–

”meta”: –

”page”: 1,

”count”: 4,

”total”: 4,

”timestamp”: 1351001799

˝,

”data”: [

–

”id”: ”messages”,

”description”: ”New log entries (messages)”,

”units”: ”entries”,

”timestamp”: 1351001400

˝,

–

”id”: ”mem˙swap”,

”description”: ”Total swap size”,

”units”: ”megabytes”,

”timestamp”: 1351001400

˝,

–

”id”: ”mem˙freeswap”,

”description”: ”Free swap size”,

”units”: ”megabytes”,

”timestamp”: 1351001400

˝,

–

”id”: ”mem˙free”,

”description”: ”Free system memory”,

”units”: ”megabytes”,

”timestamp”: 1351001400

˝,

˝

8.6.6 Example: Retrieving Vital Sign Data

Each vital sign has a collected time series of values for up to one week. Here we retrieve the time series

for the mem free vital sign at host 4e913e2f5ccf0c572b9573a83c4a992798cee170f5ee3019d489a201bc98a1a

for October 23rd 2012 12:20pm to 12:45pm GMT (lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host/

4e913e2f5ccf0c572b9573a83c4a992798cee170f5ee3019d489a201bc98a1a/

vital/mem˙free?from=1350994800&to=1350996300

Response

”meta”: –

Chapter 8: REST API 53

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351002265

˝,

”data”: [

–

”id”: ”mem˙free”,

”description”: ”Free system memory”,

”units”: ”megabytes”,

”timestamp”: 1351001700,

”values”: [

[

1350994800,

36.2969

],

[

1350995100,

36.2969

],

[

1350995400,

36.2969

],

[

1350995700,

36.2969

],

[

1350996000,

36.1758

],

[

1350996300,

36.2969

]

]

˝

]

8.7 SQL Queries

The standard way of creating reports in CFEngine Enterprise 3.0 is with SQL queries. See the chapter

on SQL queries for an explanation. The API has a few ways of creating a report.

• Synchronous query, where we issue a query and wait for the table to be sent back with the response.

• Asynchronous query, where we get a response immediately with an id that we can later query to

54 CFEngine Enterprise 3.0 Owner’s Manual

download the report.

• Subscribed query, where we specify a query to be run on a schedule and have the result emailed

to someone.

8.7.1 Synchronous Queries

Issuing a synchronous query is the most straight forward way of running an SQL query. We simply issue

the query and wait for a result to come back.

8.7.1.1 Example: Listing Hostname and IP for Ubuntu Hosts

Request (lines split and indented for presentability)

curl -k --user admin:admin https://test.cfengine.com/api/query -X POST -d

–

”query”: ”SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts

ON Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = “”ubuntu“””

˝

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351003514

˝,

”data”: [

–

”query”: ”SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON

Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = “”ubuntu“””,

”header”: [

”HostName”,

”IPAddress”

],

”rowCount”: 3,

”rows”: [

[

”ubuntu10-2.stage.cfengine.com”,

”172.20.100.1”

],

[

”ubuntu10-3.stage.cfengine.com”,

”172.20.100.2”

],

[

”ubuntu10-4.stage.cfengine.com”,

”172.20.100.3”

Chapter 8: REST API 55

]

],

”cached”: false,

”sortDescending”: false

˝

]

˝

The cached and sortDescending fields here mean that the the result was not retrieved from cache,

and that post-processing sorting was not applied. It is also possible to specify skip and limit fields that

will be applied to the result set after it is returned by the SQL engine. These fields are mainly used by

the Mission Portal to paginate quickly on already processed queries.

8.7.2 Asynchronous Queries

Because some queries may take some time to compute, it is possible to fire off a query and check the

status of it later. This is useful for dumping a lot of data into CSV files for example. The sequence

consists of three steps.

1. Issue the asynchronous query and get a job id

2. Check status of processing using the id

3. When the query is completed, get a download link using the id

8.7.2.1 Issuing The Query

Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async -X POST -d

–

”query”: ”SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = “”ubuntu“””

˝

Response (lines split and indented for presentability)

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351003514

˝,

”data”: [

–

”id”: ”32ecb0a73e735477cc9b1ea8641e5552”,

”query”: ”SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON

Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = “”ubuntu“””

˝

]

]

56 CFEngine Enterprise 3.0 Owner’s Manual

8.7.2.2 Checking Status

Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async/:id

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351003514

˝,

”data”: [

–

”id”: ”32ecb0a73e735477cc9b1ea8641e5552”,

”percentageComplete”: 42,

]

˝

8.7.2.3 Getting The Completed Report

This is the same API call as checking the status. Eventually, the percentageComplete field will reach

100 and there will be a link to the completed report available for downloading.

Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async/:id

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351003514

˝,

”data”: [

–

”id”: ”32ecb0a73e735477cc9b1ea8641e5552”,

”percentageComplete”: 100,

”href”: ”https://test.cfengine.com/api/static/32ecb0a73e735477cc9b1ea8641e5552.csv”

˝

]

˝

8.7.3 Subscribed Queries

Subscribed queries happen in the context of a user. Any user can create a query on a schedule and

have it email to someone.

Chapter 8: REST API 57

8.7.3.1 Example: Creating A Subscribed Query

Here we create a new query to count file changes by name and have the result sent to us by email.

The schedule field is any CFEngine context expression. The backend polls subscriptions in a loop and

checks whether it’s time to generate a report and send it out. In the following example, user milton

creates a new subscription to a report which he names file-changes-report, which will be sent out every

Monday night. His boss will get an email with a link to a PDF version of the report.

Request (lines split and indented for presentability)

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/

subscription/query/file-changes-report -X PUT -d

–

”to”: ”boss@megaco.com”,

”query”: ”SELECT Name Count(1) FROM FileChanges GROUP BY Name”,

”schedule”: ”Monday.Hr23.Min59”,

”title”: ”A very important file changes report”

”description”: ”Text that will be included in email”

”outputTypes”: [”pdf”]

˝

Response

204 No Content

8.7.3.2 Example: Listing Report Subscriptions

Milton can list all his current subscriptions by issuing the following.

Request

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/subscription/query

Response

–

”meta”: –

”page”: 1,

”count”: 1,

”total”: 1,

”timestamp”: 1351003514

˝,

”data”: [

–

”id”: ”file-changes-report”

”to”: ”boss@megaco.com”,

”query”: ”SELECT Name Count(1) FROM FileChanges GROUP BY Name”,

”title”: ”A very important file changes report”

”description”: ”Text that will be included in email”

”schedule”: ”Monday.Hr23.Min59”,

58 CFEngine Enterprise 3.0 Owner’s Manual

”outputTypes”: [”pdf”]

˝

]

8.7.3.3 Example: Removing A Report Subscription

Request (lines split and indented for presentability)

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/

subscription/query/file-changes-report -X DELETE

Response

204 No Content

8.8 API Reference

8.8.1 /api

Supported Operations:

GET

Fields:

• apiName (string) Human-friendly API name.

• apiVersion (string) API version string.

• enterpriseVersion (string) Version of the CFEngine Enterprise build.

• coreVersion (string) The version of CFEngine Core (Community) the Enterprise version was built

against.

• databaseHostname (string) Hostname (or IP) of the database the API is connected to.

• databasePort (integer) Port number of the database the API is connected to.

• authenticated (”internal”, ”external”), Whether the request was authenticated using the internal

users table or an external source.

• license.expires (integer) Time when the license expires.

• license.installTime (integer) Time when the license was installed.

• license.owner (string) The name of the license owner.

• license.granted (integer) Host number capacity granted by the license.

• license.licenseUsage.lastMeasured (integer) Time when license usage was last updated.

• license.licenseUsage.samples (integer) Number of samples collected for license usage.

• license.licenseUsage.minObservedLevel (integer) Minimum number of observed host licenses in

use.

• license.licenseUsage.minObservedLevel (integer) Maximum number of observed host licenses

in use.

• license.licenseUsage.meanUsage (integer) Average number of observed host licenses in use.

• license.licenseUsage.meanCumulativeUtilization (integer) (not sure)

• license.licenseUsage.usedToday (integer) Total number of host licenses observed used today.

Chapter 8: REST API 59

8.8.2 /api/settings

Supported Operations:

GET, POST

Fields:

• rbacEnabled (boolean) Whether RBAC is applied to requests.

• ldapEnabled (boolean) Whether external authentication is activated.

• activeDirectoryDomain (string) AD domain to use if AD is enabled in ldapMode.

• ldapBaseDN (string) LDAP BaseDN to use for external LDAP requests.

• ldapEncryption (”plain”, ”ssl”, ”tls”) Type of LDAP binding to establish to external LDAP

server. (Default: ”plain”).

• ldapHost (string) Hostname of external LDAP server.

• ldapMode (”standard”, ”activeDirectory”) Type of LDAP server to use. ”standard” is effectively

OpenLDAP. (Default: ”standard”).

• ldapLoginAttribute (string) LDAP attribute to use for usernames. (default: ”uid”).

• ldapUsername (string) LDAP username.

• ldapPassword (string) LDAP password.

• ldapUsersDirectory (string) Attribute and value to qualify the directory in which to look up users,

e.g. ”ou=people”.

• ldapPort (integer) Port for external LDAP connections not using SSL. (default 389).

• ldapPort (integer) Port for external LDAP connections using SSL. (default 636).

• blueHostHorizon (integer) Time interval (seconds) for when to consider a host unreachable.

(default 900).

• logLevel (”emergency”, ”alert”, ”critical”, ”error”, ”warning”, ”notice”, ”info”, ”debug”) Syslog

filter specifying the severity level at which messages produced by the API should be emitted to

syslog and apache.log. (default: error).

8.8.3 /api/user

Supported Operations:

GET

Query Parameters:

• id (regex string) Regular expression for filtering usernames.

• external (”true”, ”false”) Returns only internal users (false) or only external (true), or all if not

specified.

8.8.4 /api/user/:id

Supported Operations:

GET, PUT, POST, DELETE

Fields:

• id (string) ID of a user.

60 CFEngine Enterprise 3.0 Owner’s Manual

• password (string) Password of a user. (Never returned from API).

• email (string) Email address associated with user.

• roles (array of strings) Set of IDs of roles a user is in. (Default: empty)

• external (boolean) Whether or not the user was found externally (LDAP).

8.8.5 /api/role

Supported Operations:

GET

8.8.6 /api/role/:id

Supported Operations:

GET, PUT, POST, DELETE

Fields:

• id (string) ID of a role.

• description (string) Arbitrary text describing the role

• includeContext (comma delimited string of regular expression strings) Includes hosts visible to

the users in the role.

• excludeContext (comma delimited string of regular expression strings) Excludes bundles visible

to the users in the role.

• includeBundles (comma delimited string of regular expression strings) Includes bundles visible to

the users in the role.

• excludeBundles (comma delimited string of regular expression strings) Excludes bundles visible

to the users in the role.

8.8.7 /api/host

Supported Operations:

GET

Query Parameters:

• include-context (comma delimited string of regular expression strings) Includes hosts having

context matching the expression.

• exclude-context (comma delimited string of regular expression strings) Excludes hosts having

context matching the expression.

8.8.8 /api/host/:host-id

• id (string) ID of a host.

• hostname (string) Hostname of a host.

• ip (string) IP address of a host.

8.8.9 /api/host/:host-id/context

Supported Operations:

GET

Chapter 8: REST API 61

8.8.10 /api/host/:host-id/context/:context-id

Supported Operations:

GET

Fields:

• id (string) ID of a context (class name)

• mean (real) Occurrence probability of the context in an agent run.

• stdv (real) Standard deviation of occurrence probability.

• timestamp (integer) Last time context was activated on agent.

8.8.11 /api/host/:host-id/vital

Supported Operations:

GET

8.8.11.1 /api/host/:host-id/vital/:vital-id

Supported Operations:

GET

Query Parameters:

• from (integer) Timestamp marking the start of the interval for which to fetch data. Data is only

available going back one week.

• to (integer) End of data interval to be fetched.

Fields:

• id (string) ID of vital sign.

• description (string) Description of vital sign.

• units (string) Measurement unit of vital sign.

• timestamp (integer) Timestamp of the last received data point.

• values (array of [t, y], where t is the sample timestamp) Vital sign data.

8.8.12 /api/promise

Supported Operations:

GET

8.8.13 /api/promise/:promise-id

Supported Operations:

GET

Fields:

• id (string) Promise handle.

• type (string) Promise type.

• promiser (string) Promiser of the promise.

62 CFEngine Enterprise 3.0 Owner’s Manual

• promisees (array of strings) A list of promisees of the promise.

• bundle (string) The bundle this promise belongs to

• comment (string) Associated comment for the promise.

8.8.14 /api/query

Supported Operations:

POST

Fields:

• query (string) SQL query string.

• sortColumn (string) Column on which to sort results. This is applied to the result of the SQL

query and can be considered post processing. The Mission Portal uses this to sort cached reports.

• sortDescending (bool) Apply post-sorting descendingly.

• skip (integer) Number of results to skip for the processed query. The Mission Portal uses this for

pagination on cached results.

• limit (integer) Limit the number of results in the processed query.

8.8.15 /api/query/async

Supported Operations:

POST

Fields:

• query (string) SQL query string.

• id (string) ID of the query job.

• error (string) Error if anything went wrong.

8.8.16 /api/query/async/:async-query-id

Supported Operations:

GET, DELETE

Fields:

• id (string) ID of the query job.

• percentageComplete (integer) Processing status for the query.

• href (string) Download link for the finished report.

• error (string) Error if anything went wrong.

Chapter 9: Call-Collect 63

9 Call-Collect

CFEngine Enterprise 3.0 includes functionality to allow report collection from hosts that are not directly

addressable from a hub data-aggregation process. For example, if some of the clients of a policy hub

are behind a network address translator (NAT) then the hub is not able to open a channel to address

them directly. Another example is if a firewall denies a two-way initiation of communication between a

satellite client and the hub. To remedy this problem the clients can place a ’collect call’ with the policy

hub.

What happens is that the client’s cf-serverd will ’peer’ with the server daemon on a policy hub.

This means that cf-serverd on an unreachable (e.g. NATed) host will attempt to report in to the

cf-serverd on its assigned policy hub and offer it a short time window in which to download reports

over the established connection. The effect is to establish a temporary secure tunnel between hosts,

initiated from the satellite host end. The connection is made in such a way that host autonomy is not

compromised. Either the hub may refuse or decline to play their role at any time, in the usual way

(avoiding DOS attacks). Normal access controls must be set for communication in both directions.

Collect calling cannot be as efficient as data collection by the cf-hub component, as the hub is not

able to load balance. Hosts that use this approach should exclude themselves from the cf-hub data

collection.

The sequence of events is this:

- Satellite cf-serverd connects to its registered policy hub

- The satellite identifies itself to authentication and access control and sends a collect-call ’pull’

request to the hub

- The hub might honor this, if the access control grants access.

- If access is granted, the hub has collect˙window seconds to initiate a query to the satellite for

its reports.

- The policy hub identifies itself to authentication and access control and sends a query request to

the satellite to collect the reports.

- When finished the satellite closes the tunnel.

Call-collect is put in action if call˙collect˙interval is set. It causes the server daemon to

attempt a connection to its policy hub at regular intervals equal to the value of the parameter in

minutes:

call˙collect˙interval =¿ ”5”;

The full configuration would look something like this

###

Server config

###

body server control

–

allowconnects =¿ – ”10.10.10” , ”::1” ˝;

allowallconnects =¿ – ”10.10.10” , ”::1” ˝;

64 CFEngine Enterprise 3.0 Owner’s Manual

trustkeysfrom =¿ – ”10.10.10” , ”::1” ˝;

call˙collect˙interval =¿ ”5”;

˝

###

bundle server access˙rules()

–

access:

policy˙hub::

”collect˙calls”

resource˙type =¿ ”query”,

admit =¿ – ”10.10.10” ˝; # the apparent NAT address of the satellite

satellite˙hosts::

”delta”

comment =¿ ”Grant access to cfengine hub to collect report deltas”,

resource˙type =¿ ”query”,

admit =¿ – ”policy˙hub” ˝;

”full”

comment =¿ ”Grant access to cfengine hub to collect full report dump”,

resource˙type =¿ ”query”,

admit =¿ – ”policy˙hub” ˝;

˝

You also have to make sure that any firewalls allow these connections to pass.

In addition you should choose a Host Identifier in the Mission Portal, see Section 4.7.4 [Host

Identifier], page 24. This is the attribute by which the hosts will be identified in views and reports.

Chapter 10: Monitoring extensions 65

10 Monitoring extensions

CFEngine Enterprise incorporates a lightweight monitoring agent, whose aim is to provide meaningful

performance data about systems, in a scalable fashion. CFEngine Enterprise does not aim to replace

specialized rapid-update monitoring and alarm systems; it provides a context-aware summary of current

state that is always displayed in relation to previous system behavior, for comparison. The aim is to

offer useful analytics rather than jump-to alarms.

CFEngine’s monitoring component cf-monitord records a number of performance data about the

system by default. These include process counts, service traffic, load average and CPU utilization and

temperature when available. In the Community Edition, data are only collected and stored for personal

use, but users have to work to see results. CFEngine Enterprise improves on this in three ways.

• Data collected from the monitoring system are integrated into the aggregate knowledge console.

• It adds a three year life-cycle trend summary, based on ‘shift’-averages.

• It adds customizable promises to monitor or log specific highly specific user data through the

generic promise interface.

The end result is to display time series traces of system performance, like the above mentioned

values, and customized logs feeding custom-defined reports.

10.1 Vital Signs Time Series

Detailed time-series views can be collected and collated, providing honest and accurate data that allow

you to gauge your own confidence level in system performance. Unlike most monitoring solutions,

CFEngine shows you its own confidence in the measurements taken. It takes a finite amount of

time to measure and transport data from systems to the knowledge console. That time also provides

information about system performance. CFEngine always promises to tell you how old data are and

how confident it is in the values.

Figure: Vitals Signs Time Series

Clicking on a view brings up a more detailed picture, including the possibility to view long term

trends (see below).

66 CFEngine Enterprise 3.0 Owner’s Manual

10.2 Long term trends

CFEngine normally operates with vital sign data represented in two forms:

• A weekly average, plotted on a periodogram, showing performance now in relation to the same

time of week in previous weeks. After about a month data are forgotten to ensure a sufficient

rate of adaptation to new patterns.

• The past four hours in high resolution.

In addition, CFEngine Enterprise adds quarter day averages of recorded time-series which go back

three years in time. Three years is considered to be the lifetime of a computer. Summaries of the

detailed performance are summarized by flat averages for a four-shift day:

• Night shift: from midnight 00:00 to 06:00

• Morning shift: from 06:00 to 12:00

• Afternoon shift: from 12:00 to 18:00

• Evening shift: from 18:00 to 00:00

10.3 Custom promises to measure

CFEngine Enterprise incorporates a promise type in bundles for the monitoring agent. These are written

just like all other promises within a bundle destined for the agent concerned. In this case:

bundle monitor watch

–

measurements:

promises ...

˝

See example usage in the following sections.

10.3.1 Extraction strings and logging

Let’s take a generic example. Suppose we have a file of nonsense ‘/tmp/testmeasure’ and we want

to extract some information that we call a ‘blonk’ from the file. A blonk is always on the second line

of this file following a prefix ‘Blonk blonk ’. We would get the value like this:

”/tmp/testmeasure”

handle =¿ ”blonk˙watch”,

stream˙type =¿ ”file”,

data˙type =¿ ”string”,

history˙type =¿ ”log”,

units =¿ ”blonks”,

match˙value =¿ find˙blonks,

action =¿ sample˙min(”10”);

Chapter 10: Monitoring extensions 67

This promise body has several attributes.

handle It is essential to give measurement promises handles, as these are used to label the log

files that will store the values.

stream˙type

Tells us that we are reading from what the system considered to be a regular file on the

file-system.

data˙type This says that data are to be treated as text with no other meaning.

history˙type

This tells us that we want to log the values with a time stamp.

units This string is used in documentation to explain the measurement units of this result.

match˙value

This is a body reference that represents the algorithm by which we extract data from the

file.

action This is the generic action parameter that may be added to all promises. We use it here

to limit the sample rate of this promise; cf-monitord samples by default at a rate of

once per 2.5 minutes.

The matching body uses a method for selecting the correct line, and a way for extracting a pattern

from the line. In every case the value extracted is described by using a regular expression back-reference,

i.e. a parenthesized expression within a regular expression. The expression should match the entire line

and should contain exactly one parenthesis.

body match˙value find˙blonks

–

select˙line˙number =¿ ”2”;

extraction˙regex =¿ ”Blonk blonk ([blonk]+).*”;

˝

The sampling rate is controlled by using the generic action constraint.

body action sample˙min(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”$(x)”;

˝

10.3.2 Extracting one-off numerical data

In this example we extract an integer value from an existing file. Notice that CFEngine samples the

process table during processes promises so you might be able to save a new execution of a shell

command and use the cached data, depending on your need for immediacy. It is always good practice

to limit the system load incurred by monitoring.

Test 2 - follow a special process over time

using CFEngine’s process cache to avoid re-sampling

”/var/cfengine/state/cf˙rootprocs”

handle =¿ ”monitor˙self˙watch”,

68 CFEngine Enterprise 3.0 Owner’s Manual

stream˙type =¿ ”file”,

data˙type =¿ ”int”,

history˙type =¿ ”static”,

units =¿ ”kB”,

match˙value =¿ proc˙value(”.*cf-monitord.*”,

”root“s+[0-9.]+“s+[0-9.]+“s+[0-9.]+“s+[0-9.]+“s+([0-9]+).*”);

This match body selects a line matching a particular regular expression and extracts the 6th column

of the process table. The regular expression skips first the root string and then five numerical values.

The value is extracted into a one-off value

body match˙value proc˙value(x,y)

–

select˙line˙matching =¿ ”$(x)”;

extraction˙regex =¿ ”$(y)”;

˝

10.3.3 Extraction to list variable

In this example we discover a list of disks attached to the system.

Test 3, discover disk device information

”/bin/df”

stream˙type =¿ ”pipe”,

data˙type =¿ ”slist”,

history˙type =¿ ”static”,

units =¿ ”device”,

match˙value =¿ file˙system,

action =¿ sample˙min(”480”); # this is not changing much!

body match˙value file˙system

–

select˙line˙matching =¿ ”/.*”;

extraction˙regex =¿ ”(.*)”;

˝

10.4 Uses for custom monitoring

Unlike most other monitoring tools that use heavy-weight scripting languages to extract data, often

running many processes for each measurement, CFEngine is a lightweight probe, using file interfaces

and regular expressions. Thus its impact on the system is minimal. The possibilities for using this are

therefore extremely broad:

• Extracting accounting data from systems for charge-back. This could be useful in cloud scenarios.

• Discovering memory leaks.

Chapter 10: Monitoring extensions 69

• Looking for zombie processes relating to specific software.

• Logging up-time.

• System class-dependent discovery and extraction of any kind of text for insertion into a CMDB.

Chapter 11: File Access Control Lists 71

11 File Access Control Lists

11.1 ACL Introduction

Access Control Lists (ACL) allow for a more fine-grained access control on file system objects than

standard Unix permissions. In spite of the success of the POSIX model’s simplicity the functionality is

limited.

File permission security is a subtle topic. Users should take care when experimenting with ACLs as

the results can often be counter-intuitive. In some cases the functioning of a system can be compromised

by changes of access rights.

Not all file systems support ACLs. In Unix systems there is a plethora of different file system types,

which have different models of ACLs. Be aware that the mount-options for a file-system may affect

the ACL semantics.� �
Note that when adding a user to a group, this will not have any effect until the next time the user

logs in on many operating systems.
 	
As CFEngine works across multiple platforms and needs to support ACLs with different APIs, a

common ACL syntax has been abstracted to add a layer of portability. This is a specific feature of

CFEngine, not of the host systems. A generic syntax ensures that the ACLs that are commonly

needed can be coded in a portable fashion. CFEngine Enterprise’s ACL model is translated into native

permissions for implementation; CFEngine does not interfere with native access mechanisms in any

way. The CFEngine ACL syntax is similar to the POSIX ACL syntax, which is supported by BSD,

Linux, HP-UX and Solaris.

CFEngine also allows you to specify platform-dependent ACLs. Of course, these ACLs will only

work on the given platform, and must therefore be shielded with classes that select the appropriate

model within the promise body.

Currently, CFEngine Enterprise supports the following ACL APIs and operating systems.

ACL type Operating system

NTFS Windows Server 2003, 2008

POSIX Linux

11.2 File ACL example

The form of a CFEngine files promise that uses ACLs is as follows:

#

test˙acl.cf

#

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

72 CFEngine Enterprise 3.0 Owner’s Manual

###

bundle agent acls

–

files:

”/office/shared”

acl =¿ template;

˝

###

body acl template

–

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”parent”;

linux—solaris::

acl˙type =¿ ”posix”;

aces =¿ –

”user:*:rw”,

”user:root:rw”,

”group:*:r”,

”mask:rwx”,

”all:r”

˝;

windows::

acl˙type =¿ ”ntfs”;

aces =¿ –

”user:Administrator:rw(po)”,

”all:r”

˝;

˝

11.2.1 Concepts

As mentioned, there are many different ACL APIs. For example, the POSIX draft standard, NTFS and

NFSv4 have different and incompatible ACL APIs. As CFEngine is cross-platform, these differences

Chapter 11: File Access Control Lists 73

should, for the most usual cases, be transparent to the user. However, some distinctions are impossible

to make transparent, and thus the user needs to know about them.

We will explore the different concepts of ACL implementations that are critical to understanding

how permissions are defined and enforced in the different file systems. As a running example, we will

consider NTFS ACLs and POSIX ACLs, because the distinction between these ACL APIs is strong.

11.2.2 Entity types

All ACL APIs support three basic entity types: user, group and all. User and group are simply users

and groups of the system, where a group may contain multiple users. all is all users of the system, this

type is called ”other” in POSIX and ”Everyone” in NTFS.

11.2.3 Owners

All file system objects have an owner, which by default is the entity that created the object. The

owner can always be a user. However, in some file systems, groups can also be owners (e.g. the

”Administrators” group in NTFS). In some ACL APIs (e.g POSIX), permissions can be set explicitly

for the owner, i.e. the owner has an independent ACL entry.

11.2.4 Changing owner

It is generally not possible for user A to set user B as the owner of a file system object, even if A owns

the object. The superuser (”root” in POSIX, ”Administrator” in NTFS) can however always set itself

as the owner of an object. In POSIX, the superuser may in fact set any user as the owner, but it NTFS

it can only take ownership.

11.2.5 Permissions

An entity can be given a set of permissions on a file system object (e.g. read and write). The data

structure holding the permissions for one entity is called an ”Access Control Entry” (ACE). As many

users and groups may have sets of permissions on a given object, multiple Access Control Entries are

combined to an Access Control List, which is associated with the object.

The set of available permissions differ with ACL APIs. For example, the ”Take Ownership” per-

mission in NTFS has no equivalent in POSIX. However, for the most common situations, it is possible

to get equivalent security properties by mapping a set of permissions in one API to another set in a

second API.

There are however different rules for the access to the contents of a directory with no access. In

POSIX, no sub-objects of a directory with no access can be accessed. However, in NTFS, sub-objects

that the entity has access rights to can be accessed, regardless of whether the entity has access rights

to the containing directory.

11.2.6 Deny permissions

If no permissions are given to a particular entity, the entity will be denied any access to the object. But

in some file systems, like NTFS, it is also possible to explicitly deny specific permissions to entities.

Thus, two types of permissions exist in these systems: allow and deny.

It is generally good practice to design the ACLs to specify who is allowed to do some operations, in

contrary to who is not allowed to do some operations, if possible. The reason for this is that describing

who is not allowed to do things tend to lead to more complex rules and could therefore more easily

lead to mis-configurations and security holes. A good rule is to only define that users should not be

able to access a resource in the following two scenarios:

74 CFEngine Enterprise 3.0 Owner’s Manual

• Denying access to a subset of a group which is allowed access

• Denying a specific permission when a user or a group has full access

If you think about it, this is the same principle that applies to firewall configuration: it is easier to

white-list, specify who should have access, than to blacklist, specify who should not have access. In

addition, since CFEngine is designed to be cross-platform and some ACL permissions are not available

on all platforms, we should strive to keep the ACLs as simple as possible. This helps us avoid surprises

when the ACLs are enforced by different platforms.

11.2.7 Changing permissions

Generally, only the owner may change permissions on a file system object. However, superusers can also

indirectly change permissions by taking ownership first. In POSIX, superusers can change permissions

without taking ownership. In NTFS, either ownership or a special permission (”Change Permissions”)

is needed to alter permissions.

11.2.8 Effective permissions

Unfortunately, even though two ACL APIs support all the permissions listed in an ACL, the ACL may

be interpreted differently. For a given entity and object with ACL, there are two conceptually different

ways to interpret which permissions the entity obtains: ACE precedence and cumulative ACL.

For example, let ‘alice’ be a user of the group ‘staff’. There is an ACL on the file ‘schedule’,

giving ‘alice’ write permission, and the group ‘staff’ read permission. We will consider two ways to

determine the effective permissions of ‘alice’ to ‘schedule’.

Firstly, by taking the most precise match in the ACL, ‘alice’ will be granted write permission only.

This is because an ACE describing ‘alice’ is more precise than an ACE describing a group ‘alice’ is

member of. However, note that some ACEs may have the same precedence, like two ACEs describing

permissions for groups ‘alice’ is member of. Then, cumulative matching will be done on these ACEs

(explained next). This is how POSIX does it.

Secondly, we can take the cumulative permissions, which yields a user permissions from all the ACE

entries with his user name, groups he is member of or the ACE entry specifying all users. In this case,

‘alice’ would get read and write on ‘schedule’. NTFS computes the effective permissions in this way.

11.2.9 Inheritance

Directories have ACLs associated with them, but they also have the ability to inherit an ACL to sub-

objects created within them. POSIX calls the former ACL type ”access ACL” and the latter ”default

ACL”, and we will use the same terminology.

11.3 CFEngine 3 Generic ACL Syntax

The CFEngine 3 ACL syntax is divided into two main parts, a generic and an API specific (native).

The generic syntax can be used on any file system for which CFEngine supports ACLs, while the native

syntax gives access to all the permissions available under a particular ACL API.

An ACL can contain both generic and native syntax. However, if it contains native syntax, it can

only be enforced on systems supporting the given ACL API. Thus, only the generic syntax is portable.

Note that even though the same generic ACL is set on two systems with different ACL APIs, it may

be enforced differently because the ACE matching algorithms differ. For instance, as discussed earlier,

NTFS uses cumulative matching, while POSIX uses precedence matching. CFEngine cannot alter the

matching algorithms, and simulating one or the other by changing ACL definitions is not possible in

Chapter 11: File Access Control Lists 75

all cases, and would probably lead to confusion. Thus, if an ACL is to be used on two systems with

different ACL APIs, the user is encouraged to check that any differences in matching algorithms do

not lead to mis-configurations.

The CFEngine generic ACL syntax explained next, and native syntax is described in following sec-

tions.� �
body acl acl˙alias:

–

acl˙type =¿ ”generic”/”ntfs”/”posix”;

acl˙method =¿ ”append”/”overwrite”;

acl˙directory˙inherit =¿ ”nochange”/”clear”/”parent”/”specify”;

aces =¿ –

”user:uid:mode[:perm˙type]”, ...,

”group:gid:mode[:perm˙type]”, ...,

”all:mode[:perm˙type]”

˝;

specify˙inherit˙aces =¿ –

”user:uid:mode[:perm˙type]”, ...,

”group:gid:mode[:perm˙type]”, ...,

”all:mode[:perm˙type]”

˝;

˝
 	
• acl˙alias is the name of the specified ACL. It can be any identifier containing alphanumeric

characters and underscores. We will use this name when referring to the ACL.

• acl˙type (optional) specifies the ACL API used to describe the ACL. It defaults to generic,

which allows only CFEngine generic ACL syntax, but is valid on all supported systems. acl˙type

only needs to be specified if native permissions are being used in the ACL (see nperms below). If

acl˙type is set to anything other than generic, the system on which it is enforced must support

this ACL API.

• acl˙method (optional) can be set to either append or overwrite, and defaults to append. Setting

it to append only adds or modifies the ACEs that are specified in aces (and specify˙inherit˙

aces, see below). If set to overwrite, the specified ACL will completely replace the currently

set ACL. All required fields must then be set in the specified ACL (e.g. all in POSIX), see the

following sections describing the supported native APIs.

• acl˙directory˙inherit (optional) specifies the ACL of newly created sub-objects. Only valid

if the ACL is set on a directory. On directories, nochange is the default and indicates that the

ACL that is currently given to newly created child objects is left unchanged. If set to clear, no

ACL will be inherited, but the file system specifies a default ACL, which varies with the file system

(see the following sections on the supported ACL APIs). parent indicates that the ACL set in

aces (see below) should be inherited to sub-objects. If set to specify, specify˙inherit˙aces

specifies the inherited ACL, and acl˙method applies for specify˙inherit˙aces too.

• aces is a list of access control entries. It is parsed from left to right, and multiple entries with

the same entity-type and id is allowed. This is necessary to specify permissions with different

perm˙type for the same entity (e.g. to allow read permission but explicitly deny write).

• specify˙inherit˙aces (optional) is a list of access control entries that are set on child objects.

It is also parsed from left to right and allows multiple entries with same entity-type and id. Only

valid if acl˙directory˙inherit is set to specify.

76 CFEngine Enterprise 3.0 Owner’s Manual

• user indicates that the line applies to a user specified by the user identifier uid. mode is the

permission mode string.

• group indicates that the line applies to a group specified by the group identifier gid. mode is the

permission mode string.

• all indicates that the line applies to every user. mode is the permission mode string.

• uid is a valid user name for the system and cannot be empty. However, if acl˙type is posix,

uid can be set to * to indicate the user that owns the file system object.

• gid is a valid group name for the system and cannot be empty. However, if acl˙type is posix,

gid can be set to * to indicate the file group.

• mode is one or more strings op—gperms—(nperms); a concatenation of op, gperms and optionally

(nperms), see below, separated with commas (e.g. +rx,-w(s)). mode is parsed from left to right.

• op specifies the operation on any existing permissions, if the specified ACE already exists. op can

be =, empty, + or -. = or empty sets the permissions to the ACE as stated, + adds and - removes

the permissions from any existing ACE.

• nperms (optional) specifies ACL API specific (native) permissions. Only valid if acl˙type is not

generic. Valid values for nperms varies with different ACL types, and are specified in subsequent

sections.

• perm˙type (optional) can be set to either allow or deny, and defaults to allow. deny is only

valid if acl˙type is set to an ACL type that support deny permissions.

• gperms (generic permissions) is a concatenation of zero or more of the characters shown in the

table below. If left empty, none of the permissions are set.

Flag Description Semantics on file Semantics on directory

r Read Read data, permissions,

attributes

Read directory contents, permissions,

attributes

w Write Write data Create, delete, rename sub-objects

x Execute Execute file Access sub-objects

Note that the r permission is not necessary to read an object’s permissions and attributes in all file

systems (e.g. in POSIX, having x on its containing directory is sufficient).

11.3.1 Generic syntax examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”/office/schedule”

acl =¿ small;

”/office/audit˙dir”

Chapter 11: File Access Control Lists 77

acl =¿ dirinherit;

˝

body acl small

–

aces =¿ –”user:alice:w”, ”group:staff:r”, ”all:”˝;

˝

body acl dirinherit

–

acl˙directory˙inherit =¿ ”parent”;

aces =¿ –”user:alice:+w,-x”, ”user:bob:+r,-w”, ”group:staff:=rx”, ”all:-w”˝;

˝

See the following sections on native ACL types for more examples.

11.4 POSIX ACL type

11.4.1 POSIX-specific ACL syntax

Native permissions The valid values for nperms in POSIX are r,w, and x. These are in fact the same

as the generic permissions, so specifying them as generic or native gives the same effect.

File owner and group A user-ACE with uid set to * indicates file object owner. A group-ACE with

gid set to * indicates file group.

mask mask can be specified as a normal ACE, as mask:mode. mask specifies the maximum per-

missions that are granted to named users (not owning user), file group and named groups. mask is

optional, if it is left unspecified it will will be computed as the union of the permissions granted to

named users, file group and named groups (see acl calc mask(3)).

Required ACEs POSIX requires existence of an ACE for the file owner, (user:*:mode), the file

group (group:*:mode), other (all:mode) and mask (mask:mode). As mentioned, CFEngine automat-

ically creates a mask-ACE, if missing. However, if method is set to overwrite, the user must ensure

that the rest of the required entries are specified.

11.4.2 Generic syntax mapping

Entity types All entity types in the generic syntax are mapped to the corresponding entity types with

the same name in POSIX, except all which corresponds to other in POSIX.

Generic permissions

As shown in the table below, gperms is mapped straightforward from generic to POSIX permission

flags.

Generic flag POSIX flag

r r

w w

x x

Inheritance POSIX supports acl˙directory˙inherit set to specify. The specify˙inherit˙

aces list is then set as the default ACL in POSIX (see acl(5)).

78 CFEngine Enterprise 3.0 Owner’s Manual

If acl˙directory˙inherit is set to parent, CFEngine copies the access ACL to the default ACL.

Thus, newly created objects get the same access ACL as the containing directory.

acl˙directory˙inherit set to clear corresponds to no POSIX default ACL. This results in that

newly created objects get ACEs for owning user, group and other. The permissions are set in accordance

with the mode parameter to the creating function and the umask (usually results in 644 for files and

755 for directories).

Further reading The manual page acl(5) contains much information on POSIX ACLs, including

the access check algorithm. In particular, this shows that POSIX uses ACE precedence matching, and

exactly how it is done. Operating systems usually bundle tools for manipulating ACLs, for example

getfacl(1) and setfacl(1).

11.4.3 POSIX ACL examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”/office/timetable”

acl =¿ nativeperms;

”/office/user˙dir”

acl =¿ specifyinherit;

˝

body acl nativeperms

–

acl˙type =¿ ”posix”;

aces =¿ –”user:alice:r(w)”, ”user:root:=(rwx)”,

”group:staff:-r(x)”, ”all:-(w)”, ”mask:(rx)”˝;

˝

body acl specifyinherit

–

acl˙type =¿ ”posix”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”specify”;

aces =¿ –”user:*:rwx”, ”group:*:rx”, ”user:alice:rwx”,

”user:root:rx”, ”group:staff:r”, ”all:rx”˝;

specify˙inherit˙aces =¿ –”user:*:”, ”group:*:”, ”all:”˝;

˝

11.5 NT ACL type

Chapter 11: File Access Control Lists 79

11.5.1 NT-specific ACL syntax

Native permissions NTFS supports fourteen so-called special file permissions. However, we do not

consider the Synchronize permission because it is used for a different purpose than the other permis-

sions. In order to give access to the thirteen relevant permissions, CFEngine defines a native permission

flag for each of them. This one-to-one mapping is as follows.

NTFS Special Permission CFEngine

nperm

Execute File / Traverse Folder x

Read Data / List Folder r

Read Attributes t

Read Extended Attributes T

Write Data / Create Files w

Append Data / Create Folders a

Write Attributes b

Write Extended Attributes B

Delete Sub-folders and Files D

Delete d

Read Permissions p

Change Permissions c

Take Ownership o

The semantics of these special permissions can be found in the references for further reading below.

Denying permissions NTFS supports setting perm˙type to deny in addition to allow, which is

the default. This can for instance be used to denying a user a particular permission that a group

membership grants him. It is important to note that the precedence of allow and deny permissions is

as follows:

1. Explicit Deny

2. Explicit Allow

3. Inherited Deny from parent

4. Inherited Allow from parent

5. Inherited Deny from grandparent

6. Inherited Allow from grandparent

7. ...

Thus, the closer the permission is to the object in the directory path, the greater precedence it is

given.

An important point here is that even though a user is denied access in a parent directory and this

permission is inherited, but one of the groups he is member of is explicitly allowed access to a file in

that directory, he is actually allowed to access the file.

Ownership In NTFS, the default owner is the user who is currently logged on. The only exceptions

occur when the user is a member of either the ‘Administrators’ group or the ‘Domain Admins’ group.

Owners of NTFS objects can allow another user to take ownership by giving that user Take Owner-

ship permission. Owners can also give other users the Change Permissions flag. In addition, members

of the ‘Administrator’ group can always take ownership. It is never possible to give ownership of an

object to a user, but members of the ‘Administrator’ group can give ownership to that group.

80 CFEngine Enterprise 3.0 Owner’s Manual

11.5.2 Generic syntax mapping

Entity types The three entity types of NTFS are called user, group and Everyone. The user and group

entity types in NTFS are mapped to the user and group entity types in CFEngine. Everyone is mapped

to all in CFEngine.

Generic permissions For NTFS, CFEngine maps the gperms to nperms as follows.

Generic flag Native flags

r rtTp

w wabB

x x

The rationale for this mapping is discussed next.

NTFS groups the thirteen special permissions to create five sets of permissions:

• Read

• Read & Execute

• Write

• Modify

• Full Control

In addition, we have the List Folder Contents set, which is equivalent to the Read & Execute set but

is only available to- and inherited by directories. The Full Control set is unsurprisingly all the thirteen

special permissions. An overview of the NTFS mapping of special permissions to sets is given in the

references stated as further reading below. The NTFS permission sets can be expressed in CFEngine

syntax as follows.

NTFS sets CFEngine gperms—(nperms)

Read r

Write w

Read & Execute rx

Modify rwx(d)

Full Control rwx(dDco)

Inheritance acl˙directory˙inherit set to clear disables inheritance, such that child objects

get a default ACL specified by the operating system, namely Full control for the file object creator and

SYSTEM accounts.

POSIX compatibility Be aware that setting gperms to ‘rwx’ on directories is more restrictive

in NTFS than in POSIX ACLs. This is because NTFS does not allow deletion of objects within a

directory without a Delete Sub-folders and Files permission on the directory (or a Delete permission on

the object itself), while in POSIX, ‘rwx’ on the directory is sufficient to delete any file or directory within

it (except when the sticky-flag is set on the directory). Thus, on directories, the NTFS-equivalent to

POSIX gperms set to ‘rwx’ is ‘rwx(D)’. However, for files, ‘rwx’ is equivalent in POSIX and NTFS

semantics.

In POSIX ACLs, there is no explicit delete permission, but the execute, write and sticky permissions

on the containing directory determines if a user has privileges to delete. In POSIX, the owner and root

can change permissions, while usually only the root may change the ownership, so there is no direct

equivalent to the Change Permission and Take Ownership in POSIX.

Chapter 11: File Access Control Lists 81

Further reading A description of the fourteen NTFS permission and the mapping of these into sets

is given at http://support.microsoft.com/kb/308419.

11.5.3 NT ACL examples

body common control

–

bundlesequence =¿ – ”acls” ˝;

˝

bundle agent acls

–

files:

”C:“Program Files“Secret Program”

acl =¿ restrictive;

”D:“Shared”

acl =¿ sharespace;

˝

body acl restrictive

–

acl˙type =¿ ”ntfs”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”parent”;

aces =¿ –”user:Administrator:r”˝;

˝

body acl sharespace

–

acl˙type =¿ ”ntfs”;

acl˙method =¿ ”overwrite”;

acl˙directory˙inherit =¿ ”specify”;

aces =¿ – ”user:Administrator:rwx(dDco)”,

”group:Hackers:rwx(dDco):deny”,

”all:rw” ˝;

specify˙inherit˙aces =¿ –”user:Administrator:r”˝;

˝

http://support.microsoft.com/kb/308419

Chapter 12: Server extensions 83

12 Server extensions

CFEngine Enterprise adds a simple server extension to the Community Edition server, namely the ability

to encode data directly in policy. This feature is useful for distributing password hashes to systems.

12.1 Server access resource type

By default, access to resources granted by the server are files. However, sometimes it is useful to cache

literal strings, hints and data in the server, e.g. the contents of variables, hashed passwords etc for

easy access. In the case of literal data, the promise handle serves as the reference identifier for queries.

Queries are instigated by function calls by any agent.

access:

”This is a string with a $(localvar) for remote collection”

handle =¿ ”test˙scalar”,

resource˙type =¿ ”literal”,

admit =¿ – ”127.0.0.1” ˝;

The promise looks exactly like a promise for a file object, but the data are literal and entered into

the policy. This is a useful approach for distributing password hashes on a need-to-know basis from a

central location. The server configuration file need not be distributed to any client, thus only authorized

systems will have access to the hashes.

12.2 Function remotescalar

The client side of the literal look up function is:� �
(string) remotescalar(resource handle,host/IP address,encrypt);

 	
This function downloads a string from a remote server, using the promise handle as a variable

identifier.

ARGUMENTS:

‘resource handle’

The name of the promise on the server side

‘host or IP address’

The location of the server on which the resource resides.

‘encrypt’ Whether to encrypt the connection to the server.

true

yes

false

no

84 CFEngine Enterprise 3.0 Owner’s Manual

12.3 Example remote scalar lookup

##

#

Remote value from server connection to cf-serverd

#

##

body common control

–

bundlesequence =¿ – ”testbundle” ˝;

version =¿ ”1.2.3”;

˝

##

bundle agent testbundle

–

vars:

”remote” string =¿ remotescalar(”test˙scalar”,”127.0.0.1”,”yes”);

reports:

linux::

”Receive value $(remote)”;

˝

###

Server config

###

body server control

–

allowconnects =¿ – ”127.0.0.1” , ”::1” ˝;

allowallconnects =¿ – ”127.0.0.1” , ”::1” ˝;

trustkeysfrom =¿ – ”127.0.0.1” , ”::1” ˝;

allowusers =¿ – ”mark” ˝;

˝

###

Chapter 12: Server extensions 85

bundle server access˙rules()

–

vars:

”localvar” string =¿ ”literal string”;

access:

”This is a $(localvar) for remote access”

handle =¿ ”test˙scalar”,

resource˙type =¿ ”literal”,

admit =¿ – ”127.0.0.1” ˝;

˝

Chapter 13: Upgrading CFEngine Enterprise 87

13 Upgrading CFEngine Enterprise

� �
Please see INSTALLATION.TXT for how to upgrade (found on the CFEngine software download page)
 	

Chapter 14: Frequently Asked Questions 89

14 Frequently Asked Questions

14.1 How do I install the prerequisites for the hub manually?

See INSTALLATION.TXT for a list of dependencies for the hub (found on the CFEngine software

download page):

Commercial customers

https://cfengine.com/software/

CFEngine Free Enterprise

https://cfengine.com/enterprise-download/packages

To install the packages you might want to use yum on Red Hat/CentOS/Fedora, zypper on SUSE

or apt on Debian/Ubuntu.

14.2 I did bootstrap the hub before obtaining a license file - what should I do?

Four steps need to be followed to correct this minor issue.

1. obtain a working license file and copy it to ‘/var/cfengine/masterfiles’

hub # cp /tmp/license.dat /var/cfengine/masterfiles

2. killall CFEngine running processes

hub # killall cf-execd cf-serverd cf-monitord cf-hub

3. wipe out ‘/var/cfengine/inputs ’

hub # rm -rf /var/cfengine/inputs

4. bootstrap the policy hub

hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 123.456.789.123

https://cfengine.com/software/
https://cfengine.com/enterprise-download/packages

Chapter 15: Troubleshooting 91

15 Troubleshooting

15.1 Problems bootstrapping

The most common problems with bootstrapping are related to:

Firewall Make sure port 5308 is open for both incoming and outgoing traffic.

Policy access control list (acl)

By default, the hub is available to clients that reside in the same class B network. If

some clients are not part of that network, make sure the IPs are added to the acl in

‘/var/cfengine/masterfiles/def.cf’, bundle common def:

”acl” slist =¿ –

Assume /16 LAN clients to start with

”$(sys.policy˙hub)/16”,

Add clients’ IP addresses (or IP range) here (for

example: an acl of 192.168.0.0/16 would allow all

clients that have an IP address that starts with

192.168 to connect to the hub)

cf-serverd is not running on the hub

The CFEngine component cf-serverd takes care of all CFEngine communication. It

can take a few minutes after you bootstrapped the hub to itself before this component is

started, just wait a bit and retry.

15.2 Mission Portal Logs

The Mission Portal will log php errors, errors related to the configuration of external authentication

(LDAP/Active Directory) and occurrences of the fall-back solution if external authentication fails. The

log can be found in DOCROOT/application/logs (i.e. /var/www/application/logs for Ubuntu and

/var/www/html/application/logs for Red Hat). The logs folder must be writable by apache, i.e.

by ’www-data’ user.

15.3 Apache HTTP error log is your friend

The first place to diagnose (if all CFEngine processes and mongod are up and running) is:

RHEL 5,6 / CentOS 5

/var/log/httpd/error˙log

SLES 11 / OpenSuSE 11 / Debian 5,6 / Ubuntu 8,10

/var/log/apache2/error˙log

This log file will often provide useful information on which components are not operating properly.

15.4 Some report pages return HTTP error 404

Confirm that Apache REWRITE module is ON. Restarting httpd/apache2 service is required if rewrite

was disabled.

92 CFEngine Enterprise 3.0 Owner’s Manual

15.5 CFEngine processes are running but I cannot connect to the Mission Portal

web page

There can be several reasons for this, please check the following:

* Check that apache is running (the process should appear in the list when you run this command):

$ ps waux — grep apache

* Ensure that port 80 is open on the hub and not blocked by a firewall (the following telenet

connection should succeed):

$ telnet ¡IP-ADDRESS¿ 80

* Check that there are no problems with php-mod by looking for error messages in the httpd error

log or apache error log.

15.6 First time login to Mission Portal fails

MongoDB needs to be initialized for authentication of the default user. Run the following command

(line has been split and indented for presentability):

$ /var/cfengine/bin/mongo phpcfengine

/var/cfengine/share/GUI/phpcfenginenova/export.js

Default user name and password on the Mission Portal login page are ’admin’ and ’admin’.

15.7 Cannot send emails from the Mission Portal

The default email address used by the system is ”admin@cfengine.com”. To change this, edit

‘application/config/ion˙auth.php’ at the line containing:

$config[’admin˙email’] = ”admin@cfengine.com”;

15.8 Warning messages on web pages in SLES/OpenSuSE Hub

Warnings appear because the default environment is set to ”Development” and in this context the

Mission Portal will show all php errors to the user. Set the environment to ”Production” to silence

these warnings, they will still be logged in Apache Error log. To edit the default environment, visit

”index.php” in your default web root directory and change the following line to suit your needs:

define(’ENVIRONMENT’, ’Development’);

15.9 Knowledge map remains unpopulated

Try building the Knowledge map manually:

RHEL 5 / CentOS 5

$ /var/cfengine/bin/cf-promises -r && /var/cfengine/bin/cf-know -f

/var/www/html/docs/enterprise˙build.cf -b

SLES 11 / OpenSuSE 11

$ /var/cfengine/bin/cf-promises -r && /var/cfengine/bin/cf-know -f

/srv/www/htdocs/docs/enterprise˙build.cf -b

Debian 5,6 / Ubuntu 8,10

$ /var/cfengine/bin/cf-promises -r && /var/cfengine/bin/cf-know -f

/srv/www/htdocs/docs/enterprise˙build.cf -b

Chapter 15: Troubleshooting 93

15.10 I get a promise failed with the message Can’t stat

/var/cfengine/master˙software˙updates/SOME-OS on some

hosts

There is a built-in promise to automatically upgrade the CFEngine Enterprise binaries. By default, the

clients will check for an update package every time CFEngine Enterprise runs. So if the clients find

that there is no source directory to download the files from, the message will be displayed.

To fix the problem, simply create an empty directory mentioned in the message on the hub.

hub # mkdir /var/cfengine/master˙software˙updates/SOME-OS

15.11 I get messages of connection failures to a database on my hub

For example, in messages, I can see something like !! Could not open connection to report

database for saving. What should I do?

This message comes from the cf-hub process. It is responsible for pulling reports from hosts that

have contacted the hub to get policy updates. When these reports are fetched, they are stored in a local

MongoDB database on the hub. This message is produced when there is a failure in the connection to

the database.

Probably, the issue is that the database server is not running on your hub. Run the ps-command

to check this.

hub # ps -e — grep mongod

If the mongod process is running, it must be misconfigured or in some bad state. Please look at the

newest entry in ‘/var/log/mongod.log’ to diagnose the problem, and contact CFEngine Technical

Support if necessary.

If the mongod process is not running, please follow the steps below.

1. Run hub # /var/cfengine/bin/cf-twin -Kvf failsafe.cf ¿ /tmp/cfout

2. Check again if the mongod is running, if so, the problem is probably fixed now.

3. If mongod is still not running, please search the output file for lines starting as follows.

...

nova¿ -¿ Making a one-time restart promise for mongod

...

...

nova¿ -¿ Executing ’/var/cfengine/bin/mongod....

nova¿ -¿ Backgrounding job /var/cfengine/bin/mongod...

nova¿ -¿ Completed execution of /var/cfengine/bin/mongod...

...

If you don’t see the first line above, CFEngine Enterprise does not try to start mongod— so check

if you bootstrapped your hub correctly. If you see all lines, it means that CFEngine Enterprise

starts mongod, but the process just terminates immediately after. If so, continue to the next step.

4. Look at the newest entry in ‘/var/log/mongod.log’. It should give you more details of why the

mongod process refuses to start. The two most common scenarios are described next.

5. If mongod has been terminated unexpectedly, it might have left a lock-file behind that stops it

from starting again. Try deleting ‘/var/cfengine/state/mongod.lock’ if it exists.

6. If the database is corrupted, you can have ‘mongod’ create a new one by moving

‘/var/cfengine/state/cf-report.*’ out of the way. There are also tools and documentation

for repairing a database at http://www.mongodb.org/.

http://www.mongodb.org/

94 CFEngine Enterprise 3.0 Owner’s Manual

Note that almost all of the cfreport database is recreated with data collected from clients. This

happens every 5 minutes or 6 hours (depending on the probe), you may consider whether deleting

the database is an acceptable solution. CFEngine AS or CFEngine Inc can not be held responsible

for data loss in this respect.

Appendix A: Configuration of external authentication 95

Appendix A Configuration of external authentication

External authentication is available for CFEngine 3 Nova 2.1 and later versions, but by default the Mis-

sion Portal will use the embedded database to store user information (default user name and password

on the Mission Portal login page are ”admin” and ”admin”). Note that users in the default database

will be locked out of the Mission Portal upon configuration of external authentication. They will regain

access if external authentication is deactivated by selecting the Database button on the Mission Portal

Settings page (see below).

To enable external authentication on a fresh install, log on to the Mission Portal with the default

user and password and go to Section 4.7 [Settings], page 23). Click ”Mission Portal Settings” and

enter the appropriate configuration for LDAP or Active Directory as described below. Note that the

actual setup of LDAP or Active Directory (definition of users, directory hierarchy, etc.) has to be done

independently and is not covered in this document.

A.1 Configure LDAP

Select the LDAP button and enter the appropriate configuration settings for your system.

Figure: Configure LDAP

Form fields:

- LDAP host: Address of the LDAP machine

- Base dn: LDAP root, the top entry (starting point) in the directory

- Login attribute: Field name used to match user name, e.g. uid.

- User directory: Directory name where user names are stored, e.g. cn=users or ou=people

- Encryption: Chose the encryption protocol to be used for authentication

- LDAP user name: Enter the LDAP user name of the person that is supposed to have admin rights

- LDAP password: Enter the LDAP password of the above user

96 CFEngine Enterprise 3.0 Owner’s Manual

If you wish to use RBAC in combination with external authentication, we recommend that you wait

to turn on RBAC until you log on with the LDAP user that has been designated a Mission Portal admin

(i.e do not turn RBAC on while logged on with an internal database user in this case).

A.2 Configure Active Directory

Select the Active Directory button and enter the appropriate configuration settings for you system.

Figure: Configure Active Directory

Form fields:

- LDAP host: Address of the Active Directory machine

- Base dn: LDAP root, the top entry (starting point) in the directory

- Login attribute: Field name used to match user name, e.g. uid.

- User directory: Directory name where user names are stored, e.g. cn=users or ou=people

- Active directory domain: Field name used to match directory domain on Windows machines, e.g.

windows1.test.cfengine.com

- Encryption: Chose the encryption protocol to be used for authentication

- LDAP user name: Enter the LDAP user name of the person that is supposed to have admin rights

- LDAP password: Enter the LDAP password of the above user

If you wish to use RBAC in combination with external authentication, we recommend that you wait

to turn on RBAC until you log on with the AD user that has been designated a Mission Portal admin

(i.e do not turn RBAC on while logged on with an internal database user in this case).

Appendix B: SQLite Database Schema 97

Appendix B SQLite Database Schema

The following figure shows the database schema used in the SQL Reports App (Section 4.2 [SQL

Reports App], page 17):

Figure: SQLite Database Schema

� �
Please note that any queries containing the PromiseDefinitions table in combination with any other

table in the schema will produce erroneous output without an intermediate join to the PromiseStatus-

Last table.
 	

