CFEngine

CFEngine Enterprise 3.0 API

CFEngine Enterprise Documentation
Updated 23. November 2012

CFEngine AS

Copyright (© 2012 CFEngine AS. The features described herein are in provided for user convenience
and imply no warranty whatsoever to the extent of applicable law.

Table of Contents

1 CFEngine Enterprise 3.0 APl ... o 1
1.1 Basic Properties of the APl ... 1
1.1, HTTP 4 JSON . . 1
1.1.2 ReQUESES . oottt 1
1.1.3 RESPONSES . v vttt ettt et e e e e e 1
1.1.4 Pagination 2
0N T T T ' 2
1.1.6 Authenticationt 2
1.1.7 Authorization . ..o 2
1.2 Differences between the CFEngine Nova 2.2 REST API and the CFEngine
Enterprise 3.0 APl ..o o 2
1.2.1 Read vs. Read/WHritet 2
1.2.2 Built-in Reports vs. Reporting Engine............................. 2
1.2.3 CoNtent-TyYPe. . ittt 2
1.2.4 New USers. ..o e 3
1.25 Base Path ... 3
1.2.6 Stillavailable ... 3
1.2.7 Mission Portal ... 3
1.3 Checking Status ..ot 3
1.4 Managing Settings oo it 4
1.4.1 Viewing Settings ...t 4
1.4.2 Example: Configuring LDAP 5
1.4.3 Example: Configuring Active Directory..............cooiiiii. .. 5
1.4.4 Example: Changing The Log Level......... 6
1.5 Managing Users and Roles. 6
1.5.1 Example: Listing Users...... ..o 6
1.5.2 Example: Creatinga New User....... ..o, 7
1.5.3 Example: Updating an Existing User, 7
1.5.4 Example: Retrieving a User........ooiiiiiiii i 8
1.5.5 Example: AddingaUsertoaRole............, 8
1.5.6 Example: Deleting a User ..ot 9
1.5.7 Example: Creatinga New Role, 9
1.6 Browsing Host Informationo i 9
1.6.1 Example: Listing Hosts With A Given Context 9
1.6.2 Example: Looking Up Hosts By Hosthame....................... 10
1.6.3 Example: Looking Up Hosts By IP.............ooiiiiii it 11
1.6.4 Example: Removing Host Data............ooiiiiiiiii s, 11
1.6.5 Example: Listing Available Vital Signs For A Host................ 11
1.6.6 Example: Retrieving Vital Sign Data............................. 12
1.7 SQL QUEKIES . . oot e 13
1.7.1 Synchronous QUENIESttt 14
1.7.1.1 Example: Listing Hostname and IP for Ubuntu Hosts........ 14
1.7.2 Asynchronous QUENES. ...ttt 15

ii CFEngine
i1

CFEngine Enterprise 3.0 API

1.7.2.1 Issuing The QUErY e 15
1.7.2.2 Checking Status. ...t 16
1.7.2.3 Getting The Completed Reportcooiii. .. 16
1.7.3 Subscribed QUENES. 16
1.7.3.1 Example: Creating A Subscribed Query..................... 17
1.7.3.2 Example: Listing Report Subscriptions...................... 17
1.7.3.3 Example: Removing A Report Subscription 18
1.8 APl Reference 18
R T R 1o 18
1.8.2 /api/SettiNgsS . . oottt 19
1.8.3 /aPi/USEr . .ot 19
1.8.4 Japi/user/:ido 19
1.8.5 /api/role .o 20
1.8.6 /api/role/iid. ... 20
1.8.7 /api/hOSt .o 20
1.8.8 /api/host/:host-id 20
1.8.9 /api/host/:host-id/context.o, 20
1.8.10 /api/host/:host-id/context/:context-id 21
1.8.11 /api/host/:host-id/vital....... ..o i 21
1.8.11.1 /api/host/:host-id/vital/:vital-id 21
1.8.12 /api/promiseo 21
1.8.13 /api/promise/:promise-iduuiuiiiiii 21
1.8.14 /api/qUErY .ot 22
1.8.15 /api/qUery/asynNCttt 22
1.8.16 /api/query/async/:async-query=idiiiiiiiiiiiii... 22
ii CFEngine

Chapter 1: CFEngine Enterprise 3.0 API 1

1 CFEngine Enterprise 3.0 API

The CFEngine Enterprise APl allows HT TP clients to interact with the Hub of a CFEngine Enterprise
3.0 installation. With the Enterprise API, you can..

- Check installation status

- Manage users, groups and settings

- Browse host (agent) information and policy

- Issue flexible SQL queries against data collected by the Hub from agents

- Schedule reports for email and later download

The Enterprise APl is a REST API, but a central part of interacting with the API involves using
SQL. This is new in 3.0 and was done to provide users with maximal flexibility for crafting custom
reports based on the wealth of data residing on the Hub.

1.1 Basic Properties of the API

1.1.1 HTTP + JSON

The Enterprise APl is a conventional REST API in the sense that it has a number of URI resources
that support one or more GET, PUT, POST, or DELETE operations. While reporting is done using
SQL, this query is always wrapped in a JSON request.

1.1.2 Requests

GET requests are one of listing or getting. Listing resources means that a number of results will be
returned, but each entry may contain limited information. An example of a listing query is /api/user
to list users. Notice that URI components are always non-plural. An exception to this is /api/settings,
which returns the singleton resource for settings. Getting a resource specifies an individual resource
to return, e.g. /api/user/homer. PUT request typically create a new resource, e.g. a user. POST
requests typically updates an existing resource. DELETE requests are also supported in some cases.

1.1.3 Responses

Enterprise 3.0 API responses are always of the following format, consisting of a meta object and a
data array.

{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1350922925
},
"data": [
]
}

page refers to the current page number of the request. count is the number of results in the
current page, equaling the length of the data array. total is the number of results in all available pages

igi CFEngine
i1

2 CFEngine Enterprise 3.0 API

combined. timestamp is the time the request was processed by the APIl. The data array is resource
dependent, but will always contain objects. Response objects typically do not contain error codes. If the
response is not 200 OK, the appropriate HT TP error code returned along with a (possibly non-JSON)
payload.

1.1.4 Pagination

Pagination is handled by page and count query parameters to a GET request, e.qg.
/api/user?’page=5&count=30 to get the 5th page of pages of 30 entries each. The default page is 1
and the default count is 50 if these are not specified explicitly.

1.1.5 Time

All timestamps are reported in Unix Time, i.e. seconds since 1970.

1.1.6 Authentication

The API supports both internal and external authentication. The internal users table will always be
consulted first, followed by an external source specified in the settings. External sources are OpenL. DAP
or Active Directory servers configurable through POST /api/settings.

1.1.7 Authorization

Some resources require that the request user is a member of the admin role. Roles are managed with
/api/role. {undefined) [Role Based Access Control (RBAC)], page (undefined) is configurable through
settings. Users typically have permission to access their own resources, e.g. their own scheduled
reports.

1.2 Differences between the CFEngine Nova 2.2 REST API and the CFEngine
Enterprise 3.0 API

1.2.1 Read vs. Read/Write

The 2.2 API was read-only and users, roles and settings was managed by the Mission Portal. By
contrast, the 3.0 APl is read /write and completely standalone from the Mission Portal. In the CFEngine
Enterprise 3.0, users, roles and settings belong in the API, and the Mission Portal uses this to determine
access to data. Additionally, some other resources support PUT, POST and DELETE, but most data
collected from agents are read-only.

1.2.2 Built-in Reports vs. Reporting Engine

The 2.2 API provided an almost one-to-one correspondence between the reports in the Mission Portal
and the API. One of the big changes in CFEngine Enterprise 3.0 is the advent of SQL reports. This is
provided to the Mission Portal through the API, and you can use it too. You may issue both synchronous
and asynchronous reporting requests, and optionally schedule reports to be received by email.

1.2.3 Content-Type

The 2.2 AP| has a HTTP content-type application/vnd.cfengine.nova-vi+json. In the 3.0
API the content-type is application/vnd.cfengine.enterprise-vi+json. This reflects a branding
change away from Nova to Enterprise.

i#f CFEngine
i1

Chapter 1: CFEngine Enterprise 3.0 API 3

1.2.4 New Users

The 2.2 API used credentials from the Mission Portal database to authenticate and authorize users.
These users have been moved into the Hub database and security has been strengthened. We are now
using salted SHA256 passwords for the user table. Unfortunately, this means that internal users need
to be recreated. The Mission Portal now relies on the API for authentication and authorization. This
was partially done to support multi-hub installations.

1.2.5 Base Path
The 2.2 API had a base path /rest. In the 3.0 API the base path is /api.

1.2.6 Still available

In 3.0, the old 2.2 APl is still available along side the new 3.0 API, so you can keep calling the old API
if needed.

1.2.7 Mission Portal
Starting in 3.0, most of the API is exercised by the Mission Portal web-UI.

1.3 Checking Status

You can get basic info about the API by issuing GET /api. This status information may also be useful
if you contact support, as it gives some basic diagnostics.

Request
curl -k --user admin:admin https://test.cfengine.com/api/

Response

"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351154889
3,
"data": [
{
"apiName": "CFEngine Enterprise API",
"apiVersion": "v1",
"enterpriseVersion": "3.0.0al.81c0d4c",
"coreVersion": "3.5.0al1.£3649b2",
"databaseHostname": "127.0.0.1",
"databasePort": 27017,
"authenticated": "internal",
"license": {
"expires": 1391036400,
"installTime": 1329578143,
"owner": "Stage Environment',
"granted": 20,
"licenseUsage": {

igi CFEngine
1 g

4 CFEngine Enterprise 3.0 API

"lastMeasured": 1351122120,

"samples": 1905,

"minObservedlLevel": 7,
"max0ObservedLevel": 30,

"meanUsage": 21.9689,
"meanCumulativeUtilization": 109.8446,

"usedToday": 7

1.4 Managing Settings

Most of the settings configurable in the API relate to LDAP authentication of users. Settings support
two operations, GET (view settings) and POST (update settings). When settings are updated, they
are sanity checked individually and as a whole. All or no settings will be updated for a request.

1.4.1 Viewing settings
Request

curl --user admin:admin http://test.cfengine.com/api/settings

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1350992335
I
"data": [
{
"rbacEnabled": true,
"ldapEnabled": false,
"ldapActiveDirectoryDomain": "ad.cfengine.com",
"ldapBaseDN": "DC=ad,DC=cfengine,DC=com",
"ldapEncryption": "plain",
"ldapHost": "ldap-server.cfengine.com",
"ldapLoginAttribute": "sAMAccountName",
"ldapMode": "activeDirectory",
"ldapPassword": "password",
"ldapPort": 389,
"ldapPortSSL": 636,
"ldapUsername": "test",
"ldapUsersDirectory": "CN=Users",
"blueHostHorizon": 900,

§§! CFEngine
i 9

Chapter 1: CFEngine Enterprise 3.0 API 5

"logLevel": "error"

3

1.4.2 Example: Configuring LDAP

The setting IdapEnabled turns external authentication on or off. When turned on, the APl will check to
see that the other LDAP related settings make sense, and attempt to authenticate using the configured
credentials. If it is not successful in doing this, no settings will be changed. The API will notify you
with a return code an a message describing the error.

Request

curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d
{

"ldapEnabled": true,

"ldapActiveDirectoryDomain": "ad.cfengine.com",

"ldapBaseDN": "DC=ad,DC=example,DC=com",

"ldapEncryption": "ssl",

"ldapHost": "ldap-server.cfengine.com",
"ldapLoginAttribute": "sAMAccountName",
"ldapMode": "standard",
"ldapPassword": "password",
"ldapUsername": "test",
"ldapUsersDirectory": "ou",

b

Response

204 No Content

1.4.3 Example: Configuring Active Directory

Active Directory is configured in much the same way as OpenLDAP, but the additional field lda-
pActiveDirectoryDomain is required. ldapMaode is also changed from standard to activeDirectory.
Request
curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d
{
"ldapEnabled": true,
"ldapBaseDN": "DC=example,DC=com",
"ldapEncryption": "plain",
"ldapHost": "ad-server.cfengine.com",
"ldapLoginAttribute": "uid",
"ldapMode": "activeDirectory",
"ldapPassword": "password",
"ldapUsername": "test",
"ldapUsersDirectory": "CN=Users",

%2
i8f CFEngine
i g

6 CFEngine Enterprise 3.0 API

Response
204 No Content

1.4.4 Example: Changing The Log Level

The API uses standard Unix syslog to log a number of events. Additionally, log events are sent to
stderr, which means they may also end up in your Apache log. Log events are filtered based on the log
level in settings. Suppose you wanted to have greater visibility into the processing done at the backend.
The standard log level is error. Changing it to info is done as follows.

Request

curl --user admin:admin http://test.cfengine.com/api/settings -X POST -d
{

"logLevel": "info"

}

Response
204 No Content

1.5 Managing Users and Roles

Users and Roles determine who has access to what data from the API. Roles are defined by regular
expressions that determine which hosts the user can see, and what policy outcomes are restricted.

1.5.1 Example: Listing Users

Request

curl --user admin:admin http://test.cfengine.com/api/user

Response
{
"meta": {
"page": 1,
"count": 2,
"total": 2,
"timestamp": 1350994249
},
"data": [
{
"id": "calvin",
"external": true,
"roles": [
"Huguenots", "Marketing"
]
},
{
"id": "quinester",

igi CFEngine
1 g

Chapter 1: CFEngine Enterprise 3.0 API 7

"name": "Willard Van Orman Quine",
"email": "noreply@@aol.com",
"external": false,
"roles": [

"admin"

1.5.2 Example: Creating a New User

All users will be created for the internal user table. The API will never attempt to write to an external
LDAP server.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X PUT -d

{
"email": "snookie@mtv.com",
"roles": [
IIHRH

Response

201 Created
}

1.5.3 Example: Updating an Existing User

Both internal and external users may be updated. When updating an external users, the API will
essentially annotate metadata for the user, it will never write to LDAP. Consequently, passwords may
only be updated for internal users. Users may only update their own records, as authenticated by their
user credentials.

Request

curl --user admin:admin http://test.cfengine.com/api/user/calvin -X POST -d

{

"name": "Calvin",

Response

204 No Content
}

%2
i8f CFEngine
i g

8 CFEngine Enterprise 3.0 API

1.5.4 Example: Retrieving a User

It is possible to retrieve data on a single user instead of listing everything. The following query is similar
to issuing GET /api/user?id=calvin, with the exception that the previous query accepts a regular
expression for id.

Request

curl --user admin:admin http://test.cfengine.com/api/user/calvin

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1350994249
},
"data": [
{
"id": "calvin",
"name": "Calvin",
"external": true,
"roles": [
"Huguenots", "Marketing"
]
},
]

1.5.5 Example: Adding a User to a Role

Adding a user to a role is just an update operation on the user. The full role-set is updated, so if you
are only appending a role, you may want to fetch the user data first, append the role and then update.
The same approach is used to remove a user from a role.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X POST -d

{

"roles": [
"HR", "gcc-contrib"
]
+
Response

204 No Content
}

%2
i8f CFEngine
i g

Chapter 1: CFEngine Enterprise 3.0 API 9

1.5.6 Example: Deleting a User

Users can only be deleted from the internal users table.

Request

curl --user admin:admin http://test.cfengine.com/api/user/snookie -X DELETE

Response
204 No Content

1.5.7 Example: Creating a New Role

Once you've learned how to manage users, managing roles is pretty much the same thing. Roles
are defined by four fields that filter host data and policy data: includeContext, excludeContext,
includeBundles, excludeBundles. Each field is a comma separated list of regular expressions. See
the corresponding section on RBAC for an explanation of these fields. Updating, and deleting roles are
similar to updating and deleting users, using POST and DELETE.

Request

curl --user admin:admin http://test.cfengine.com/api/user/solaris-admins -X PUT -d

{
"email": "snookie@mtv.com",
"roles": [
"description": "Users managing 64-bit Solaris boxes",
"includeContext": "solaris,x86_64",

Response
204 No Content

1.6 Browsing Host Information

A resource /api/host is added as an alternative interface for browsing host information. For full flexibility
we recommend using SQL reports via /api/query for this, however, currently vital signs (data gathered
from cf-monitord) is not part of the SQL reports data model.

1.6.1 Example: Listing Hosts With A Given Context

Request

curl --user admin:admin http://test.cfengine.com/api/host?context-include=windows.*

Response
{
"meta": {
"page": 1,

"count": 2,

§§! CFEngine
i 9

10 CFEngine Enterprise 3.0 API

"total": 2,
"timestamp": 1350997528
T,
"data": [
{
"id": "1c8fafed478e05eec60fe08d2934415c81a51d2075aac27c9936€19012d625¢chb8",
"hostname": "windows2008-2.test.cfengine.com",
"ip": "172.20.100.43"

"id": "dddc95486d97e4308f164ddc1fdbbc133825£35254f9cfbd59393a671015ab99",
"hostname": "windows2003-2.test.cfengine.com",
"ip": "172.20.100.42"

1.6.2 Example: Looking Up Hosts By Hostname

Contexts are powerful, as you can use them to categorize hosts according to a rich set of tags. For
example, each host is automatically tagged with a canonicalized version of its hostname and IP-address.
So we could lookup the host with hostname windows2003-2.test.cfengine.com as follows (lines split
and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host?context-include=
windows2003_2_stage_cfengine_com

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1350997528
},
"data": [
{
"id": "dddc95486d97e4308f164ddc1fdbbc133825£35254£9¢cfbd59393a671015ab99",
"hostname": "windows2003-2.test.cfengine.com",
"ip": "172.20.100.42"
}
]
}

%2
i8f CFEngine
i g

Chapter 1: CFEngine Enterprise 3.0 API 11

1.6.3 Example: Looking Up Hosts By IP

Similarly we can lookup the host with hostname windows2008-2.test.cfengine.com by IP as follows
(lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host?
context-include=172_20_100_43

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1350997528
3,
"data": [
{
"id": "1c8fafed478e05eec60£e08d2934415c81a51d2075aac27c9936e19012d625¢cb8",
"hostname": "windows2008-2.stage.cfengine.com",
"ip": "172.20.100.43"
b
]

1.6.4 Example: Removing Host Data

If a host has been decommissioned from a Hub, we can explicitly remove data associated with the host
from the Hub, by issuing a DELETE request (lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host/
1c8fafe478e05eec60£e08d2934415¢c81a51d2075aac27¢c9936e19012d625¢cb8 -X DELETE

Response
204 No Content

1.6.5 Example: Listing Available Vital Signs For A Host

Each host record on the Hub has a set of vital signs collected by cf-monitord on the agent. We can
view the list of vitals signs from as host as follows (lines split and indented for presentability).

Request
curl --user admin:admin http://test.cfengine.com/api/host/

4e913e2f5ccf0c572b9573a83¢c4a992798ceel170f5e3019d489a201bc98ala/vital

Response

i#f CFEngine
i1

12 CFEngine Enterprise 3.0 API

{
"meta": {
"page": 1,
"count": 4,
"total": 4,
"timestamp": 1351001799
I
"data": [
{
"id": "messages",
"description": "New log entries (messages)",
"units": "entries",
"timestamp": 1351001400
3,
{
"id": "mem_swap",
"description": "Total swap size",
"units": "megabytes",
"timestamp": 1351001400
3,
{
"id": "mem_freeswap",
"description": "Free swap size",
"units": "megabytes",
"timestamp": 1351001400
T,
{
"id": "mem_free",
"description": "Free system memory",
"units": "megabytes",
"timestamp": 1351001400
+,
}

1.6.6 Example: Retrieving Vital Sign Data

Each vital sign has a collected time series of values for up to one week. Here we retrieve the time series
for the mem_free vital sign at host 4e913e2f5ccf0c572b9573a83c4a992798ceel 70f5ee3019d489a201bc98alall
for October 23rd 2012 12:20pm to 12:45pm GMT (lines split and indented for presentability).

Request

curl --user admin:admin http://test.cfengine.com/api/host/
4e913e2f5ccf0c572b9573a83¢c4a992798ceel170f5ee3019d489a201bc98ala/
vital/mem_free?from=1350994800&t0=1350996300

Response

"meta": {

%2
i8f CFEngine
i g

Chapter 1: CFEngine Enterprise 3.0 API 13

"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351002265
3,
"data": [
{
"id": "mem_free",
"description": "Free system memory",
"units": "megabytes",
"timestamp": 1351001700,
"values": [
[
1350994800,
36.2969
1,
I
1350995100,
36.2969
1,
i
1350995400,
36.2969
1,
L
1350995700,
36.2969
1,
L
1350996000,
36.1758
1,
[
1350996300,
36.2969

1.7 SQL Queries
The standard way of creating reports in CFEngine Enterprise 3.0 is with SQL queries. See the chapter
on SQL queries for an explanation. The API has a few ways of creating a report.

e Synchronous query, where we issue a query and wait for the table to be sent back with the response.

e Asynchronous query, where we get a response immediately with an id that we can later query to

i#f CFEngine
i1

14 CFEngine Enterprise 3.0 API

download the report.

e Subscribed query, where we specify a query to be run on a schedule and have the result emailed
to someone.

1.7.1 Synchronous Queries

Issuing a synchronous query is the most straight forward way of running an SQL query. We simply issue
the query and wait for a result to come back.

1.7.1.1 Example: Listing Hostname and IP for Ubuntu Hosts

Request (lines split and indented for presentability)
curl -k --user admin:admin https://test.cfengine.com/api/query -X POST -d
{
"query": "SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts
ON Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = \"ubuntu\""

Response
{

"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351003514
3,
"data": [
{
"query": "SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON
Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = \"ubuntu\"",
"header": [
"HostName",
"IPAddress"
1,

"rowCount": 3,

"rows": [

I
"ubuntulO-2.stage.cfengine.com",
"172.20.100.1"

1,

L
"ubuntulO-3.stage.cfengine.com",
"172.20.100.2"

1,

I
"ubuntulO-4.stage.cfengine.com",
"172.20.100.3"

igi CFEngine
i1

Chapter 1: CFEngine Enterprise 3.0 API 15

]
1,
"cached": false,
"sortDescending": false

}

The cached and sortDescending fields here mean that the the result was not retrieved from cache,
and that post-processing sorting was not applied. It is also possible to specify skip and limit fields that
will be applied to the result set after it is returned by the SQL engine. These fields are mainly used by
the Mission Portal to paginate quickly on already processed queries.

1.7.2 Asynchronous Queries

Because some queries may take some time to compute, it is possible to fire off a query and check the
status of it later. This is useful for dumping a lot of data into CSV files for example. The sequence
consists of three steps.

1. Issue the asynchronous query and get a job id
2. Check status of processing using the id

3. When the query is completed, get a download link using the id

1.7.2.1 lIssuing The Query

Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async -X POST -d

{
"query": "SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON Hosts.Hostkey = Conte

¥

Response (lines split and indented for presentability)

{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351003514
T,
"data": [
{
"id": "32ecb0a73e735477ccO9blea8641e5552",
"query": "SELECT Hosts.HostName, Hosts.IPAddress FROM Hosts JOIN Contexts ON
Hosts.Hostkey = Contexts.HostKey WHERE Contexts.ContextName = \"ubuntu\""
b
]
]

igi CFEngine
i1

16 CFEngine Enterprise 3.0 API

1.7.2.2 Checking Status
Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async/:id

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351003514
},
"data": [
{
"id": "32ecb0a73e735477cc9blea8641e5552",
"percentageComplete": 42,
]

3

1.7.2.3 Getting The Completed Report

This is the same API call as checking the status. Eventually, the percentageComplete field will reach
100 and there will be a link to the completed report available for downloading.

Request

curl -k --user admin:admin https://test.cfengine.com/api/query/async/:1id

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351003514
1,
"data": [
{
"id": "32ecb0a73e735477ccObleaB8641e5552",
"percentageComplete": 100,
"href": "https://test.cfengine.com/api/static/32ecb0a73e735477cc9blea8641e5552.csv'l}
}
]

}

1.7.3 Subscribed Queries

Subscribed queries happen in the context of a user. Any user can create a query on a schedule and
have it email to someone.

igi CFEngine
i1

Chapter 1: CFEngine Enterprise 3.0 API 17

1.7.3.1 Example: Creating A Subscribed Query

Here we create a new query to count file changes by name and have the result sent to us by email.
The schedule field is any CFEngine context expression. The backend polls subscriptions in a loop and
checks whether it's time to generate a report and send it out. In the following example, user milton
creates a new subscription to a report which he names file-changes-report, which will be sent out every
Monday night. His boss will get an email with a link to a PDF version of the report.

Request (lines split and indented for presentability)

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/
subscription/query/file-changes-report -X PUT -d

{
"to": "boss@megaco.com",
"query": "SELECT Name Count(1) FROM FileChanges GROUP BY Name",
"schedule": "Monday.Hr23.Minb9",
"title": "A very important file changes report"
"description": "Text that will be included in email"
"outputTypes": ["pdf"]

b

Response

204 No Content

1.7.3.2 Example: Listing Report Subscriptions

Milton can list all his current subscriptions by issuing the following.

Request

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/subscription/queryl}

Response
{
"meta": {
"page": 1,
"count": 1,
"total": 1,
"timestamp": 1351003514
3,
"data": [
{
"id": "file-changes-report"
"to": "boss@megaco.com",
"query": "SELECT Name Count(1) FROM FileChanges GROUP BY Name",
"title": "A very important file changes report"
"description": "Text that will be included in email"

"schedule": "Monday.Hr23.Minb9",

igi CFEngine
1 g

18

CFEngine Enterprise 3.0 API

"outputTypes": ["pdf"]
}

1.7.3.3 Example: Removing A Report Subscription

Request (lines split and indented for presentability)

curl -k --user admin:admin https://test.cfengine.com/api/user/milton/

subscription/query/file-changes-report -X DELETE

Response
204 No Content

1.8

API Reference

1.8.1 /api

Supported Operations:

GET

Fields:

T
i

apiName (string) Human-friendly APl name.
apiVersion (string) APl version string.
enterpriseVersion (string) Version of the CFEngine Enterprise build.

coreVersion (string) The version of CFEngine Core (Community) the Enterprise version was built
against.

databaseHostname (string) Hostname (or IP) of the database the APl is connected to.
databasePort (integer) Port number of the database the APl is connected to.

authenticated ("internal", "external"), Whether the request was authenticated using the internal
users table or an external source.

license.expires (integer) Time when the license expires.

license.installTime (integer) Time when the license was installed.

license.owner (string) The name of the license owner.

license.granted (integer) Host number capacity granted by the license.
license.licenseUsage.lastMeasured (integer) Time when license usage was last updated.
license.licenseUsage.samples (integer) Number of samples collected for license usage.

license.licenseUsage.minObservedLevel (integer) Minimum number of observed host licenses in
use.

license.licenseUsage.minObservedLevel (integer) Maximum number of observed host licenses
in use.

license.licenseUsage.meanUsage (integer) Average number of observed host licenses in use.
license.licenseUsage.meanCumulativeUtilization (integer) (not sure)

license.licenseUsage.usedToday (integer) Total number of host licenses observed used today.

CFEngine

Chapter 1: CFEngine Enterprise 3.0 API 19

1.8.2 /api/settings

Supported Operations:
GET, POST

Fields:

rbacEnabled (boolean) Whether RBAC is applied to requests.

IdapEnabled (boolean) Whether external authentication is activated.
activeDirectoryDomain (string) AD domain to use if AD is enabled in IdapMode.
IdapBaseDN (string) LDAP BaseDN to use for external LDAP requests.

IdapEncryption ("plain", "ss/", "tls") Type of LDAP binding to establish to external LDAP
server. (Default: "plain").

IdapHost (string) Hostname of external LDAP server.

IdapMode ("standard", "activeDirectory") Type of LDAP server to use. "standard" is effectively
OpenLDAP. (Default: "standard").

IdapLoginAttribute (string) LDAP attribute to use for usernames. (default: "uid").
IdapUsername (string) LDAP username.

IdapPassword (string) LDAP password.

IdapUsersDirectory (string) Attribute and value to qualify the directory in which to look up users,
e.g. "ou=people".

IdapPort (integer) Port for external LDAP connections not using SSL. (default 389).

IdapPort (integer) Port for external LDAP connections using SSL. (default 636).

blueHostHorizon (integer) Time interval (seconds) for when to consider a host unreachable.
(default 900).

logLevel ("emergency", "alert", "critical", "error", "warning", "notice", "info", "debug") Syslog
filter specifying the severity level at which messages produced by the API should be emitted to
syslog and apache.log. (default: error).

1.8.3 /api/user

Supported Operations:

GET

Query Parameters:

id (regex string) Regular expression for filtering usernames.

external ("true", "false") Returns only internal users (false) or only external (true), or all if not
specified.

1.8.4 /api/user/:id

Supported Operations:
GET, PUT, POST, DELETE

Fields:

T
i

id (string) 1D of a user.

CFEngine

20 CFEngine Enterprise 3.0 API

password (string) Password of a user. (Never returned from API).

email (string) Email address associated with user.

roles (array of strings) Set of IDs of roles a user is in. (Default: empty)

external (boolean) Whether or not the user was found externally (LDAP).

1.8.5 /api/role
Supported Operations:
GET

1.8.6 /api/role/:id

Supported Operations:
GET, PUT, POST, DELETE

Fields:
id (string) 1D of a role.

e description (string) Arbitrary text describing the role

e includeContext (comma delimited string of regular expression strings) Includes hosts visible to
the users in the role.

e excludeContext (comma delimited string of regular expression strings) Excludes bundles visible
to the users in the role.

e includeBundles (comma delimited string of regular expression strings) Includes bundles visible to
the users in the role.

e excludeBundles (comma delimited string of regular expression strings) Excludes bundles visible
to the users in the role.

1.8.7 /api/host

Supported Operations:
GET

Query Parameters:

e include-context (comma delimited string of regular expression strings) Includes hosts having
context matching the expression.

e exclude-context (comma delimited string of regular expression strings) Excludes hosts having
context matching the expression.

1.8.8 /api/host/:host-id
e id (string) ID of a host.

e hostname (string) Hostname of a host.

e ip (string) IP address of a host.

1.8.9 /api/host/:host-id/context

Supported Operations:
GET

ii CFEngine
i1

Chapter 1: CFEngine Enterprise 3.0 API 21

1.8.10 /api/host/:host-id/context/:context-id

Supported Operations:
GET

Fields:
e id (string) ID of a context (class name)
e mean (real) Occurrence probability of the context in an agent run.
e stdv (real) Standard deviation of occurrence probability.

e timestamp (integer) Last time context was activated on agent.

1.8.11 /api/host/:host-id/vital
Supported Operations:

GET

1.8.11.1 /api/host/:host-id/vital/:vital-id

Supported Operations:
GET

Query Parameters:

e from (integer) Timestamp marking the start of the interval for which to fetch data. Data is only
available going back one week.

e to (integer) End of data interval to be fetched.

Fields:
id (string) 1D of vital sign.

description (string) Description of vital sign.

units (string) Measurement unit of vital sign.

timestamp (integer) Timestamp of the last received data point.

values (array of [t, y], where t is the sample timestamp) Vital sign data.

1.8.12 /api/promise

Supported Operations:
GET

1.8.13 /api/promise/:promise-id

Supported Operations:
GET

Fields:
e id (string) Promise handle.
e type (string) Promise type.

e promiser (string) Promiser of the promise.

igi CFEngine
1 g

22 CFEngine Enterprise 3.0 API

e promisees (array of strings) A list of promisees of the promise.
e bundle (string) The bundle this promise belongs to

e comment (string) Associated comment for the promise.

1.8.14 /api/query
Supported Operations:
POST
Fields:
e query (string) SQL query string.
e sortColumn (string) Column on which to sort results. This is applied to the result of the SQL
query and can be considered post processing. The Mission Portal uses this to sort cached reports.

e sortDescending (bool) Apply post-sorting descendingly.

e skip (integer) Number of results to skip for the processed query. The Mission Portal uses this for
pagination on cached results.

e limit (integer) Limit the number of results in the processed query.

1.8.15 /api/query/async

Supported Operations:
POST
Fields:

e query (string) SQL query string.
e id (string) ID of the query job.

e error (string) Error if anything went wrong.

1.8.16 /api/query/async/:async-query-id

Supported Operations:
GET, DELETE
Fields:

id (string) 1D of the query job.

percentageComplete (integer) Processing status for the query.

href (string) Download link for the finished report.

error (string) Error if anything went wrong.

ii CFEngine
i1

