
Windows Management with CFEngine Nova
A CFEngine Special Topics Handbook

CFEngine AS

� �
CFEngine Nova is a cross-platform and versatile tool that unifies the desired state management
on all major operating systems.

However, some operating systems are designed fundamentally different than others, requiring
special CFEngine language features when being described. In this document, we highlight the
Nova extensions provided to the Windows platform.
 	

Copyright c© 2011 CFEngine AS

i

Table of Contents

System requirements . 1
Installation . 1
Testing policies locally . 1
Windows registry management . 2

Creating values . 2
Removing values . 3

Windows service management . 3
File and folder permissions . 4
Windows-aware features in CFE Nova . 5
Windows special variables . 7
Windows hard classes . 7
Notes on windows policies . 7

1

System requirements

CFEngine Nova, being so lightweight, works equally well on Windows clients as on Windows
servers. Both native 32-bit/x86 (package name i686) and 64-bit/x64 (package name x86˙
64) packages are available to customers. It is important that you select the x86˙64 package
if you are running 64-bit Windows.

Of Windows client operating systems, anything from Windows XP SP2 and newer is sup-
ported. On the server side, Windows Server 2003 and newer is supported.

CFEngine Nova communicates bi-directionally on port 5308, so make sure that this port is
open for outgoing and incoming TCP connections.

All software dependencies are bundled with the CFEngine Nova package. The total disk
consumption is about 70 MB, and the memory usage is less than 30 MB.

Installation

The installation and set-up procedure on Windows is not different than that for other
operating systems Nova runs on, so the Nova getting started document available at
http://software.cfengine.com applies to the Windows version as well.

The Windows msi-packages will get silently installed (no prompts) to Cfengine under your
program files directory (e.g. C:“Program Files“Cfengine on English Windows versions). It is
important that the installer is run with Administrative priviliges. To ensure this, open a Command
Prompt in Administrative mode and run ‘msiexec -i cfengine-nova-VERSION-ARCH.msi’
(replace VERSION and ARCH appropriately).

Note that you need a policy hub to bootstrap to in order for the license to get downloaded
and verified. This is required even if you just want to run some tests on the local machine
manually. The policy hub needs to run a flavour of Linux, as noted in the Nova getting
started document. Find the hostname or IP address of the hub, here we assume the address
is ’123.456.789.123’ (do not bootstrap with a localhost address):

C:“Program Files“Cfengine“bin“cf-agent.exe --bootstrap --policy-server 123.456.789.123

Testing policies locally

After correctly bootstrapping, however, you can stop the CFEngine Nova service (the cf-
execd process), and kill cf-serverd and cf-monitord to create an off-line test environment.
You can also delete everything under Cfengine“inputs except license.dat and cfengine˙
stdlib.cf to test local policies manually.

Create a new text file Cfengine“inputs“promises.cf and input the following text using
your favourite text editor.

body common control

–

bundlesequence =¿ – ”test” ˝;

inputs =¿ – ”cfengine˙stdlib.cf” ˝;

host˙licenses˙paid =¿ ”1”;

˝

http://software.cfengine.com

2 Windows Management with CFEngine Nova

bundle agent test

–

reports:

windows::

”Hello, Windows!”;

˝

Now, go to your terminal (e.g. Command Prompt) and navigate to Cfengine“bin under
program files. Run cf-promises.exe. It should generate no output, which indicates correct
syntax and license.

To execute the policy, run cf-agent.exe -K. You should see the following output.

We now have a basic skeleton policy that we can test our Windows promises with. These
can later be integrated at the policy hub to ensure that they are run on all Windows systems.
We will assume this general skeleton for the rest of this document, modifying the contents of
the test bundle only.

Windows registry management

CFEngine Nova supports fine-grained management of the Windows registry. These promises
are encapsulated under the databases: promise type.

Creating values

Let us modify our skeleton bundle to contain the following.

...

bundle agent test

–

databases:

”HKEY˙LOCAL˙MACHINE“SYSTEM“CurrentControlSet“Services“Eventlog“Security”

database˙operation =¿ ”create”,

database˙rows =¿ – ”MaxSize,REG˙DWORD,84017152”, ”Retention,REG˙DWORD,0”˝,

database˙type =¿ ”ms˙registry”,

comment =¿ ”Ensure eventlog size is in accordance with standards”;

˝

Now, we again run cf-promises.exe to ensure the syntax is correct, followed by cf-
agent.exe -KI. Note that we added the -I option which tells cf-agent.exe to notify us on
the existing state of the system and any actions done to ensure the desired state. The output
should look like the following.

3

When we run cf-agent.exe twice, the second run will do nothing because the first run has
already corrected the value. This is convergence — CFEngine is ensuring the desired state.

Removing values

In order to remove values instead, we just need to adjust the policy slightly, resulting in the
following bundle.

...

bundle agent test

–

databases:

”HKEY˙LOCAL˙MACHINE“SYSTEM“CurrentControlSet“Services“Eventlog“Security”

database˙operation =¿ ”delete”,

database˙columns =¿ – ”value1”, ”value2”˝,

database˙type =¿ ”ms˙registry”,

comment =¿ ”Remove stray values generated by an application”;

˝

Now, if you create ‘value1’ and ‘value2’ in the key above, cf-agent.exe should show
the following output.

At the time of writing, Nova supports the REG˙DWORD (double word), REG˙SZ (string) and
REG˙EXPAND˙SZ (expandable string) data types, as given in the middle field of the database˙
rows list elements. See the CFEngine reference manual for an updated list of supported data
types.

Also note the registryvalue() function which can be used to read out value data from
the registry and act upon it. Examples of its use are also available in the CFEngine reference
manual.

Windows service management

CFEngine Nova can maintain complete control of the state of all Windows services. For
example, services prone to security issues or errors can easily be given a disabled state.

http://cfengine.com/manuals/cf3-reference.html#database_005frows-in-databases
http://cfengine.com/manuals/cf3-reference.html#Function-registryvalue
http://cfengine.com/manuals/cf3-reference.html#Function-registryvalue

4 Windows Management with CFEngine Nova

A service can also be given a running state, in which case CFEngine Nova ensures that it
is running, and starts it if it is not, with parameters if desired. More advanced policy options
are also available, including support for starting and stopping dependencies, and configuring
when the services should be started (e.g. only when they are being used).

Note that the name of a service in Windows may be different from its “Display name”.
CFEngine Nova policies use the name, not the display name, due to the need of uniqueness.

A complete example of a service management bundle is show below.

...

bundle agent test

–

services:

windows::

”W32Time”

service˙policy =¿ ”start”,

service˙method =¿ bootstart,

comment =¿ ”Ensure important services are running and starting at boot”;

Windows˙Server˙2008::

”RemoteRegistry”

service˙policy =¿ ”disable”,

service˙method =¿ force˙deps,

comment =¿ ”Disable services that create security issues”;

˝

This example ensures that the Windows Time service is running on all Windows hosts, and
that Remote registry is disabled on all Windows 2008 servers.

File and folder permissions

CFEngine Nova can ensure the permissions or Access Control Lists (ACLs) of your Windows
systems are correctly set. Windows ACLs are a complex topic by itself, with support for more
than ten different permission bits and inheritance. Nova supports all of this, but we will just
cover the basics in this document.

5

The following policy will ensure strict permissions on a directory ‘C:“Secret’ and a file
‘C:“Secret“file.txt’.

...

bundle agent test

–

vars:

”acl˙secret˙dir” slist =¿ – ”user:Administrator:rwx:allow”,

”group:Administrators:rx:allow” ˝;

”acl˙secret˙file” slist =¿ – ”user:Administrator:rw:allow” ˝;

files:

windows::

”C:“Secret”,

acl =¿ ntfs(”@(acl˙secret˙dir)”),

depth˙search =¿ include˙base,

perms =¿ owner(”Administrator”);

”C:“Secret“file.txt”,

acl =¿ ntfs(”@(acl˙secret˙file)”),

perms =¿ owner(”Administrator”);

˝

The CFEngine reference manual contains a description of all the available ACL options.
Also refer to the the CFEngine Nova Owner’s manual for a more in-depth discussion of the
ACL options available.

Windows-aware features in CFE Nova

CFEngine Nova integrates with the Windows operating system in multiple ways.

The CFEngine scheduler in Nova (cf-execd) runs as a Windows service. This means it
runs in the background and starts with Windows, before any user logs in. It can be configured,
started and stopped from the “Services” listing in Windows, just like any other Windows
service.

Event logs are the Windows counterpart to syslog from Unix. The main difference is that
event logs aim to group similar log messages, giving each group an event id. The following
event ids are defined in CFEngine Nova, allowing categorisation of the log message based on
its type. The Nova event logs can be found under the “System” logs.

Description Event ID Type
Promise kept 100 Information
Promise repaired 101 Information
Promise not repaired due warn only
policy

102 Error

Promise not repaired due to error 103 Error
Report promise 104 Information

http://cfengine.com/manuals/cf3-reference.html#acl-in-files

6 Windows Management with CFEngine Nova

Generic information 105 Information
Generic verbose 106 Information
Generic warning 107 Warning
Generic error 108 Error

By default, only promise not repaired and generic error events are logged to avoid flooding
the Event Log. You can turn on verbose logging to log all messages, like the following example.

body common control

–

inputs =¿ – ”cfengine˙stdlib.cf” ˝;

bundlesequence =¿ – ”main” ˝;

˝

bundle agent main

–

files:

”C:“test.txt”

create =¿ ”true”,

action =¿ log˙verbose;

˝

7

Windows special variables

Three new special variables have been added to the Windows version of CFEngine Nova.

• sys.windir contains the Windows directory, e.g. “C:“WINDOWS”.

• sys.winsysdir contains the Windows system directory, e.g. “C:“WINDOWS“system32”.

• sys.winprogdir contains the program files directory, e.g. “C:“Program Files”.

Note that these variables are not statically coded, but retrieved from the current system.
For example, sys.winprogdir is often different on Windows versions in distinct languages.

Windows hard classes

The Windows version of CFEngine Nova defines hard classes to pinpoint the exact version of
Windows that it is running on, the service pack version and if it’s a server or workstation.

First of all, the class windows is defined on all Windows platforms. For Windows work-
stations, such as Windows XP, WinWorkstation is defined. On Windows servers, such as
Windows Server 2003, WinServer is defined. In addition, if the server is a domain controller,
DomainController is defined. Note that if DomainController is defined, then WinServer
is also defined, for natural reasons.

The class Service˙Pack˙X˙Y is defined according to the service pack version. For example,
at the time of writing, Service˙Pack˙3˙0 is set on an updated Windows XP operating system.

To allow taking specific actions on different Windows versions, one of the following hard
classes is defined.

• Windows˙7
• Windows˙Server˙2008˙R2
• Windows˙Server˙2008
• Windows˙Vista
• Windows˙Server˙2003˙R2
• Windows˙Home˙Server
• Windows˙Server˙2003
• Windows˙XP˙Professional˙x64˙Edition
• Windows˙XP
• Windows˙2000

Note that all defined hard classes for a given system is shown by running cf-promises -v.

Notes on windows policies

A potential problem source when writing policies for windows is that paths to executables often
contain spaces. This makes it impossible for CFEngine to know where the executable ends
and the parameters to it starts. To solve this, we place escaped quotes around the executable.

Additionally, Windows does not support that processes start themselves in in the background
(i.e. fork off a child process in the Unix world). The result is that CFEngine is always waiting
for the commands to finish execution before checking the next promise. To avoid this, use
the background attribute in the action body-part.

Both these things are demonstrated in the following example.

8 Windows Management with CFEngine Nova

body common control

–

inputs =¿ – ”cfengine˙stdlib.cf” ˝;

bundlesequence =¿ – ”main” ˝;

˝

bundle agent main

–

commands:

”“”C:“Program Files“Some Dir“program name.bat“” --silent --batch”

action =¿ in˙shell˙bg;

˝

Finally, one should note that Windows lacks support for certain features that are utilised in
Unix versions of CFEngine. These include symbolic links, file groups, user and group identifiers.

Thus, the parts of promises containing these features will be ignored. For example,
the getgid() function does not return anything on Windows. The CFEngine reference
manual documents exactly which promises are ignored and not. Also, cf-agent.exe from
CFEngine Nova prints warning messages on ignored attributes when run in verbose mode
(cf-agent.exe-Kv).

http://cfengine.com/manuals/cf3-reference.html
http://cfengine.com/manuals/cf3-reference.html

