
Monitoring with CFEngine
A CFEngine Special Topics Handbook

CFEngine AS

� �
CFEngine fulfils an unusual role as a management system, closing the loop between mea-
surement or monitoring of resources and change management. CFEngine learns the normal
behaviour of a system using smart lightweight algorithm, and builds a statistical view of what
is normal behaviuour. Policy may then me measured against this normal state to provide
relativistic reporting of state, and the detection of anomalies.

A significant capability of CFEngine Nova over previous versions of CFEngine, as well as
other monitoring software, is the existence of lightweight extensible probes, based on Perl
Compatible Regular Expressions. These probes can extract and store data in an efficient and
non-intrusive manner. Reports can be integrated into the Nova Knowledge Map and anomalies
are automatically detected by CFEngine’s self-learning algorithms.
 	

Copyright c© 2010-11 CFEngine AS

i

Table of Contents

1 Monitoring introduction . 1
What is monitoring? . 1
What are the goals of monitoring? . 1
What does monitoring software do? . 1
Monitoring in CFEngine . 2
Visualization of monitoring in CFEngine . 3
Standard measured variables . 4
Estimate of the level of normality . 5
Variables . 6
Entropy . 7
Persistent classes for alert conditions . 7

2 Monitoring customization . 9
What are measurements? . 9
measurements promises . 9
Scanning log files for patterns . 9
Scanning syslog for FTP statistics . 10
Scanning DNS logs for query statistics . 11
Scanning syslog for email statistics . 12
Scanning syslog for email milter failures . 14
Scanning syslog for breakin attempts . 15
Threshold monitoring . 16
Summary Monitoring . 17

Chapter 1: Monitoring introduction 1

1 Monitoring introduction

What is monitoring?

The world of IT management is replete with monitoring software. Monitoring is considered to
be a major part of management, and it plays a kind of ‘feel good’ role to engineers even when
it often reveals little useful information. Users are often fiercely loyal to certain monitoring
solutions, However, most monitoring systems have some key problems:

• Many monitoring systems are so heavy weight that they lead to a system large overhead.

• Scalability of monitoring solutions is often poor, both in terms of system resource con-
sumption and comprehensability of the data collected.

One might argue that these problems can be traced back to the overly ambitious nature
of what they try to achieve.

Some common or popular monitoring solutions include:

• HP OpenView

• Nagios

• Munin

• Zenoss

• Ganglia

• collectd

What are the goals of monitoring?

Few montioring systems yield accurate or even very clear results about systems, and yet we
feel reassured by moving traces. We monitor systems first and foremost out of a desire for
knowledge. If that seems like a trivial statement, you should examine your own motivations
carefully – what is it you really want from a monitoring solution? Accurate data, or some basic
reassurance?

As scientific instruments, most monitoring software is rather poorly constructed. The
devices are rarely calibrated, the results are presented without context, sorted according to
arbitrary thresholds, and it is unclear what delay there was between the sampling of the system
and the presentation of the data. That makes the data values and the traces almost useless -
but not quite. What users really see in monitoring is patterns of change. Monitoring software
forms a bridge between actual data about the system and the habits of the human brain.

What does monitoring software do?

Typically, monitoring software samples data from systems through a number of probes and
presents the data in some graphical form. A few systems can also perform statistical analysis
and even look-ahead forecasting of the data. Much monitoring software is based on the Simple
Network Management Protocol (SNMP) which is an active probe regime usually run from a
centralized network manager.

The simple fact of the matter is that most monitoring software simple presents a rough
visualization of the raw data to users as either a set of alarms (loggable messages) or as a
moving time-series, analogous to a hospital vital-signs monitor (EEG or ECG).

2 Monitoring with CFEngine

If one is cynical, it might be said that some monitoring systems waste users’ time by
producing moving graphs with a level of detail that is utterly inappropriate. Users then sit
transfixed to these moving traces, watching for any insignificant change – and, because there
is no context or history to meaure the changes against, every change appears to be interesting.

Monitoring in CFEngine

In CFEngine, there is cf-monitord, which runs as a local agent on every computer. This
daemon wakes up every couple of minutes and samples data for a number of variables without
using the network. The data are then stored in an embedded database on the localhost, using a
smart algorithm that prevents the datasize from growing endlessly. CFEngine uses a model of
system behaviour based on the findings of research about how computers behave in a network.
The model reveals strong weekly patterns in most measurable data, or no pattern whatsoever.
This knowledge can be used to compress the data by a large factor and enables cf-monitord
to carry out a real time statistical analysis of the normal behaviour that is updated over time.

CFEngine was not written to replace other monitoring systems, but to achieve rather
concrete goals. In order to achieve these goals, CFEngine does not monitor as often as other
systems, and it presents results rather differently.

The goals of monitoring in CFEngine are:

• To not waste users’ time with insignificant changes, but provide meaningful updates at a
rate that is defensible based on the rate of change of the system.

• To provide meaningful information that is placed in the context of what is normal.

• To reveal trends and patterns at a glance.

• To scale to tens of thousands of hosts without placing a significant burden on the hosts
being monitored.

• To be as hands-free in configuration as possible, but allow customization.

• To provide a feedback mechanism for system policy so that systems can respond directly
to conditions that are detected.

The information returned by cf-monitord comes in a number of forms:

• As visual, plottable graphs.

• As CFEngine classes that are passed to cf-agent and may be used to generate alarms
or automatic responses.

Chapter 1: Monitoring introduction 3

A graphical rendering of a 100 x load average pattern collected by a host.

Visualization of monitoring in CFEngine

The CFEngine community edition provides limited support for visualization. The cf-report
command can be used to generate files that can be plotted with other free software. So far
this is not well documented, since the process requires special knowledge of some less-well
known Open Source tools (see Reference Manual, reporter control promises).

However, in the commercial editions of CFEngine: Nova and Constellation, much effort has
been put into making the centralized collection and visualization of these data straightforward
and powerful so that all of the learned information about a network may be seen and analysed
from a single location.

Any model of fluctuating values is based on the idea that the changing signal has a basic
separation of signal and noise. The variability of the signal is generally characterized by a
probability distribution which often peaks about the mean value. Some tools and many papers
assume that the distribution of fluctuations is Gaussian. This is almost never the case in real
computer systems.

CFEngine plots the following values together to provide an interpretive context for the
data:

• The last sampled value (‘value’). This is the actual ‘current value’. This is the orange
line in the figure above.

• The rolling average of the data for each 5 minute interval of the week (‘av’). This
represents the best estimate of what is normal. This is the green line in the figure above.

• An envelope of on standard deviation above (red vertical bars) and below (green vertical
bars) the average to show the envelope of normal ‘variation’ (‘dev’).

4 Monitoring with CFEngine

� �
Note: it is a common misconception that the mean and standard deviation only apply

to Gaussian statistical models. This is not true, although it is true that these quantities
have a special significance for these distributions. You may think of the rolling mean as a
representative average value that represents what is approximately ‘normal’. The standard
deviation plays the role of an approximate estimate of the uncertainty in the value of the
mean. These values should be treated as heuristics, not as absolute truths in any reasonable
statistical interpretation of the data.
 	

Standard measured variables

When CFEngine detects an anomaly, it classified the current statistical state of the system
into a number of classes.

CFEngine classifies anomalies by whether the currently measured state of the system is
higher or lower than the average for the current time of week. The amount of deviation
is based on an estimate of the ‘standard deviation’. The precise definition of the average
and standard deviations is complex, and is discussed in the paper ”M. Burgess, Probabilistic
anomaly detection in distributed computer networks”, (submitted to Science of Computer
Programming, and available on the web).

The list of measured attributes is currently fixed to the following:

The first part of the string is from the list:

users The number of different users that appear in the process table of the system.

rootprocs

The nunmber of current processes started by root/Administrator.

userprocs

The number of current processes started by non-privileged users.

diskfree The amount of disk free on root file system.

loadavg The load average of the system (actually multiplied by 100).

Socket counts of network services distinguish between incoming and outgoing sockets (to
a service or from a client).

netbiosns

Registers traffic to/from port 137.

netbiosdgm

Registers traffic to/from port 138.

netbiosssn

Registers traffic to/from port 139.

irc Registers traffic to/from port 194.

CFEngine Registers traffic to/from port 5308.

nfsd Registers traffic to/from port 2049.

smtp Registers traffic to/from port 25.

www Registers traffic to/from port 80.

Chapter 1: Monitoring introduction 5

ftp Registers traffic to/from port 21.

ssh Registers traffic to/from port 22.

wwws Registers traffic to/from port 443.

If you have tcpdump program installed in a standard location, then the monitor can be
confugured to collect data about the network flows to your host.

icmp Traffic belonging to the ICMP protocol (ping etc).

dns Traffic to port 53, the Domain Name Service (usually a special case of UDP).

udp Miscellaneous UDP traffic that is not related to DNS.

tcpsyn Registers TCP packets with SYN flag set.

tcpack Registers TCP packets with ACK flag set.

tcpfin Registers TCP packers with FIN flag set.

misc Registers all other packets, not covered above.

Estimate of the level of normality

When cf-monitord has accurate knowledge of statistics, it classifies the current state into 3
levels:

normal means that the current level is less than one standard deviation above normal.

dev1 means that the current level is at least one standard deviation about the average.

dev2 means that the current level is at least two standard deviations about the average.

anomaly means that the current level is more than 3 standard deviations above average.

Each of these charaxterizations assumes that there are good data available. The
‘cf-monitord’ evaluates its data and decides whether or not the data are too noisy to be
really useful. If the data are too noisy but the level appears to be more than two standard
deviations above aaverage, then the category microanomaly is used.

Here are some example classes:

userprocs˙high˙dev2

userprocs˙low˙dev1

www˙in˙high˙anomaly

smtp˙out˙high˙dev2

A complete list of standard metrics Base classes:

users

rootprocs

otherprocs

diskfree

loadavg

netbiosns˙in

netbiosns˙out

netbiosdgm˙in

netbiosdgm˙out

netbiosssn˙in

netbiosssn˙out

irc˙in

6 Monitoring with CFEngine

irc˙out

CFEngine˙in

CFEngine˙out

nfsd˙in

nfsd˙out

smtp˙in

smtp˙out

www˙in

www˙out

ftp˙in

ftp˙out

ssh˙in

ssh˙out

wwws˙in

wwws˙out

icmp˙in

icmp˙out

udp˙in

udp˙out

dns˙in

dns˙out

tcpsyn˙in

tcpsyn˙out

tcpack˙in

tcpack˙out

tcpfin˙in

tcpfin˙out

tcpmisc˙in

tcpmisc˙out

Suffixes:

˙high˙microanomaly

˙low˙microanomaly

˙high˙dev1

˙low˙dev1

˙high˙dev2

˙low˙dev2

˙high˙anomaly

˙low˙anomaly

˙high˙ldt

˙low˙ldt

Variables

The cf-monitord sets variables which cache the values that were valid at the time of the
anomaly’s occurrance. These are of the same form as above.

value˙rootprocs

average˙rootprocs

stddev˙rootprocs

value˙nsfd˙in

average˙nfsd˙in

stddev˙nfsd˙in

Chapter 1: Monitoring introduction 7

The Leap Detection Test buffer is called

ldtbuf˙users

ldtbuf˙otherprocs

etc.

Entropy

For network related data, CFEngine evaluates the entropy in the currently measured sample
of measurements, with respect to the different IP addresses of the sources. You can use these
to predicate the appearance of an anomaly, e.g.

entropy˙www˙in˙high

entropy˙smtp˙in˙low

For example, if you only want to know when a huge amount of SMTP traffic arrives from
a single IP source, you would label your anomaly response:

entropy˙smtp˙in˙low.smtp˙in˙high˙anomaly::

since the entropy is low when the majority of traffic comes from only a small number of
IP addresses (e.g. one). The entropy is maximal when activity comes equally from several
different sources.

Persistent classes for alert conditions

Another application for alerts is to pass signals from one invocation of the CFEngine agent
to another by persistent, shared memory. For example, suppose a short-lived anomaly event
triggers a class that relates to a security alert. The event class might be too short-lived to
be followed up by cfagent in full. One could thus set a long term class that would trigger up
several follow-up checks. A persistent class could also be used to exclude an operation for an
interval of time.

Persistent class memory can be added through a system alert functions to give timer
behaviour. For example, consider setting a class that acts like a non-resettable timer. It is
defined for exactly 10 minutes before expiring.

body classes example

–

persist˙time =¿ ”10”;

˝

body classes example

–

timer˙policy =¿ ”reset”;

˝

Chapter 2: Monitoring customization 9

2 Monitoring customization

What are measurements?

Measurement promises perform sampling of system variables, and scanning of files and probes,
at regular controllable intervals in order to present an efficient overview of actual changes taking
place over time.

measurements promises

In CFEngine Nova and above, you can extract data from the system in sophisticated ways from
files or pipes, using Perl Compatible Regular Expressions to match text. The cf-monitord
agent is responsible for processing measurement promises.

In this example, we count lines matching a pattern in a file. You might want to scan a log
for instances of a particular message and trace this number over time.

Scanning log files for patterns

You will have to scan the log file for each separate summary you want to keep, so you win a
lot of efficiency by lumping together mulitple patterns in a longer regular expressions.

Be careful however about the trade-off. Disk access is certainly the most expensive com-
puting resource, but a smart filesystem might do good caching.

Regular expression processing, on the other hand, is CPU expensive, so if you have very
long or complex patterns to match, you will begin to eat up CPU time too.

At the end of the day, you should probably do some tests to find a good balance. One
goal of CFEngine is to minimally impact your system performance, but it is possible to write
promises that have the opposite effect. Check your work!

bundle monitor watch

–

measurements:

”/home/mark/tmp/file”

handle =¿ ”line˙counter”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”MYLINE.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

10 Monitoring with CFEngine

##

body match˙value scan˙log(line)

–

select˙line˙matching =¿ ”$(line)”;

track˙growing˙file =¿ ”true”;

˝

body action sample˙rate(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”10”;

˝

Scanning syslog for FTP statistics

There are many things that you can set CFEngine at monitoring. For example, CFEngine can
automtically collect information about the number of socket-level connections made to the
ftp server, but you might want more detailed statistics. For example, you might want to track
the volume of data sent and received, or the number of failed logins. Here are a collection of
monitoring promises for doing just that.

Note that the ftp logs are maintained by syslog, so it is necessary to match only those lines
which correspond to the appropriate service. We also assume that the specific messages are
sent to ‘/var/log/messages’, while your configuration may specify otherwise. Likewise, your
operating systems’s version of ftp may issue messages with a slightly different format than
ours

bundle monitor watch˙ftp

–

vars:

”dir” slist =¿ – ”get”, ”put” ˝;

measurements:

”/var/log/messages”

handle =¿ ”ftp˙bytes˙$–dir˝”,

stream˙type =¿ ”file”,

data˙type =¿ ”int”,

match˙value =¿ extract˙log(”.*ftpd“[.*”, ”.*$–dir˝ .* = (“d+) bytes.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/messages”

handle =¿ ”ftp˙failed˙login”,

Chapter 2: Monitoring customization 11

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*ftpd“[.*”, ”.*FTP LOGIN FAILED.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/messages”

handle =¿ ”ftp˙failed˙anonymous˙login”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*ftpd“[.*”, ”.*ANONYMOUS FTP LOGIN REFUSED.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

##

body match˙value scan˙log(line)

–

select˙line˙matching =¿ ”$(line)”;

track˙growing˙file =¿ ”true”;

˝

body match˙value extract˙log(line, extract)

–

select˙line˙matching =¿ ”$(line)”;

extraction˙regex =¿ ”$(extract)”;

track˙growing˙file =¿ ”true”;

˝

body action sample˙rate(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”10”;

˝

Scanning DNS logs for query statistics

Another thing you might want to do is monitor the types of queries that your DNS server is
being given. One possible reason for this is to test for unusual behavior. For example, suddenly
seeing a surge in ‘MX’ requests might indicate that your system is being targeted by spammers
(or that one of your users is sending spam). If you are thinking of converting to IPv6, you
might want to compare the number of ‘A’ requests to ‘AAAA’ and ‘A6’ requests to see how
effective your IPv6 implementation is.

12 Monitoring with CFEngine

Because DNS logs are directly maintained by ‘bind’ or ‘named’ (and do not go through
syslog), the parsing can be simpler. However, you do need to configure DNS to log query
requests to the appropriate log file. In our case, we use ‘/var/log/named/queries’.

bundle monitor watch˙dns

–

vars:

”query˙type” slist =¿ – ”A”, ”AAAA”, ”A6”, ”CNAME”, ”MX”, ”NS”,

”PTR”, ”SOA”, ”TXT”, ”SRV”, ”ANY” ˝;

measurements:

”/var/log/named/queries”

handle =¿ ”DNS˙$(query˙type)˙counter”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.* IN $(query˙type).*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

##

body match˙value scan˙log(line)

–

select˙line˙matching =¿ ”$(line)”;

track˙growing˙file =¿ ”true”;

˝

body action sample˙rate(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”10”;

˝

Scanning syslog for email statistics

Email is another syslog-based facility that you may want to use CFEngine to monitor. There
are a number of volumetric data that are of interest. For example, the number of messages
sent and received, the number of messages that have been deferred (a large number might
indicate networking problems or spam bounces), and the number of spam messages that have
been detected and removed by the assorted spam filters.

The samples below assume that there is a separate logfile for email (called
‘/var/log/maillog’) and that a few of the standard sendmail rulesets have been enabled
(see ‘http://www.sendmail.org/˜ca/email/relayingdenied.html’ for details). As with
any syslog-generated file, you need to check for the appropriate service, and in this case we
are lumping local messages (sent through ‘sm-mta’) and remote messages (sent through
‘sendmail’) into a single count. Your mileage may of course vary.

Chapter 2: Monitoring customization 13

If you use one or more sendmail ”milters”, each of these will also output their own syslog
messages, and you may choose to track the volume of rejections on a per-filter basis.

bundle monitor watch˙email

–

vars:

”sendmail” string =¿ ”.*(sendmail—sm-mta)“[.*”;

”action” slist =¿ – ”Sent”, ”Deferred” ˝;

measurements:

”/var/log/maillog”

handle =¿ ”spam˙rejected”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

This matches 3 kinds of rulesets: check˙mail,

check˙rcpt, and check˙relay

match˙value =¿ scan˙log(”$(sendmail)ruleset=check˙(mail—rcpt—relay).*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/maillog”

handle =¿ canonify(”mail˙$(action)”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”$(sendmail)stat=$(action) .*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

##

body match˙value scan˙log(line)

–

select˙line˙matching =¿ ”$(line)”;

track˙growing˙file =¿ ”true”;

˝

body action sample˙rate(x)

–

ifelapsed =¿ ”$(x)”;

expireafter =¿ ”10”;

14 Monitoring with CFEngine

˝

Scanning syslog for email milter failures

Milters are relatively new in sendmail, and some have problems. You can also use monitoring
to detect certain types of failure modes. For example, if a milter is running (that is, there is a
process present) but it does not respond correctly, sendmail will log an entry like this in syslog
(where ‘xyzzy’ is the name of the milter in question):

Milter (xyzzy): to error state

A small number of these messages is no big deal, since sometimes the milter has temporary
problems or simply encounters an email message that it finds confounding. But a larger value
of these messages usually indicates that the milter is in a broken state, and should be restarted.

You can use ‘cf-monitord’ to check for the number of these kinds of messages, and use
the soft classes that it creates to change how ‘cf-agent’ operates. For example, here we will
restart any milter which is showing a high number of failure-mode messages:

bundle monitor watch˙milter

–

vars:

”milter” slist =¿ – ”dcc”, ”bogom”, ”greylist” ˝;

measurements:

”/var/log/maillog”

handle =¿ ”$–milter˝˙errors”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*Milter ($–milter˝): to error state”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

bundle agent fix˙milter

–

vars:

”m[dcc]” string =¿ ”/var/dcc/libexec/start-dccm”;

”m[bogom]” string =¿ ”/usr/local/etc/rc.d/milter-bogom.sh restart”;

”m[greylist]” string =¿ ”/usr/local/etc/rc.d/milter-greylist restart”;

commands:

”$(m[$(watch˙milter.milter)])”

ifvarclass =¿ ”$(watch˙milter.milter)˙high”;

˝

Chapter 2: Monitoring customization 15

Scanning syslog for breakin attempts

A lot of script-kiddies will probe your site for vulnerabilities, using dictionaries of
account/password combinations, looking for unguarded accounts or accouts with default
passwords. Most of these scans are harmless, because a well-maintained site will not use the
default passwords that these hackers seek to exploit.

However, knowing that you are being scanned is a good thing, and CFEngine can help
you find that out. Because ‘sshd’ logs it’s message through ‘syslog’, we again need to
filter lines based on the service name. On our system, authorization messages are routed to
‘/var/log/auth.log’, and we would monitor it like this:

bundle monitor watch˙breakin˙attempts

–

measurements:

”/var/log/auth.log”

This is likely what you’ll see when a script kiddie probes

your system

handle =¿ ”ssh˙username˙probe”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*Invalid user.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/auth.log”

As scary as this looks, it may just be because someone’s DNS

records are misconfigured - but you should double check!

handle =¿ ”ssh˙reverse˙map˙problem”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*POSSIBLE BREAK-IN ATTEMPT!.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/auth.log”

Someone is trying to log in to an account that is locked

out in the sshd config file

handle =¿ ”ssh˙denygroups”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*group is listed in DenyGroups.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

16 Monitoring with CFEngine

”/var/log/auth.log”

This is more a configuration error in /etc/passwd than a

breakin attempt...

handle =¿ ”ssh˙no˙shell”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*because shell “S+ does not exist.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/auth.log”

These errors usually indicate a problem authenticating to your

IMAP or POP3 server

handle =¿ ”ssh˙pam˙error”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*error: PAM: authentication error.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

”/var/log/auth.log”

These errors usually indicate that you haven’t rebuilt your

database after changing /etc/login.conf - maybe you should

include a rule to do this command: cap˙mkdb /etc/login.conf

handle =¿ ”ssh˙pam˙error”,

stream˙type =¿ ”file”,

data˙type =¿ ”counter”,

match˙value =¿ scan˙log(”.*sshd“[.*login˙getclass: unknown class.*”),

history˙type =¿ ”log”,

action =¿ sample˙rate(”0”);

˝

See the CFEngine Nova documentation for more possibilities of measurement promises.

Threshold monitoring

vars:

”probes” slist =¿ – ”www”, ”smtp”, ”ssh” ˝;

classes:

”$(probes)˙threshold” expression =¿ isgreaterthan(”$(mon.$(probes))”,”50”);

Chapter 2: Monitoring customization 17

reports:

”Help $(probes)!” ifvarclass =¿ ”$(probes)˙threshold”;

Summary Monitoring

There are endless possibilities for monitoring with CFEngine Nova. This document has sug-
gested a few.

