
Hierarchies: Authority, Structure and Inheritance
A CFEngine Special Topics Handbook

CFEngine AS

� �
Using hierarchies is one way of distributing the load from a single CFEngine policy server. They
are also useful when an organization has different types of machine classes. These classes can
be based on location or on function, and oftentimes the distinction of machine class will also
be reflected in differences in configuration.
 	

Copyright c© 2010 CFEngine AS

1

What is a hierarchy?

A hierarchy is an organizational structure with tree-like branches. In a hierarchy, parts of the
system belong to other parts, like collections of boxes inside other boxes. Each time you move,
you either ascend or descend to a different level with respect to the root. Hierarchies are called
Directed Acyclic Graphs (DAG) in mathematics (see figure below (a) and (b)).

Hierarchies are often associated with authority, as we use hierarchies to organize human ‘chains
of command’. In this case, a hierarchy typically has multiple levels, as in (b). You might
interpret this diagram as showing a single point of top level management, then satellite areas
of middle management each with their own clusters of slaves (leaf nodes). When drawing
hierarchies, the root of the tree is placed at the top or centre of the picture and is considered
to be authoritative, i.e. more important than the ‘leaves’. Each leaf node is then subject to
the control of the root in a top down manner.

The opposite of a hierarchy is a mesh or web (figure (c)), which has no special or privileged
node – nodes are simply connected by some kind of relationship. In mesh organization, each
individual has an area of responsibility and they talk on demand to other nodes, without any
particular ranking. If you move in a mesh, you cannot easily measure how far you are away
from a given point, as their might be more than one way of getting there.

Mesh architectures are often robust to failure as there can be multiple ‘peer to peer’ routes
for passing messages or information.

2 Hierarchies

� �
Top-down is is a cultural prejudice or ‘norm’, as most human societies work in this way.

However it is not a necessity. A network service is bottom-up – there it is the leaves which
drive requests that end at a single central server. Hierarchies are special cases of networks,
and (as all special cases) they are fragile, because the have top-down redundancy, but not
bottom-up redundancy. We say that hierarchies have a Single Point of Faliure at the root, as
failure at that point will disconnect the network.

 	
How hierarchy compares to sets

Some languages (like Object Oriented languages) are designed to enforce hierarchies.
CFEngine is not one of these. In CFEngine you can build a hierarchy if you want to, but
you can also build any other kind of network. The parts of your system can also work with
complete autonomy if that is what you want. CFEngine does not push a model onto you.

Consider this example of CFEngine classes. It expresses a tree structure.

classes:

Conceptual hierarchy

”top” or =¿ – ”middle˙1”, ”middle˙2”, ”middle˙3” ˝;

”middle˙1” or =¿ – ”slave˙1”, ”slave˙2”, ”slave˙3” ˝;

”middle˙2” or =¿ – ”slave˙4”, ”slave˙5”, ”slave˙6” ˝;

This example is contrived. The core classes that CFEngine cares about are the slaves,
since CFEngine is a bottom-up system. The definition of the middle and top classes are
aggregations of clusters of basic member attributes.

Consider this example of a geographically distributed organization, with finance, engineering
and legal departments in three countries.

Hierarchy

”headquarters” or =¿ – ”usa”, ”uk”, ”norway” ˝;

”department” or =¿ – ”finance”, ”engineering”, ”legal” ˝;

3

We can express the full hierarchy like this:

usa.finance

usa.engineering

usa.legal

uk.finance

uk.engineering

uk.legal

norway.finance

norway.engineering

norway.legal

In this notation, the dot looks like ‘member’ because the departments are smaller than the
countries and are contained within them. You might feel that this model is upside down and
that one should consider the finance department to be a unified global entity, with branches
in three different countries. In that case, you would write

finance.uk

finance.usa

finance.norway

This highlights the fact that we often want to slice and dice organizations in different ways,
and attending too closely to a single hierarchical model prevents that. The key is to notice
that the ‘.’ (dot) operator is really an intersection of sets (AND)1, and that this is a much
more flexible notion than hierarchy.

Classes are sets

‘Sets, sets, sets ... all you ever think about it sets!’

– Anonymous

Underlying hierarchies and networks is the concept of sets. A set or collection of something
is just a number of instances that satisfy some property. For example, the set of all Windows
machines, or the set of times between 2 and 3 o’clock. Sets can be thought of as networks in
which the elements are all joined to each other by a common relationship ‘in the same set as’.

The name of a set can be thought of as a property that characterizes the members, and
as such it behaves like an abstract box or container for the members. Containment in classes
is the basis for hierarchies in Object Orientation, for instance.

We often write subset membership using a membership ‘.’ character, e.g. if ‘linux’ is the
set of hosts with property ‘linux’, then a subset (or sub-class) of these hosts is ‘debian’ (see
figure). The class 64 bit hosts is not a subset of linux, as part of it lies outside. It is a subset
of hosts.

linux.debian

linux AND debian

linux intersect debian

1 It is a commutative operator, which is why it makes sense to write both usa.finance and finance.usa.

4 Hierarchies

Sets can be made hierarchical when every subset is contained entirely by one and only one
parent set, and in turn contains zero or more whole subsets which it does not share with any
other. The problem with hierarchical sets is that they are too restrictive. If you design them
incorrectly in the first place, you shut parts of the organization inside a box that prevents other
parts from accessing them.

CFEngine works only with sets. It does not assume that sets never overlap. Indeed,
it encourages you to use as many overlapping sets as possible to create optimum, simple
categories to address the parts of your organization. This gives us great power. We can
for instance extract the list of all English speaking entities from the definitions about our
organization, by adding a defintion of set union (OR or ‘—’) and intersection (AND or ‘.’):

Hierarchy

”headquarters” or =¿ – ”usa”, ”uk”, ”norway” ˝;

”department” or =¿ – ”finance”, ”engineering”, ”legal” ˝;

”english˙speaking” expression =¿ ”(usa—uk).!legal”;

Thus the English speakers are those entities belonging to the USA ‘AND’ the UK, excepting
presumably the legal department.

For and against hierarchies

Hierarchies are good at bringing consistency. They are bad at scaling. They bring consistency
because the root node acts as a single point of authority, i.e. the network speaks with a single
voice. The scale poorly because they funnel communication to a single point of failure and
processing so that the weakest link is the most authoratative node.

The Internet was designed by smart engineers to not be a hierarchy so that it would be
robust to failure of single nodes. Since then, incorrigable humans have done their best to make
it hierarchical from the viewpoint of the Domain Name Service (DNS) classification, so that
organizational identifiers seem to fall into simple tree-like hierarchies.

5

Because the idea of hierarchy is so prevalent, it is many peoples’ first instinct to build
hierarchical organizations. At CFEngine we believe that the idea is over-used, and causes as
many problems as it brings solutions, so CFEngine does not encourage it.

This document tries to show how to use hierarchy sensibly and usefully to simplify rather
than to enforce authority.

Inheritance and its forms

Perhaps the most popular application of hierarchy is to use the property of having a single-
point of definition to avoid maintaining the same information in more than one place. This is
an efficiency. Inheritance is expressed in different ways:

• Special subset extends base set properties, emphasizing that the leaf builds on, or adds
the root in order to extend it.

• Special subset inherits base set properties, emphasizing that the leaf is a consumer of the
root and does not necessarily offer any more.

• Special subset depends on, emphasizing that the root is a single point of failure for the
leaf.

These are basically equivalent expressions of the same thing. No matter how we choose
to express this, inheritance is a client-server relationship in which a single source is feeding a
number of possible users.

� �
In Promise Theory, we consider this to be a use-promise (service) relationship. A single

point promises information, and a number of leaf-nodes promise to use it.
 	

The figure shows how we maintain common information in a ‘base’ or server. Then the
users or consumers of the information are so-called derived classes.

6 Hierarchies

We can use the notion of inheritance at different levels within CFEngine. These are a
matter of using the global scope with bundle names.

Inheritance of classes/sets
We can aggregate smaller classes into larger ones (yielding multiple inheritance
of class attributes):

classes:

”group˙name” or =¿ –

”base˙class˙1”,

”base˙class˙2”,

”base˙class˙3”

˝;

Note that CFEngine naturally forms a bottom-up hierarchy, never a top-down
hierarchy.

Inheritance of class definitions
CFEngine divides its promises into bundles that have private classes and variables.
Bundles called ‘common bundles’ define global classes, so they are automatically
inherited by all other bundles.

Inheritance of variable definitions
Variables in CFEngine are globally accessible, but you must say what bundle you
are talking about by writing ‘$(bundle.scalar)’ or ‘@(bundle.list)’. If you
omit the ‘bundle’, it is assumed that the variable is in the current bundle.

bundle agent child˙bundle(parameter)

–

vars:

”extend˙list” slist =¿ – ”extension”, @(foreign.list) ˝,

policy =¿ ”ifdefined”;

reports:

”Inherit parameter value $(parameter)”;

”Inherit foreign scalar value $(foreign.scalar)”;

˝

The policy ifdefined means that CFEngine will ignore the foreign list if is does
not exist. This means you can include a number of lists from other bundles to
extend the behviour of your own, if they are provided.

Inheritance of bundles
Bundles cannot really be merged like sets, but since they make promises you can
use them.

bundle agent child˙bundle

–

7

methods:

”extend˙method” use =¿ base˙bundle(parameter1,parameter2);

˝

A bundle can only be used if it exists, so we can also talk about plug-ins for bundles.
In CFEngine, you include entire bundles either in the the bundlesequence, or as
methods.

Normally you have to know exactly which bundles are going to exist in advance,
as CFEngine considers missing code to be a security issue and will signal an error
for missing bundles. This is the default behaviour, but we can override it using
the following body agent control promises.

ignore˙missing˙bundles

Skip over any bundles listed in the bundlesequence constraint and
continue without error.

ignore˙missing˙inputs

Skip over any input files listed in the inputs contraint and continue
without error.� �

Be aware of the security implications of inheritance. Because of the assumption of authority,
by promising to use the inheritance, you have subordinated your input to the source – or
voluntarily given up the right to say no to whatever you have subscribed to. You have implicity
trusted them.
 	

Expressing ‘is a’ or ‘has a’

Let us re-emphasize for the record that CFEngine is not intended to be an object oriented
system. At CFEngine we do not believe that Object Orientation is a good way to think about
complex architectures.

That said, all object-oriented class relationships are expressable as set relationships, as sets
are the basis of all computing. We can therefore understand relationships like ‘is a’ and ‘has
a’ in CFEngine, even if they are not the recommended way of thinking.

For example, if we say that debian ‘is a’ (kind of) linux, or conversely that linux ‘has a’
(subtype called) debian, then we are expression container promises. We mean that debian
is a subset of linux, and this means. In concrete terms debian might or might not extend
linux, or vice versa. When ‘objects’ get as complicated as operating systems it does not
really make sense to speak so simplistically.

If we want to say that a host ‘is a’ server, we can code this as membership in the set of
servers:

classes:

”servers” or =¿ – ”host1”, ”host2” ˝;

processes:

8 Hierarchies

servers:: # the next rules ‘extend’ or add to the class servers

”...”

How to organize your organization

Faced with the choice of how to classify systems, where does one begin? This is the dilemma
that programmers face when designing new software, and if they make the wrong choices
for their class hierarchy, it can cost a lot of work to redesign everything again from the
beginning. This is why inheritance and strict class hierarchies are a very fragile way of organizing
something. Using a patchwork of sets, CFEngine potentially avoids this problem – but you
can still make a mess – it seems to be programmed into us to put systems into hierarchy-like
‘container’ categories anyway, and this can end with confusion.

The keyt issue is: how tdo we slice and dice the cake into the largest pieces? In other
words, what is that basic paradigm that you use to partition your system operations? Some
alternatives include:

• Geographically (by site or country)

• By business department (sales, accounting, research)

• By security zone (private, DMZ, public, etc)

• By operating system (solaris, linux, darwin)

• By customer or client (e.g. for managed services)

• By task, service or role in the network (webservers, dns, workstations)

However, you choose to begin, you can further subdivide these major categories by simply
ANDing with other categories.

Applications of hierarchy

When a small organization uses CFEngine, machines are often configured by ”what they do”
or ”what they have” (e.g., they ”are a webserver” or they ”have ntp-based time synchroniza-
tion”). These attributes are best expressed using CFEngine classes (and class promises), so
that the .cf files can simply express configuration options based on ”has-a” or ”is-a” options.

For example:

bundle agent maintain˙servers

–

classes:

”has˙dhcpd” or =¿ – classmatch(”ipv4˙10˙“d+˙“d+˙1”) ˝;

”has˙httpd” or =¿ – ”www˙example˙com” ˝;

”has˙sshd” or =¿ – ”any” ˝;

processes:

has˙dhcpd::

”dhcpd” restart˙class =¿ ”start˙dhcpd”;

9

has˙httpd::

”httpd” restart˙class =¿ ”start˙httpd”;

has˙sshd::

”sshd” restart˙class =¿ ”start˙sshd”;

commands:

freebsd.start˙dhcpd::

”/usr/local/etc/rc.d/isc-dhcpd.sh start”;

start˙httpd::

”/usr/local/sbin/apachectl start”;

freebsd.start˙sshd::

”/etc/rc.d/sshd start”;

linux.start˙sshd::

”/etc/init.d/ssh start”;

˝

As you can see, the #1 machine on every net-10 subnet has the dhcp server for that subnet,
the machine www.example.com has a web server, and every machine has an ssh server.

But what happens when we want to maintain configuration information differently for
different regions, or different IP addresses? Our usage of classes can get complicated, and
can obscure the the details of what you want CFEngine to maintain. For example, if we want
to maintain both internal and external webservers for different parts of a larger corporation,
we might see something like this:

files:

internal.has˙httpd.nyc::

Files maintained for internal webserver in New York

external.has˙httpd.nyc::

Files maintained for external webserver in New York

internal.has˙httpd.london::

Files maintained for internal webserver in London

external.has˙httpd.london::

Files maintained for external webserver in London

internal.has˙httpd.tokyo::

Files maintained for internal webserver in Tokyo

external.has˙httpd.tokyo::

Files maintained for external webserver in Tokyo

When you compound this by ading more services, locations, and finer and finer discriminations,
the configuration files can rapidly grow so complicated as to obfuscate the intentions.

10 Hierarchies

To be sure, having classes like nyc, london, and tokyo can be very useful when using
CFEngine to centrally administer a large network of computers, but there are other ways of
doing this that make maintenance easier and the logic more apparent.

1) Copying files to local machines 2) Symlinks 3) Local changes $(site local) 4) Machine
naming -¿ classes 5) Using dist classes to select from a set of machines, not just query them
in order; also splayclass 6) Versioning, RPM/SVN for distro, vs CFEngine 7) updating with
cf-agent -DUpdateNow

